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Abstract: Vision-based object detection is essential for safe and efficient field operation for au-
tonomous agricultural vehicles. However, one of the challenges in transferring state-of-the-art object
detectors to the agricultural domain is the limited availability of labeled datasets. This paper seeks to
address this challenge by utilizing two object detection models based on YOLOv5, one pre-trained
on a large-scale dataset for detecting general classes of objects and one trained to detect a smaller
number of agriculture-specific classes. To combine the detections of the models at inference, we
propose an ensemble module based on a hierarchical structure of classes. Results show that applying
the proposed ensemble module increases mAP@.5 from 0.575 to 0.65 on the test dataset and reduces
the misclassification of similar classes detected by different models. Furthermore, by translating
detections from base classes to a higher level in the class hierarchy, we can increase the overall
mAP@.5 to 0.701 at the cost of reducing class granularity.

Keywords: object detection; ensemble methods; agricultural vehicles

1. Introduction

Technological innovation is transforming the agricultural industry in order to meet
increasing food demands and minimize environmental impact and sustainability [1,2].
Therefore, autonomous vehicles will be an essential part of future farming solutions.
However, the currently available autonomous vehicles in agriculture cannot process the
surrounding environment fully and safely perform complex field tasks without human
intervention. Moreover, the environment in which those vehicles operate is highly un-
structured and changes throughout different cycles. Therefore, the safe field operation
of autonomous agricultural vehicles depends on a robust perception system and reliable
visual data processing.

Object detection is an important part of scene understanding and obstacle avoidance
for autonomous vehicles. The object detectors enable localization and classification of
predefined classes of objects commonly found in the vehicle’s environment. The output
provided by the object detector can later be used to either provide assistance to the vehicle
operator or be integrated with the decision-making module in more autonomous solutions.

In recent years, due to the development of deep learning models and increased
computational power, object detection has been applied in solving a wide range of real-life
tasks [3]. In the agricultural domain, deep learning-based object detection has been used in
fruit detection [4–7], remote sensing [8–10] and weed detection [11–13]. One of the main
challenges in applying state-of-the-art object detectors for obstacle detection in agriculture
is the availability of large-scale image datasets. Some of the public benchmark datasets
for object detection, such as Microsoft Common Objects in COntext (MS COCO) [14] and
PASCAL Visual Object Classes (VOC) [15], contain classes of objects like humans and some
types of animals that are relevant for the agricultural domain as well. However, none
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of the benchmark datasets were collected for agricultural application and, therefore, lack
the important agriculture-specific classes of objects such as different agricultural vehicles,
implements, static objects commonly found in the fields, etc. Therefore, the previous
research on deep learning-based obstacle detection in agriculture focused on detecting
only a limited number of classes and does not include important domain-specific classes.
Kragh et al. [16] applied two detection algorithms, LDCF and YOLO. Both algorithms are
trained on publicly available datasets that are not intended for agriculture, and, therefore,
the classes are limited to general domain classes such as ‘human’, ‘vehicle’ and ‘unknown’.
Steen et al. [17] presented an algorithm for obstacle detection in agricultural fields based
on AlexNet. The network is trained for the detection of ISO-standardized barrel-shaped
obstacles. The presented algorithm performed well in detecting this type of obstacle but
failed to detect other types of obstacles, highlighting the limitations of a standardized
obstacle in image-based detection. Work by Li et al. [18] proposed a method for the
detection of typical obstacles in orchards, such as humans, cement columns and utility
poles. The method is based on YOLOv3 [19] and uses a lightweight MobileNetV2 network
and Gaussian model to improve detections. In work by [20], four cameras were attached to
the tractor to detect human presence during the tractor’s operation. The detection network
is YOLOv3 trained on images of humans extracted from the MS COCO dataset.

This paper focuses on the detection of objects in the agricultural vehicle’s environment
during summer harvest operations. To address the challenge of limited dataset availability
for the agricultural domain and leverage the benefits of already available models pre-
trained on large-scale datasets able to detect classes from the general domain, we employed
two detection models. The first model is a pre-trained model on MS COCO datasets with
enabled detection of three classes—‘person’, ‘car’ and ‘truck’—selected as relevant for
this scenario. The second model is trained on a smaller agriculture-specific dataset and
is trained to detect seven classes: ‘tractor’, ‘combine’, ‘trailer’, ‘combine header’, ‘baler’,
‘square bale’ and ‘round bale’. Both models are based on the YOLOv5 [21] architecture. We
observed that combining the detection results from both models by simple concatenation
leads to redundant detection of agricultural vehicles as road vehicle classes. These two
groups of classes share similar visual appearances and belong to the same higher-level
category, ‘Vehicle’, as illustrated in the class hierarchy shown in Figure 1.

Figure 1. Hierarchy of classes in the dataset.
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Existing ensemble methods that combine the output of detection models by eliminating
redundant bounding boxes, such as those based on non-maximum suppression [22,23]
or fusion [24], do not consider the class of the detected object. The ensemble approach
proposed by Casado-García and Heras [25] considers the classes of objects by grouping the
detected objects of the same class based on the intersection over union (IoU) threshold
and applying one of the proposed three voting strategies for ensembling. In our case, the
bounding boxes that need to be processed by the ensemble method belong to different
classes, and the appropriate ensembling method needs to reflect the semantic relationships
between their classes proposed in the class hierarchy.

Several approaches to object detection have exploited contextual relationships be-
tween the classes in order to improve detection performance. The work presented in [26]
supplemented a pre-trained object detection model with a graph convolutional network
(GCN). The GCN processes a relationship knowledge graph with the conditional probabil-
ity generated for MS COCO classes. The reported results for the MS COCO dataset show
that including GCN improves mean average precision. The super-class guided network
(SGNet), proposed by Li et al. [27], improves the performance of image classification and
object detection tasks by incorporating a two-level hierarchy of classes. The architecture
comprises two branches, a super-class branch (SCB) and finer class branch (FCB), that
operate in parallel. The SCB focuses on capturing general features shared by super-class
categories, while the FCB handles detailed fine-grain attributes. During training, both
branches are trained together, and the total loss used for backpropagation is calculated as
the sum of losses in individual branches. In this way, misclassifications at the super-class
level result in higher loss and affect parameter updates for FCB as well. The results show
that the proposed SGNet improves performance on the classification task on CIFAR-100
dataset and object detection task on MS COCO datasets. The work presented in [28]
addresses the training of object detectors on multiple datasets that have labels at differ-
ent hierarchical levels. Single Shot multibox Detector: Multi-Loss (SSD-ML) is proposed
as a modification of the SSD detector. The classification is decoupled from localization,
and the binary loss function is used to generate prediction scores for each category in-
dependently. The proposed method outperforms the original SSD on traffic surveillance
datasets. Salakhutdinov et al. [29] aimed to improve detection accuracy for classes with
limited training data by sharing feature representations from related classes with more
training data. The hierarchical Gaussian prior model (with a two-level prior) was used to
represent relationships between classes of visually similar objects. In all of these works, the
focus was on modifying the architectures to incorporate hierarchical relationships between
classes during the training stage and improve the detection performance of a single model.

We propose an ensemble module that incorporates relationships from the hierarchy of
classes at inference time and requires no training. Compared to our previous work [30],
which focused on combining an object detector for agriculture-specific classes and an
anomaly detector for detecting remaining potential obstacles, this work focuses on combin-
ing two object detectors, one for agriculture-specific classes and one for general domain
classes, by taking into account the class hierarchy of the base classes that they detect. The
two object detectors and the ensemble method proposed in this paper can be potentially
used in place of the object detector in the framework proposed in our previous work. The
proposed ensemble module consists of a set of rules for removing redundant detections for
the case of agricultural and road vehicles and is not dependent on the architecture of the
object detection models that are being ensembled. The performance of models is evaluated
on a test dataset containing ten classes of objects that the two models are able to detect
when combined. We show that applying the proposed ensemble module improves the
mean average precision (mAP) on the test dataset. Moreover, we show that translating the
model predictions to a higher level in the hierarchical structure of classes improves mAP
even further at the cost of class granularity.

The paper’s main contributions are summarized below:
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• We propose the class hierarchy for object detection in agriculture. The class hierarchy
contains agriculture-specific classes as well as relevant classes from the publicly
available dataset;

• We evaluate the performance of a model trained for agriculture-specific classes and a
model pre-trained on MS COCO on an agricultural test dataset;

• We present a method for ensembling object detectors based on the proposed hierarchy
of classes. The presented method ensembles the detections at inference time and
is independent of underlying detection algorithms. The performance of combined
models with and without the ensemble module is evaluated, and we show that the
overall performance improves with the addition of the proposed ensemble module;

• We show that translating the model predictions to a higher level in the hierarchy can
improve the performance even further at the loss of class granularity.

The remainder of the paper is structured as follows. Section 2 describes datasets,
model architecture and ensemble module. In Section 3, the performance of the trained
networks and the proposed ensemble module are evaluated. The conclusion follows in
Section 4.

2. Methods
2.1. Datasets

This section describes the datasets used for the training and testing of the models.

2.1.1. Common Objects in Context (COCO) Dataset

MS COCO [14] is a large-scale benchmark dataset for object recognition. The dataset
contains 123k training and validation images, annotated for 80 classes of objects. The
images are taken from everyday scenes containing common objects. As shown in Table 1,
annotated classes of objects are grouped into 12 supercategories. Among the supercate-
gories and classes, we identified the ones that could be relevant in the agricultural domain.
Specifically, in the case of object recognition for agricultural vehicles, supercategories of
persons, vehicles and animals are of interest. For this paper, the classes ‘person’, ‘car’ and
‘truck’ were selected. During field operations, it is very common for farmers and workers
to be present in the field, especially around the vehicles during servicing. In addition,
vehicles such as cars are often left parked at the field’s boundaries, and trucks are often
used for unloading harvested grain. While animals can often interfere with field operations,
especially wild animals, consideration of these classes is beyond the scope of this paper.

Table 1. Overview of classes in the MS COCO dataset.

Supecategory Classes

Person 1 person
Vehicle bicycle, car, motorcycle, airplane, bus, train, truck, boat
Outdoor traffic light, fire hydrant, stop sign, parking meter, bench
Animal bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe
Accessory backpack, umbrella, handbag, tie, suitcase
Sports frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard,

surfboard, tennis racket
Kitchen bottle, wine glass, cup, fork, knife, spoon, bowl
Food banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake
Furniture chair, couch, potted plant, bed, dining table, toilet
Electronic tv, laptop, mouse, remote, keyboard, cell phone
Appliance microwave, oven, toaster, sink, refrigerator
Indoor book, clock, vase, scissors, teddy bear, hair drier, toothbrush

1 Bold denotes classes and corresponding supercategories selected for this paper.
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2.1.2. Agricultural Dataset for Object Detection

The dataset used for training the model for object detection in an agricultural envi-
ronment consists of 14,318 images annotated for seven agriculture-specific classes. The
annotated classes are ‘tractor’, ‘combine’, ‘trailer’, ‘combine header’, ‘baler’, ‘square bale’
and ‘round bale’.

2.1.3. Testing Dataset

For the testing of models, a dataset consisting of 7.9k images was collected by 2 agri-
cultural vehicles over 13 days. The annotated classes are ‘tractor’, ‘combine’, ‘trailer’,
‘combine header’, ‘baler’, ‘square bale’, ‘round bale’, ‘person’, ‘car’ and ‘truck’. By adopting
the hierarchical approach, the base classes are grouped into categories at two levels of
granularity, as shown in Table 2. The first level, ‘subcategory’, represents coarse labels for
the base classes. At the top level, labeled ‘supercategory’, the subcategories are grouped
even further into more general categories such as ‘Vehicle’, ‘Implement’, ‘Static object’ and
‘Dynamic object’.

Table 2. Overview of classes in the test dataset.

Supercategory Subcategory Class

Vehicle
Agricultural tractor

combine

Road car
truck

Implement
Tractor trailer

baler

Combine combine header

Static object Bale square bale
round bale

Dynamic object Person person

2.2. Object Detection Models

Two object detection models based on YOLOv5 were used for the detecting classes
in the test dataset. One model is trained to detect seven agriculture-specific classes us-
ing transfer learning. The other model is a publicly available model trained on the MS
COCO dataset.

The YOLOv5 models are single-stage object detectors consisting of a backbone network,
neck and detection head. The cross-stage partial connections (CSP) network is used as a
backbone that extracts features from the input image. In general, the neck of the network
generates feature pyramids and enables the model to perform better when detecting objects
of various sizes and scales. In YOLOv5, PANet is used as the neck network. The final
detection is performed by the YOLO head proposed in YOLOv3 [19]. It generates the final
output vector with class probabilities, objectness scores and bounding boxes from anchor
boxes applied to features.

The model for the detection of agricultural classes is the YOLOv5m model trained
on the agricultural dataset described in Section 2.1.2. The dataset was randomly split into
training and validation datasets with a 70:30 ratio. The images were resized to 640 × 640,
and the model was trained for 300 epochs using default hyperparameters.

The model used for detecting classes ‘person’, ‘car’ and ‘truck’ is the YOLOv5l model
from Ultralytics [21], trained on the MS COCO dataset to detect 80 classes of common objects.
During the non-max suppression stage, the three classes are selected from the predictions.

2.3. Ensemble Module

The pre-trained COCO model is able to detect ‘truck’ and ‘car’ classes of road vehicles,
while the model for agricultural classes is able to detect classes of agricultural vehicles
‘combine’ and ‘tractor’. Since objects belonging to these classes have similar visual prop-
erties, the pre-trained model that has not been trained for detection in images depicting
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agricultural scenes specifically often detects agricultural vehicles as ‘truck’ or ‘car’. While
implements do not belong to the ‘Vehicle’ super-category directly, they still share a lot of
common properties with vehicles, such as having wheels, being made of similar material,
having similar colour, etc. Therefore, they are also often detected as road vehicles by the
pre-trained network. In the cases where both models detect the same object, the redundant
road vehicle detections are removed if they exceed the overlap threshold with detections of
agricultural classes.

Moreover, the classes for agricultural implements are closely linked with classes for
agricultural vehicles. During field operation, agricultural vehicles often have an implement
attached at the front or the back of the vehicles. This linkage between agricultural vehicles
and implements creates a special case for the ensembling of detections. While the pre-
trained model is good at detecting vehicles at least at the higher super-category level, it does
not have the notion of the linkage between the agricultural vehicles and the implements
classes. For example, consider a tractor with a trailer attached at the back. In this case,
the model for agricultural classes will detect two objects, ‘tractor’ and ‘trailer’, while the
pre-trained model will often detect these two objects as a single vehicle object ‘truck’.
Therefore, these vehicle–implement pairs—in our case, tractor with trailer or baler attached
or combine with combine header attached—need to be treated separately. In the cases where
the agricultural model detects a vehicle–implement pair, the redundant truck detection
that overlaps with the vehicle, implement or vehicle–implement pair detection is removed
if their overlap exceeds a threshold. This threshold is lowered compared to the cases of
redundant road vehicle detection for vehicles and implements that are not detected as
being a pair.

The summary of rules applied in ensemble module and specific thresholds are pro-
vided below.

Detections of class ‘truck’ are removed based on IoU with the detections of agriculture-
specific classes in the following cases:

• Agricultural vehicle paired with its implement: if IoU ≥ 0.6;
• Individual vehicle and implement detections:

– Part of vehicles and implement pair : if IoU ≥ 0.6;
– Not part of vehicle and implement pair: if IoU ≥ 0.8.

Detections of class ‘car’ are removed based on IoU with the detections of agriculture-
specific classes in the following cases:

• Individual vehicle and implement detections: if IoU ≥ 0.8.

The diagram of the ensemble module is provided in Figure 2. First, the image is
passed through both detection models and detection results are obtained. The detections
for classes belonging to agricultural vehicles and implements are processed to determine
which detections form vehicle–implement pairs. Then, for every vehicle–implement pair,
a bounding box for the vehicle object and a bounding box for the implement object are
merged to form a new bounding box around the vehicle–implement pair. Additionally,
all vehicle and implement detections that are a part of the vehicle–implement pair are
flagged. The bounding boxes corresponding to vehicle–implement pairs are compared for
overlap with detections of class ‘truck’ coming from the pre-trained model. If the overlap
exceeds a certain threshold, the ‘truck’ detection is removed. The individual vehicle and
implement detections that have been determined as part of the vehicle–implement pair are
also compared with ‘truck’ detections in the same way, and ‘truck’ detections are removed
based on the overlap threshold. Individual vehicle and implement detections that are
not part of vehicle–implement pairs are also compared to ‘truck’ detection, but in this
case, the overlap threshold for removal of ‘truck’ is higher. When it comes to the class
‘car’, the detections are compared with all detections belonging to agricultural vehicles
or implements and removed if the overlap exceeds the thresholds. Finally, the remaining
‘truck’ and ‘car’ detections are concatenated with detections of agricultural classes.
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Figure 2. Diagram of the ensemble module.
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3. Results and Discussion

This section analyzes the performance of the models in three cases. First, the perfor-
mance of the individual models on the test dataset is evaluated. Then, the performance of
both models combined with the ensemble module is evaluated. Finally, the performance of
the models at the subcategory level is evaluated.

3.1. Performance Evaluation of Individual Models

First, the performance of the individual models on the test dataset was evaluated. As
expected, the models were not able to detect the classes in which they were not trained.
This results in an mAP equal to zero for these classes, affecting the average mAP on the test
dataset. The results are shown in Table 3.

Table 3. Performance of individual models on the test dataset.

Class
Internal Model COCO Model

mAP@.5 mAP@.5:.95 mAP@.5 mAP@.5:.95

tractor 0.731 0.536 0 0
combine 0.689 0.497 0 0

trailer 0.655 0.459 0 0
combine_header 0.672 0.399 0 0

baler 0.0788 0.0338 0 0
square_bale 0.858 0.571 0 0

person 0 0 0.649 0.39
car 0 0 0.778 0.59

truck 0 0 0.065 0.0308

average 0.409 0.277 0.166 0.112

The model trained on the internal dataset has good mAP for all the classes it has been
trained on, except ‘baler’. However, because the model is not able to detect classes ‘person’,
‘car’ and ‘truck’, the average mAP@.5 for all classes is 0.409, and mAP@.5:.95 is 0.277.

The model trained on the MS COCO dataset is able to detect classes ‘person’ and ‘car’
very well, while class ‘truck’ has low mAP. However, similar to the internal model, the
mAP is affected by the classes the model cannot detect, resulting in mAP@.5 equal to 0.166
and mAP@.5:.95 equal to 0.112.

It can be concluded from the presented results that the individual models themselves
do not perform adequately on the test dataset.

3.2. Performance with the Ensemble Module

The performance of combined models was evaluated with the ensemble module and
compared to the performance without the ensemble module. The results are reported using
a multiclassification confusion matrix and mAP at an IoU threshold equal to 0.5 as well as
averaged over 10 IoU thresholds [0.5:0.95].

First, the detections of the two models were concatenated into a combined output
without the ensemble module, and the performance was evaluated. Compared to the
performance of the individual models, the combined model is able to detect all classes in
the test dataset. Therefore, the overall performance computed as mAP@.5 increased from
0.49 and 0.166 for individual models to a combined mAP@.5 of 0.575, shown in Table 4.

Then, the ensemble module is added and applied to the combined output, and the
performance is evaluated with emphasis on the misclassification of similar classes detected
by the two models.
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Table 4. Comparison of combined detections of two models without ensemble module and with the
ensemble module.

Class
Without Ensemble Module With Ensemble Module

mAP@.5 mAP@.5:.95 mAP@.5 mAP@.5:.95

tractor 0.731 0.536 0.731 0.536
combine 0.689 0.497 0.689 0.497

trailer 0.655 0.459 0.655 0.459
combine_header 0.673 0.399 0.672 0.399

baler 0.0787 0.0338 0.0787 0.0338
square_bale 0.858 0.571 0.858 0.571

person 0.649 0.39 0.649 0.39
car 0.777 0.59 0.725 0.549

truck 0.065 0.0308 0.386 0.201

average 0.575 0.39 0.605 0.404

A confusion matrix comprehensively illustrates the classification accuracy of object
detectors as well as the misclassification rate for pairs of classes. The confusion matrices
for the combined model without the ensemble module and with the ensemble module are
shown in Figure 3. The rows in the matrix correspond to the instances predicted to belong
to a class, and the columns correspond to the instances in the actual class. In the calculation
of the confusion matrix, only boxes with a confidence score greater than 0.25 are considered.
The IoU threshold for ground truth and detected bounding box is set to 0.45, and columns
in the confusion matrices are normalized.

It can be seen that the ensemble module has significantly better performance, and the
confusion between road vehicle classes and classes for agricultural vehicles and implements
is lower. Initially, in the combined model, the classes ‘trailer’ and ‘baler’ are most often
confused with class ‘truck’. However, after applying the ensemble module, the values of
corresponding elements in the confusion matrix are lower and values in diagonal elements
for classes ‘trailer’ and ‘baler’ improved. A similar trend can be observed for classes ‘tractor’
and ‘combine’, while values for ‘combine header’ remain the same. When it comes to the
class ‘car’, there is a small decrease in the misclassification of classes ‘tractor’ and ‘baler’.
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Figure 3. Confusion matrix. (a) Combined detections without ensemble module. (b) Combined
detections with ensemble module.
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Considering the results in Table 4, it can be seen that the overall mAP@.5 increased
from 0.575 to 0.605 when the ensemble module was applied. The same can be observed
with mAP@.5:.95, which increased from 0.39 to 0.404. The increase is mostly due to the
increase in mAP for class ‘truck’. This resulted from the removal of the misclassification of
agricultural vehicles and implements as ‘truck’, as these are considered false positives for
this class.

The qualitative performance of the ensemble module is presented in Figure 4. The
first example shows the ‘truck’ detection removed because the internal model detected the
‘combine’ and ‘combine header’ pair. The second example shows ‘truck’ detection removed
because the internal model detected the ‘tractor’ and ‘trailer’ pair. The third example shows
a ‘baler’ attached to a ‘tractor’ and two ‘square bales’. In this case, the redundant ‘truck’
detection was also removed by the ensemble module successfully. The fourth example
again shows a ‘baler’ attached to a ‘tractor’ and one ‘square bale’. In this case, there are two
redundant detections, one ‘truck’ detection corresponding to ‘baler’ and one ‘car’ detection
corresponding to ‘tractor’. The ensemble module removes both redundant detections. The
fifth example shows a ‘trailer’ attached to a ‘tractor’ and two redundant ‘truck’ detections.
One detection corresponds to the ‘tractor’ and ‘trailer’ pair and the other to the ‘tractor’
only. Both are removed successfully by the ensemble module.

The chosen baseline method, without the ensemble module, is equivalent to combining
the predictions of the two models and applying non-maximum suppression (NMS). Since
non-maximum suppression is applied per class to remove redundant detections, it does not
address redundancy across the classes, as is the case with classes belonging to agricultural
vehicles and road vehicles. A modification of NMS, agnostic NMS, performs non-maximum
suppression across all classes simultaneously, and the resulting detections are selected
irrespective of their class labels. This approach makes it possible to remove redundant
detections of the same object instance which might have been predicted as different classes.
Therefore, it was applied for comparison, and the results are presented in Table 5.

Table 5. Perfromance of agnostic non-maximum suppression.

Class
Agnostic NMS

mAP@.5 mAP@.5:.95

tractor 0.731 0.54
combine 0.698 0.518

trailer 0.472 0.338
combine_header 0.688 0.411

baler 0.0865 0.0376
square_bale 0.825 0.552

person 0.648 0.391
car 0.777 0.588

truck 0.0863 0.0396

average 0.557 0.379

While applying agnostic NMS shows improvements in mAP@.5 and mAP@.5:.95 for
classes ‘truck’, ‘combine’, ‘combine_header’ and ‘baler’ for classes ‘trailer’ and ‘square_bale’,
the performance is decreased. Therefore, with the overall mAP@.5 0.557 and mAP@.5:.95
of 0.379, agnostic NMS performs worse than baseline NMS and the proposed ensemble
module. This can be explained by the relatively high confidence scores of detections from a
model trained on MS COCO, even for the object instances that belong to the agricultural
domain. Moreover, the agnostic NMS takes into account individual detections only and
not the detections of vehicle–implement pairs when removing redundant road vehicle
detections as the proposed ensemble module does.
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(a) (b)

Figure 4. Detection examples. (a) Combined models without ensemble module. (b) Combined
models with ensemble module.
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3.3. Performance Evaluation at Subcategory Level

Considering the hierarchy of classes shown in Figure 1, the performance of the models
with the proposed ensemble module was evaluated at the subcategory level. Base class
detections were translated into 6 subcategories: ‘agricultural vehicle’, ‘tractor implement’,
‘combine implement’, ‘bale’, ‘road vehicle’ and ‘human’. The results are again reported
using a confusion matrix and mAP.

The confusion matrix in Figure 5 shows that the model performs well when evaluated
at the subcategory level. The highest misclassification is between ‘road vehicle’ and ‘tractor
implement’. This is expected since the misclassification of classes ‘trailer’ and ‘baler’ with
class ‘truck’ was high at the base class level. Moreover, the high misclassification between
base classes in the subcategories ‘tractor implement’, between ‘trailer’ and ‘baler’, and in
subcategory ‘road vehicle’, between ‘car’ and ‘truck’, does not affect the performance at the
subcategory level.
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Figure 5. Confusion matrix for subcategory detection with ensemble module.

The results in Table 6 indicate that the overall detection performance improves at the
subcategory level. This is due to the previously mentioned misclassification between base
classes in the same subcategories, which is removed once the base classes are translated
to subcategories.

Table 6. Performance of the models with ensemble module translated to subcategory level.

Class
With Ensemble Module

mAP@.5 mAP@.5:.95

agricultural vehicle 0.697 0.51
tractor implement 0.688 0.466

combine implement 0.672 0.399
bale 0.86 0.571

road vehicle 0.64 0.461
human 0.649 0.39

average 0.701 0.466
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3.4. Application Prospects

The proposed object detection approach has great application potential in the automa-
tion of different agricultural tasks. One example is detecting the cooperative machine
within the agricultural machine’s environment and performing a cooperative operational
task. The application use cases can be the detection of unloading vehicles for combine
harvesters and forage harvesters or the detection of leader/follower vehicles. Another
potential application is the coordination of the operation of multiple agricultural machines
within the same working environment through vehicle tracking.

Moreover, the proposed hierarchy of classes that the ensemble method is based on
facilitates altering class granularity by mapping classes to higher-level categories. This
enables customizing classes of trained models for tasks that do not require a high level of
class granularity.

4. Conclusions

This work presented an ensemble method for object detectors in agriculture based on
the hierarchical structure of classes. The proposed hierarchy includes agriculture-specific
and general domain classes and highlights the linkage between them. Two YOLOv5
models were used to detect different classes within an agricultural image dataset. The
results showed that the models did not perform well individually on the dataset. However,
combining their detections increased mAP significantly. Moreover, applying the proposed
ensemble module to combined detections from the two models further improved mAP@0.5
from 0.575 to 0.605. Finally, translating classes of detected objects to a higher level in the
class hierarchy demonstrated that it is possible to increase mAP@0.5 to 0.701 at the cost of
class granularity.

Future work will investigate the possibilities of including more relevant classes in the
hierarchy and exploring ensemble strategies at the subcategory and supercategory levels.
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