
Citation: Nguyen, A.-H.; Wang, Z.

Time-Distributed Framework for 3D

Reconstruction Integrating Fringe

Projection with Deep Learning.

Sensors 2023, 23, 7284. http://

doi.org/10.3390/s23167284

Academic Editors: Can Zhou and

Chunhua Yang

Received: 21 June 2023

Revised: 7 August 2023

Accepted: 18 August 2023

Published: 20 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Time-Distributed Framework for 3D Reconstruction Integrating
Fringe Projection with Deep Learning
Andrew-Hieu Nguyen 1 and Zhaoyang Wang 2,*

1 Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD 21224, USA; hieu.nguyen@nih.gov

2 Department of Mechanical Engineering, The Catholic University of America, Washington, DC 20064, USA
* Correspondence: wangz@cua.edu

Abstract: In recent years, integrating structured light with deep learning has gained considerable
attention in three-dimensional (3D) shape reconstruction due to its high precision and suitabil-
ity for dynamic applications. While previous techniques primarily focus on processing in the
spatial domain, this paper proposes a novel time-distributed approach for temporal structured-
light 3D shape reconstruction using deep learning. The proposed approach utilizes an autoen-
coder network and time-distributed wrapper to convert multiple temporal fringe patterns into
their corresponding numerators and denominators of the arctangent functions. Fringe projec-
tion profilometry (FPP), a well-known temporal structured-light technique, is employed to pre-
pare high-quality ground truth and depict the 3D reconstruction process. Our experimental find-
ings show that the time-distributed 3D reconstruction technique achieves comparable outcomes
with the dual-frequency dataset (p = 0.014) and higher accuracy than the triple-frequency dataset
(p = 1.029 × 10−9), according to non-parametric statistical tests. Moreover, the proposed approach’s
straightforward implementation of a single training network for multiple converters makes it more
practical for scientific research and industrial applications.

Keywords: three-dimensional image acquisition; three-dimensional sensing; single-shot imaging;
fringe-to-phase transformation; convolutional neural network; deep learning

1. Introduction

Three-dimensional (3D) reconstruction, a subfield within computer vision, has gained
exceptional popularity as a measurement tool in recent decades, owing to its inherent
advantages in capturing real-world objects’ visual appearance and geometric shape. The
process of 3D reconstruction involves using computer vision algorithms and image process-
ing techniques to analyze a set of representative two-dimensional (2D) images and generate
a 3D digital point-cloud model of an object or scene. The demand for 3D shape reconstruc-
tion is evident across many applications in various fields such as vision-guided robots,
visual inspection, face recognition, autonomous navigation, medical imaging, driverless
vehicles, 3D entertainment, archaeology, and gaming [1–5].

There are two primary categories of 3D shape reconstruction techniques: active meth-
ods and passive methods. Typical active methods encompass time-of-flight, structured
light, optical interferometry, laser scanning, computed tomography, etc. [6–10]. On the
other hand, popular passive methods comprise stereo vision, photogrammetry, shape from
motion, shape from defocus, etc. [11–15]. Active techniques, as opposed to passive ones
that solely rely on the natural texture information captured, project known patterns onto the
target of interest and observe their deformation, enabling highly accurate depth measure-
ments. Among these active methods, structured-light 3D reconstruction techniques have
become increasingly popular in industrial applications due to their extraordinary accuracy
and reliability. Figure 1 showcases a typical 3D reconstruction system and the utilization of
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illuminated patterns for precise 3D reconstruction. A key drawback of such a technique is
that its measurement speed is slow when high accuracy is desired since multiple images
are required and complicated computations are involved. This well-known limitation has
troubled the technical community for many years, until recently when artificial intelligence
(AI) provided opportunities to tackle it.

𝑌𝑤

𝑍𝑤

𝑋𝑤

Projector

Camera

(a) (b)

RVC 3D Camera

Figure 1. (a) Illustration of a 3D reconstruction system and process; (b) an RVBUST RVC 3D Camera
employed in this work

The present world is in an era of big data with tremendous amounts of information and
data generated every second, presenting a considerable challenge for relevant personnel in
integrating and efficiently utilizing this abundance of data. In recent years, the rise of AI
has helped cope with the problem. AI technologies have empowered machines to perform
tasks previously considered beyond human capabilities. Deep learning, a collection of
learning algorithms and statistical models derived from AI, emulates the human brain’s
cognitive processes in acquiring knowledge. It encompasses two primary approaches:
supervised learning and unsupervised learning [16,17]. While unsupervised learning has
gained recent attention and demonstrated promising results in various domains (e.g., object
recognition, image segmentation, anomaly detection, image retrieval, image compression,
image generation, etc.) [18–21], supervised learning remains pivotal in most deep learning
work and applications. Crucial factors contributing to the extensive utilization of super-
vised learning include the availability of large-scale labeled datasets, task-specific learning,
higher performance, broader applications, and higher interpretability. Advances in technol-
ogy have facilitated the collection and annotation of massive amounts of data from various
sources. These labeled datasets enable deep learning models to discern complex patterns
and exhibit strong generalization capabilities when faced with new and unseen examples.

One of the most significant impacts of deep learning techniques has been in the field
of computer vision. Incorporating deep learning has greatly influenced 3D reconstruction
methods, leading to substantial advancements. Leveraging its ability to comprehend
intricate patterns and representations from extensive datasets, deep learning has brought
a transformative shift in 3D reconstruction. Its application spans different phases of the
reconstruction workflow, encompassing fundamental feature learning and more complex
tasks such as dense 3D reconstruction, shape completion, surface reconstruction, and
single-view and multi-view reconstruction. Deep learning techniques can potentially
optimize the efficiency of the process, enabling real-time or high-speed 3D reconstruction at
a super-resolution level [22–24]. Various output representations can be employed in deep
learning techniques for 3D object reconstruction, including volumetric representations,
surface-based representations, and intermediate representations [25]. Sun et al. introduced
a NeuralRecon framework for real-time scene reconstruction using a learning-based TSDF
fusion module [26]. Additionally, Zhao et al. proposed a method that can accelerate the
3D reconstruction up to 10 Hz using fully-connected conditional random fields model [27].
To address computational cost and memory efficiency issues, a method named occupancy
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networks proposed a new representation for 3D output training with reduced memory
footprint [28]. Three-dimensional reconstruction via deep learning has also found key
applications in augmented reality (AR) tasks. For instance, Park et al. developed a smart
and user-centric task assistance method that combines instance segmentation and deep
learning-based object detection to reconstruct 2.5D and 3D replicas in wearable AR smart
glasses [29]. In addition, 3D reconstruction through deep learning has been applied in
various indoor mapping applications using mobile devices [30–32].

Deep learning has also emerged as an AI-assisted tool in the field of experimental
mechanics and metrology, where precision is vital. It simplifies traditional techniques
while ensuring consistent accuracy and allows real-time or high-speed measurements.
In recent years, there has been a growing interest in integrating deep learning with the
aforementioned structured-light technique, which is popular in a few fields, including
optics, experimental mechanics, metrology, and computer vision, to achieve accurate 3D
shape measurement and 3D reconstruction. This combination can substantially simplify
and enhance conventional techniques while maintaining stable accuracy [33–37]. It holds
promise for numerous scientific and engineering applications where accurate and efficient
3D reconstruction is paramount.

Among various structured light techniques, fringe projection profilometry (FPP) is
the most widely used technique in combination with the deep learning method for 3D
reconstruction [38–42]. The integrated approaches can be broadly categorized into fringe-to-
depth and fringe-to-phase techniques. In the fringe-to-depth approach, a direct conversion
of the captured fringe pattern(s) to the desired depth information is accomplished using
convolutional neural networks (CNNs). This process is analogous to the image-to-image
transformation in computer vision applications. By training CNN models on appropriate
datasets, the fringe patterns can be effectively mapped to corresponding depth values, en-
abling accurate 3D reconstruction [43–48]. On the other hand, the fringe-to-phase approach
exploits the multi-stage nature of the FPP. It involves transforming the fringe pattern(s) into
intermediate results, which ultimately enable the acquisition of precise phase distributions.
These phase distributions and camera calibration information are then utilized to achieve
accurate 3D reconstruction [49–55].

In general, the fringe-to-phase approaches tend to yield more detailed 3D recon-
struction results than the fringe-to-depth counterpart. This is primarily attributed to its
incorporating additional phase calculations and utilizing parameter information obtained
through camera calibration. Over the past few years, fringe-to-phase approaches, which
focus on obtaining precise unwrapped phase distributions, have undergone notable de-
velopments in several aspects. These advancements include the employment of single
or multiple input(s)/output(s), the introduction of reference planes, the implementation
of multi-stage networks, the utilization of combined red-green-blue (RGB) color fringe
images, and the use of coded patterns, among others [56–58]. Regardless of the specific
variations, it is evident that the integration primarily relies on choosing single or multiple
inputs. The subsequent training of the network(s) and the output(s) definition can be
determined based on the researcher’s preferences and interests. In addition to several
advanced fringe-to-phase techniques that utilize single-shot input and single network,
alternative deep learning-based approaches have employed multi-shot inputs with multi-
stage networks [59–61]. As an example, Yu et al. [62] introduced a concept where a single
or two fringe patterns are transformed into multiple phase-shifted fringe patterns using
multiple FTPNet networks. Liang et al. [63] utilized a similar autoencoder-based network
in a two-step training process to derive the unwrapped phase from the segmented wrapped
phase. In other studies, the researchers [57,64] employed two subnetworks with cosine
fringe pattern and multi-code/reference pattern to obtain the wrapped phase and fringe
orders. The work reported in [65,66] followed a framework comprising two deep neural
networks, aiming to enhance the quality of the fringe pattern and accurately determine the
numerator and denominator through denoising patterns. Machineni et al. [67] presented
an end-to-end deep learning-based framework for 3D object profiling, and the method
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encompassed a two-stage process involving a synthesis network and a phase estimation
network. Its notable drawbacks and limitations include the need for multiple training
hardwares, extended training duration, a higher number of learning parameters, and a
sequential process.

Drawing upon the advancements in single-shot 3D reconstruction techniques and
recognizing the limitations of multi-stage multi-shot approaches, this paper presents a
proof-of-concept 3D reconstruction method. The proposed approach utilizes a single net-
work and employs a time-distributed wrapper to handle multiple inputs. The technique
employs a time-distributed framework to convert multiple fringe images into intermediate
results of numerators and denominators of arctangent functions, enabling the subsequent
acquisition of phase distributions and 3D shape information. Unlike stacking multiple
inputs and outputs in the spatial domain of the training vector, the proposed approach
encodes multiple inputs and their corresponding outputs into temporal slices of the training
vector. Similar to training and prediction using the spatial vector, the proposed frame-
work can predict the intermediate results for unseen objects once the training process is
successfully completed.

It should be emphasized that the classic FPP technique serves a dual purpose in this
study. First, it prepares training data with ground-truth labels for the learning process.
Second, it plays a crucial role in the subsequent process of obtaining the phase distributions
and final 3D point cloud after the deep learning prediction. Given that the temporal FPP
technique involves capturing multiple fringe images over a span of time, the proposed time-
distributed framework is a well-suited approach for effectively handling and converting
multiple inputs within the reconstruction process. The proposed technique brings several
noteworthy contributions in comparison with previous fringe-to-phase methods:

1. It introduces a single network instead of relying on multiple subnetworks for a multi-
stage process.

2. It presents a proof-of-concept 3D reconstruction approach where multiple inputs are
stacked in the temporal domain vector rather than the spatial domain vector.

3. The data labeling process is simplified, with multiple inputs and corresponding
outputs consolidated into a single training vector instead of separate vectors.

4. It maintains the accuracy advantages of the classic FPP method while reducing the
number of required fringe patterns.

The remaining sections of this paper are structured as follows. Section 2 provides an
overview of the FPP technique and presents the proposed framework for phase measure-
ment. In Section 3, various experiments are conducted to assess the effectiveness of the
proposed approach. Section 4 presents discussions and further analysis of the results, while
Section 5 offers a concise summary of the proposed work.

2. Materials and Methods

The process of FPP 3D imaging involves two main steps. First, evenly spaced fringe
patterns are projected onto the surface of the target, and the surface profile is encoded
in the distorted fringe patterns. A camera then captures the patterns for subsequent 3D
decoding. This decoding process comprises four key sub-steps: phase extraction, phase
unwrapping, depth determination, and 3D reconstruction. It is worth noting that the pro-
posed time-distributed framework specifically focuses on converting fringe-pattern images
into their corresponding numerators and denominators in the phase determination func-
tion. Nevertheless, it should also be emphasized that the subsequent phase determination
and 3D reconstruction still rely on the conventional FPP technique. Therefore, provid-
ing an overview of the classic FPP technique is essential before discussing the proposed
time-distributed network.
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2.1. Temporal Structured-Light Technique: Fringe Projection Profilometry

The temporal-based FPP technique involves projecting a series of fringe patterns onto
the surface of the target object. The fringe patterns used in this technique can be described
as uniform, with consistent characteristics across the entire projection:

Ii
j(u, v) = I0 + I0 cos

(
φi(u, v) + δj

)
(1)

where I represents the intensity of the projected input at a specific pixel location (u, v); the
subscript j denotes the order of the phase-shifted image, with j ranging from 1 to 4 in the
case of a four-step phase-shifting algorithm; and superscript i implies the ith frequency.
The intensity modulation is represented by the constant value I0, typically set to 127.5. The
fringe phase φ can be expressed as φi(u, v) = 2π fi

u
W , where fi corresponds to the fringe

frequency defined as the number of fringes in the entire pattern, and W represents the
width of the pattern. Moreover, the phase-shift amount δ is given by δj =

(j−1)π
2 .

In practice, the fringe patterns captured from the synchronous camera are distinct
from the generated fringe patterns and can be elaborated as follows [68]:

Ii
j(u, v) = Ia(u, v) + Ib(u, v) cos

[
φi(u, v) + δj

]
(2)

where I, Ia, and Ib represent the pixel intensities of the captured patterns, the intensity
background, and the fringe amplitude at a specific pixel location (u, v). The value of φi(u, v)
can be computed using the standard phase-shifting algorithm. In this study, we utilize
the four-step phase-shifting algorithm, and the determination of φw

i (u, v) is given by the
following equation [69]:

φw
i (u, v) = arctan

Ii
4(u, v)− Ii

2(u, v)
Ii
1(u, v)− Ii

3(u, v)
= arctan

Ni

Di (3)

where N and D denote the numerator and denominator of the arctangent function, respec-
tively. Hereinafter, the pixel coordinate (u, v) will be omitted to streamline the subsequent
equations. The result obtained from Equation (3) lies within the range of [−π, π), and to
obtain the true phase, it is necessary to unwrap φw

i . In the context of FPP 3D imaging,
the multi-frequency phase-shifting algorithm is widely recognized for its ability to handle
geometric discontinuities and situations involving overlapping objects with varying height
or depth information.

In our proposed approach, we utilize the dual-frequency four-step (DFFS) phase-
shifting scheme, which involves two frequencies ( f1 and f2), as well as the triple-frequency
four-step (TFFS) scheme, which incorporates three frequencies ( f1, f2, and f3). These
schemes are employed to obtain high-quality unwrapped phase maps and serve as the
ground-truth labels for training the proposed time-distributed network.

When using the DFFS phase-shifting scheme, the unwrapped phase can be obtained by
satisfying the condition f2 − f1 = 1. In such cases, the equations governing the unwrapped
phase can be expressed as follows [70]:

φuw
12 = φw

2 − φw
1 +

{
0, φw

2 ≥ φw
1

2π, φw
2 < φw

1

φ = φuw
2 = φw

2 + INT
(

φuw
12 f2 − φw

2
2π

)
2π

(4)

where φw
1 and φw

2 are the wrapped phases of two frequencies f1 and f2, respectively. The
initial unwrapped phase, φuw

12 , is derived from the pattern with only one fringe. However,
due to the noise caused by the frequency mismatch between f1 and f2, φuw

12 cannot be
directly used. Instead, it serves as the interfering unwrapped phase for the hierarchical
phase-unwrapping process of φuw

2 . The final unwrapped phase, denoted as φ, corresponds
to the phase distribution of the highest fringe frequency. This study utilizes two frequencies,
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f1 = 79 and f2 = 80, in accordance with the requirements of the DFFS scheme. Figure 2a
illustrates the flowchart of the DFFS phase-shifting scheme.

(a) Dual-frequency four-step phase-shifting FPP technique 

(b) Tri-frequency four-step phase-shifting FPP technique 

Eq. (3) Eq. (5) Eq. (6)

Eq. (4) Eq. (5) Eq. (6)

Wrapped phases

Multiple dual-frequency 

phase-shifted images

Unwrapped phase Depth map 3D shape

Wrapped phases

Multiple tri-frequency 

phase-shifted images

Unwrapped phase Depth map 3D shape

𝑓1 = 79

𝑓2 = 80

𝑓1 = 61

𝑓2 = 70

𝑓3 = 80

Figure 2. Flowchart of the FPP 3D imaging technique with DFFS (a) and TFFS (b) phase-shifting
schemes.

In the TFFS scheme, as depicted in Figure 2b, if the three frequencies fulfill the condition
( f3 − f2)− ( f2 − f1) = 1, where ( f3 − f2) > ( f2 − f1) > 0, the unwrapped phase of the
fringe patterns with the highest frequency can be computed using the following hierarchical
equations [71,72]:

φw
12 = φw

2 − φw
1 +

{
0 φw

2 > φw
1

2π φw
2 < φw

1

φw
23 = φw

3 − φw
2 +

{
0 φw

3 > φw
2

2π φw
3 < φw

2

φ123 = φw
23 − φw

12 +

{
0 φw

23 > φw
12

2π φw
23 < φw

12

φ23 = φw
23 + INT

(
φ123( f3 − f2)− φw

23
2π

)
2π

φ = φuw
3 = φw

3 + INT

φ23
f3

f3− f2
− φw

3

2π

2π

(5)

where φ with superscript w and uw are the wrapped phase and unwrapped phase, respec-
tively. The function “INT” rounds the value to the nearest integer. The term φmn represents
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the difference between φm and φn, where ( fn − fm) corresponds to the number of wrapped
fringes in the phase map. The algorithm’s core principle is based on the fact that φ123
is both wrapped and unwrapped due to the presence of only one fringe in the pattern.
This property enables a hierarchical phase-unwrapping process that connects φ123 and φ3
through φ23. The phase distribution of the highest-frequency fringe patterns, φ3, is utilized
for the final phase determination as it provides the highest level of accuracy. In the TFFS
scheme, the chosen frequencies are 61, 70, and 80. These specific frequencies were selected
to maintain a balanced hierarchical calculation with a ratio of 1:10:80.

Ultimately, the FPP 3D imaging technique is employed to directly reconstruct the
height/depth information from the unwrapped phase obtained from Equation (4) or
Equation (5). The equation governing the retrieval of the depth map from φ can be derived
as described in [69]:

z =
c
[
P1 P2

]ᵀ
d
[
P1 P2

]ᵀ
c = {1 c1 c2 c3 · · · c17 c18 c19}
d = {d0 d1 d2 d3 · · · c17 d18 d19}

P1 =
{

1 φ u uφ v vφ u2 u2φ uv uvφ v2 v2φ
}

P2 =
{

u3 u3φ u2v u2vφ uv2 uv2φ v3 v3φ
}

.

(6)

The equation for determining the height or depth value z at a specific pixel coordinate
(u, v) involves using triangulation parameters. These parameters, denoted as c1 to c19 and
d0 to d19, are obtained through a system calibration process.

This study used a set of 31 sculptures showing various surface shapes, as well as
10 objects commonly found in laboratories, including gauge block, tape measure, corded
telephone, remote control, ping-pong ball, electronic charger, glue bottle, calibration board,
rotary fan, and balloon [33]. Each object was arbitrarily positioned many times in the field
of view to serve as multiple different targets. In addition, two or multiple objects were
randomly grouped together to form new objects for the dataset generation.

The DFFS datasets consisted of a total of 2048 scenes with a resolution of
640× 448 [39,70]. Each scene involved the projection of 8 uniform sinusoidal four-step
phase-shifted images, with two frequencies of f1 = 79 and f2 = 80, by the projector. Simul-
taneously, the camera captured 8 corresponding images. During the data labeling process,
the first image of each frequency, namely I79

1 and I80
1 , was selected as the temporal input

slices. The corresponding output of numerators and denominators, represented as N79,
D79, N80, and D80, was generated using all 8 captured images and Equation (3). Figure 3a
illustrates examples of the input–output pairs used for the proposed time-distributed
framework with the DFFS datasets.

Likewise, the TFFS datasets consisted of 1500 data samples with the resolution of
640× 352 [71,72], with each scene capturing a total of 12 images. These four-step phase-
shifted images employed three frequencies: f1 = 61, f2 = 70, and f3 = 80. Figure 3b shows
two examples of input–output pairs generated for the TFFS datasets.
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Input Output

𝐼1
79

𝐼1
80

𝑁79 𝐷79

𝑁80 𝐷80

𝐼1
79

𝐼1
80

𝑁79 𝐷79

𝑁80 𝐷80

Input Output

(a) 

Input Output Input Output

𝐼1
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𝐼1
70

𝐼1
80

𝑁61 𝐷61

𝑁70 𝐷70

𝑁80 𝐷80

𝐼1
61

𝐼1
70

𝐼1
80

𝑁61 𝐷61

𝑁70 𝐷70

𝑁80 𝐷80

(b) 

Figure 3. Examplars of input–output pair in (a) DFFS datasets and (b) TFFS datasets.

2.2. Time-Distributed Framework for Temporal Fringe-Pattern Transformation

The primary aim of the proposed time-distributed (TD) framework remains consis-
tent with previous fringe-to-phase approaches, focusing on the determination of phase
distributions for 3D shape measurement. However, the specific goal of this framework is to
showcase a proof-of-concept image-to-image conversion using deep learning techniques
for the temporal FPP technique.

Time-distributed is a term commonly employed in Recurrent Neural Networks (RNNs)
or sequence-to-sequence models, where it is utilized in the context of sequential data, such
as a sequence of images. In the context of the temporal FPP technique, which involves
multiple fringe patterns captured at different time steps, the time-distributed concept
allows using the same network parameters (weights and biases) to process each individual
input separately. This ensures that the network can extract consistent features, such as
phase-shifted information, from each time step while facilitating the learning of temporal
dependencies, such as consecutive frequencies.

Figures 4a and 5a present the workflow of the proposed TD framework, which is
specifically designed for converting sequential fringe-to-phase data. The goal of this
framework is to train the model to convert the given fringe patterns into their corresponding
phase-shifted information, namely the numerators and denominators. However, unlike the
conventional approach that combines all spatial and temporal information in the spatial
domain, as depicted in Figures 4c and 5b, the TD framework differentiates and distributes
the spatial and temporal information into two distinct learning concepts. The first concept
involves extracting features, such as performing the fringe-to-ND (F2ND) conversion,
for each individual frame within the time steps. This is illustrated by each row or the
horizontal direction in the figures. The second concept focuses on applying the same
feature extraction process to consecutive temporal frequencies represented in the vertical
direction. By segregating and distributing the spatial and temporal information in this
manner, the TD framework enables effective and efficient learning of the desired features.
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(c) Comparable spatial implementation for F2ND approach
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Figure 4. (a,b) Time-distributed concept for DFFS phase-shifting scheme, and (c) the comparable
spatial F2ND approach.
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(b) Comparable spatial implementation for F2ND approach
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Figure 5. (a) Time-distributed concept for TFFS phase-shifting scheme, and (b) the comparable spatial
F2ND approach.

In this study, the TD framework utilizes a widely used network architecture called
UNet for image-to-image conversion [73]. The network consists of an encoder and a decoder
path with symmetric concatenation for accurate feature transformation. The encoder path
employs ten convolution layers and four max-pooling layers, reducing the resolution but
increasing the filter depth. The decoder path includes eight convolution layers and four
transposed convolution layers, enriching the input feature maps to higher resolution while
decreasing the filter depths. A 1× 1 convolution layer at the end of the decoder path
leads to the numerator and denominator outputs. The proposed framework employs a
linear activation function and mean-squared error (MSE) loss for training, considering the
continuous nature of the output variables. Details of the network architecture are explained
in detail in our previous works [70–72].

In Figures 4 and 5, the TD framework utilizes a single network, where the same
weights and biases are applied for feature extraction across the temporal slices. The dashed
line in these figures represents the TD concept. Two approaches for implementing the TD
concept in the deep learning network are introduced: TD Layer and TD Module. In the
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TD Layer approach, the TD wrapper is applied to each layer of the learning model, as
shown in Figures 4a and 5a. The TD wrapper encapsulates the entire network model in
the TD Module approach, as depicted in Figure 4b. Although the F2ND conversion task
remains the same, it is valuable to investigate the framework’s performance using different
implementations. In Keras implementation, the TD Layer and TD Module can be better
understood through the following examples:

• TD Layer
output = keras.layers.TimeDistributed(keras.layers.Conv2D(. . .))(input)

• TD Module
module = keras.Model(network_input, network_output)
output = keras.layers.TimeDistributed(module)(input)

To compare the performance of the framework with previous methods using the
spatial domain, a popular spatial F2ND approach is employed, where all the input and
output data are organized in the spatial slices, as shown in Figures 4c and 5b. The input–
output pair selected for this framework is a commonly used combination in the field. The
input consists of consecutive fringe patterns captured at different time steps, each with a
distinct frequency. The corresponding output comprises the numerators and denominators
associated with these fringe patterns.

The preparation of multidimensional data format for the TD network differs from
that of a regular spatial convolution network. In the TD network, the input, output, and
internal hidden layers are represented as five-dimensional tensors with shapes (s, t, h, w, c),
where s indicates the number of data samples, t denotes the timeframe of each different
frequency, h and w represent the height and width of the input, output, or feature maps at
the sub-scale resolution layer, respectively, and c is the channel or filter depth. In this study,
t is set as 2 and 3 for the DFFS and TFFS schemes, respectively. Moreover, c is set to 1 for the
input of a single grayscale image and 2 for the output of the numerator and denominator
at each timestep. Clear visualization of this multidimensional data is explained in detail
and depicted in Figures 4 and 5.

Hyperparameter tunning: The convolution layers are employed with a LeakyReLU
function, introducing a small negative coefficient of 0.1 to address the zero-gradient prob-
lem. Additionally, a dropout function with a rate of 0.2 is incorporated between the encoder
and the two decoder paths to enhance robustness. The model is trained for 1000 epochs with
a mini-batch size of 2, using the Adam optimizer with an initial learning rate of 0.0001 for
the first 800 epochs. Afterward, a step decay schedule is implemented to gradually reduce
the learning rate for better convergence [74]. To prevent overfitting, various data augmen-
tation techniques, including ZCA whitening, brightness, and contrast augmentation, are
employed. During training, the mean squared error (MSE) is used as the evaluation metric,
and Keras callbacks like History and ModelCheckpoint are utilized to monitor training
progress and save the best model.

3. Experiments and Results

The performance of the proposed TD framework was evaluated through a range of
quantitative and qualitative analyses. Firstly, the quantitative assessment included using
two image quality metrics, namely Structural Similarity Index Measure (SSIM) and Peak
Signal-to-Noise Ratio (PSNR), to evaluate the predicted numerators and denominators.
Additionally, four error metrics and three accuracy metrics were employed to verify the
depth accuracy of the proposed technique. Secondly, qualitative comparisons were made
by visually examining the 3D shape reconstructions of test objects generated using the
TD Layer, TD Module, and a comparable F2ND approach. These analyses provided a
comprehensive evaluation of the performance of the proposed TD framework.

The datasets were captured using an RVBUST RVC-X mini 3D camera (Figure 1b),
which provides an ideal camera–projector–target triangulation setup. The training process
utilized multiple GPU nodes available in the Biowulf cluster of the High-Performance Com-
puting group at the National Institutes of Health. The main GPUs used were
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4×NVIDIA A100 GPUs with 80 GB VRAM and 4×NVIDIA V100-SXM2 GPUs with 32 GB
VRAM. To optimize performance, Nvidia CUDA Toolkit 11.2.2 and cuDNN v8.1.0.77 were
installed on these units. The network architecture was constructed using TensorFlow v2.8.2
and Keras v2.8.0, popular open-source deep learning frameworks and Python libraries
known for their user-friendly nature.

3.1. Quantitative Evaluation of TD Layer, TD Module, and Spatial F2ND in DFFS and
TFFS Datasets

Upon the completion of training in the TD framework, the predicted numerators
and denominators are further processed using the classic FPP technique to derive the
unwrapped phase distributions and 3D depth/shape information. It is important to note
that the TD framework’s primary task is converting fringe patterns to their corresponding
numerators or denominators, also known as the F2ND conversion or image-to-image
conversion. To quantitatively evaluate the accuracy of the reconstructed numerators and
denominators, SSIM and PSNR metrics were utilized. These metrics provide valuable
insights into the similarity and fidelity of the reconstructed results, enabling a quantitative
evaluation of the performance of the TD framework.

Figure 6 showcases the predicted output of an unseen test object utilizing the DFFS
datasets, accompanied by the corresponding evaluation metrics. Upon careful examination,
it may initially appear challenging to visually discern any noticeable disparities between
the predicted numerators/denominators and the ground truth counterparts. However,
an in-depth analysis of the structural similarity index (SSIM), ranging from 0.998 to 1.000,
and the peak signal-to-noise ratio (PSNR), which consistently hovers around 40, provides
valuable insights. These metrics collectively suggest that the reconstructed images resemble
the reference ground-truth images, affirming their high degree of fidelity and accuracy.
The TD framework demonstrates comparable performance to the spatial F2ND approach,
confirming its effectiveness in capturing spatial information for accurate predictions.

The depth measurement accuracy is an essential quantitative measure for evaluating
the FPP 3D imaging technique. In this study, various error and accuracy metrics commonly
employed for assessing monocular depth reconstruction are utilized. These metrics are
calculated by comparing the predicted depth map with the ground-truth depth map.
The proposed TD Layer, TD Module, and the spatial F2ND approach are subjected to
quantitative evaluation using these metrics in both DFFS and TFFS datasets. The evaluation
encompasses four error metrics and three accuracy metrics, which provide a comprehensive
assessment of the performance of the different approaches:

• Absolute relative error (rel): 1
n ∑n

i=1
|ẑi−zi |

ẑi

• Root-mean-square error (rms):
√

1
n ∑n

i=1(ẑi − zi)
2

• Average log10 error (log): 1
n ∑n

i=1
∣∣log10(ẑi)− log10(zi)

∣∣
• Root-mean-square log error (rms log):√

1
n ∑n

i=1
∣∣log10(ẑi)− log10(zi)

∣∣
• Threshold accuracy: δ = ( ẑi

zi
, zi

ẑi
) < thr;

thr ∈
{

1.25, 1.252, 1.253}
where ẑi and zi represent the ground-truth depth determined in Equation (6) and the
predicted depth at valid ith pixel, respectively. The key quantitative analyses are presented
in Table 1. Upon examining the DFFS datasets, it is evident that the spatial F2ND approach
demonstrates slightly superior performance compared with the proposed TD Layer and
TD Module approaches. Nevertheless, the differences in performance are negligible as
all the metrics exhibit similar values. Notably, the TD Layer and TD Module approaches
outperform the spatial F2ND approach in the TFFS datasets, as observed in the error and
accuracy metrics. These quantitative metrics provide evidence that the proposed techniques
not only serve as a proof of concept but also yield comparable or slightly improved results
compared with the state-of-the-art techniques used in previous studies.



Sensors 2023, 23, 7284 13 of 23

Ground-truth 

Output

Predicted TD Layer 

Output

Predicted TD Module 

Output

Predicted spatial F2ND 

Output

𝑁79

𝐷79

𝑁80

𝐷80

𝑁79

𝐷79

𝑁80

𝐷80

𝑁79

𝐷79

𝑁80

𝐷80

𝑁79

𝐷79

𝑁80

𝐷80

SSIM = 0.999

PSNR = 39.698

SSIM = 0.998

PSNR = 35.123

SSIM = 0.999

PSNR = 44.543

SSIM = 0.999

PSNR = 42.473

SSIM = 0.999

PSNR = 36.732

SSIM = 0.999

PSNR = 38.614

SSIM = 1.000

PSNR = 46.803

SSIM = 1.000

PSNR = 44.548

SSIM = 0.999

PSNR = 41.821

SSIM = 0.999

PSNR = 38.770

SSIM = 0.999

PSNR = 41.389

SSIM = 0.999

PSNR = 40.650

Figure 6. Evaluation of image quality metrics (SSIM and PSNR) for predicted numerators and
denominators.

To ascertain the distinctions among the proposed TD Layer, TD Module, and spatial
F2ND approaches in terms of accuracy, additional statistical analyses were performed.
The non-parametric Kruskal–Wallis H-test was selected for this task, utilizing the mean
absolute error (MAE) values as test samples. These MAE values represent the disparities
between the ground-truth depths and the predicted depths generated by each approach
(TD Layer, TD Module, and spatial F2ND).

The outcomes of the Kruskal–Wallis H-test revealed significant error differences among
the three groups for both the DFFS dataset (H = 8.532, p = 0.014) and the TFFS dataset
(H = 21.144, p = 1.029 × 10−9). This statistical analysis provides evidence of the notable
variations in accuracy between the three approaches.
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Table 1. Quantitative analysis comparing TD and spatial F2ND approaches.

Dataset Method
Error (Lower Is Better) Accuracy (Higher Is Better)

rel rms log rms log δ < 1.25 δ < 1.252 δ < 1.253

DFFS
TD Layer 0.004 1.312 0.004 0.059 94.1% 96.6% 98.2%

TD Module 0.004 1.216 0.004 0.055 94.9% 97.0% 98.4%
Spatial F2ND 0.004 0.856 0.002 0.044 97.9% 98.7% 99.2%

TFFS
TD Layer 0.003 0.213 0.002 0.037 99.4% 99.5% 99.5%

TD Module 0.003 0.176 0.002 0.035 96.9% 97.0% 97.2%
Spatial F2ND 0.005 1.056 0.002 0.038 96.8% 96.9% 97.0%

3.2. 3D Reconstruction from DFFS Phase-Shifting Scheme via Time-Distributed Concept

Visual comparisons of the 3D shape surfaces were conducted to further assess the
proposed techniques’ performance. The depth maps obtained from the ground truth,
TD Layer, TD Module, and the comparable spatial F2ND approach were analyzed for
differences. This visual evaluation provides additional insights into the accuracy and
quality of the reconstructed 3D shape surfaces.

The 3D reconstruction of three different objects is showcased in Figure 7, with each
object corresponding to a single scene. The first and second columns of the figure display
the original image and an example input image, respectively. The subsequent four columns
present the 3D reconstructions obtained from the ground truth, TD Layer, TD Module,
and the comparable spatial F2ND approach. It should be noted that the scenes have
been cropped and zoomed in to enhance visibility and facilitate a comparative analysis
of the results. Upon visual inspection of the figure, it is evident that all three comparable
techniques exhibit a high degree of similarity to the ground truth, with no significant
degradation in the quality of the reconstructed results. However, a closer examination
reveals that the 3D reconstruction outcomes obtained using the TD Layer exhibit a certain
level of blurring, resulting in less detailed representations. Conversely, the spatial F2ND
approach demonstrates more intricate joint structures in the reconstructed 3D surfaces. This
observation aligns with the quantitative findings presented in Table 1, where the spatial
F2ND approach demonstrates slightly superior performance.

Furthermore, the visual evaluation involves the reconstruction of scenes with multiple
objects. The first two rows of Figure 8 showcase four scenes, each featuring distinct
objects with varying heights and depths. It is worth mentioning that in the traditional
FPP technique, obtaining continuous phase map distributions for separated objects poses a
challenge due to the presence of discontinuous fringe order. The shadows in the background
of the scenes provide valuable visual cues for observing the differences in depth between the
objects, which contribute to the challenges associated with determining phase distributions
and fringe order ambiguity. The reconstruction of the scenes reaffirms that both the
TD Module and spatial F2ND approaches offer more detailed results than the TD Layer
approach while maintaining overall similarity in terms of the shapes. To enhance the
visibility of depth differences among the subjects, the grid pattern and view angle were
adjusted during the scene reconstruction process.
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Plain image Input image Ground-truth 3D TD Layer 3D TD Module 3D F2ND 3D

Figure 7. 3D shape reconstruction of a single-object scene using DFFS datasets.
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Figure 8. 3D shape reconstruction of a scene with multiple objects using DFFS datasets.
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3.3. 3D Reconstruction from TFFS Phase-Shifting Scheme via Time-Distributed Concept

The TFFS datasets were utilized to evaluate the efficacy and feasibility of the proposed
techniques in terms of 3D reconstruction. The 3D reconstruction of various techniques
for a single object is depicted in Figure 9. At first glance, the reconstructed results closely
resemble the ground truth, making it challenging to discern any notable differences. The
reconstructed scenes exhibit similar shapes and depth information, suggesting that these
techniques can accurately capture the underlying 3D structure. However, upon closer
examination, the TD Layer technique stands out for its ability to capture finer details,
particularly in the contoured and concave regions of the shape. This indicates that the
TD Layer approach excels in preserving intricate features, resulting in a more faithful
representation of the object’s surface.

Plain image Input image Ground-truth 3D TD Layer 3D TD Module 3D F2ND 3D

Figure 9. 3D shape reconstruction of a single-object scene using TFFS datasets.

Subsequently, the 3D reconstruction process was extended to encompass four distinct
unseen scenes, each featuring multiple objects. The scenes were carefully configured from
various angles to accentuate the differences in depth among the objects, a characteristic
that is further emphasized by the presence of shadowed backgrounds. The obtained results
in Figure 10 reveal that, while some minor discrepancies and variations near the object
edges are observed, the reconstructed objects’ overall shape and intricate details are largely
preserved and closely resemble the ground truth 3D representations. Despite the inherent
challenges associated with accurately capturing depth information and intricate object
surfaces, the proposed techniques effectively capture the main features and structures,
demonstrating their ability to provide reliable and faithful 3D reconstructions.
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Figure 10. 3D shape reconstruction of a scene with multiple objects using TFFS datasets.

4. Discussion

This paper explores the novel concept of a time-distributed wrapper to integrate
the FPP technique with deep learning, specifically focusing on the F2ND transformation.
The performance of the proposed approach is evaluated through comprehensive quantita-
tive and qualitative analyses using TFFS and DFFS datasets. These analyses encompass
comparisons of image quality, depth differences, and the visual appearance of the 3D re-
constructions.

Overall, the proposed TD Layer and TD Module approaches demonstrate promising
performance in terms of both quantitative measures and visual assessments. While the
spatial F2ND technique may show slightly better results in certain quantitative metrics, the
differences are marginal. The visual comparisons reveal that the proposed TD techniques
can accurately capture the shapes and depth information of the objects, although the TD
Layer technique may exhibit some blurring effects. These findings indicate that the TD
Layer and TD Module approaches are viable alternatives to the traditional spatial F2ND
technique, offering competitive performance in 3D reconstruction tasks.

It should be noted that alternative output vectors, such as multiple phase-shifted fringe
images or wrapped phases with different frequencies, can be used instead of numerators
and denominators. However, recent studies [39,70,71,75] have demonstrated that the spatial
F2ND approach yields similar results to the fringe-to-fringe approach while requiring less
storage space due to fewer channels in the output vector. Moreover, the fringe-to-wrapped
phase approach is not considered ideal as it produces inferior results compared with the
spatial F2ND approach.

Despite introducing the new concept of the time-distributed wrapper for the temporal
FPP technique, the manuscript also acknowledges certain drawbacks and limitations. One
limitation arises from the requirement of equal depth channels in both the input and output
vectors. The time-distributed network cannot be trained if the depth channels differ across
different timeframes. For instance, in the DFFS dataset, the first temporal output slice
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includes both numerators and denominators (i.e., [s,0,h,w,0] and [s,0,h,w,1]). In contrast,
the second temporal output slice only consists of a single fringe order map [75] or a single
coarse map [39] (i.e., [s,0,h,w,0]), resulting in a missing channel in the second temporal
output slice.

The previously mentioned limitation raises a question regarding the possibility of
utilizing different output formats in the proposed approach of the TD framework. The
answer is affirmative, provided that the depth channels in both the input and output
vectors are consistent. Figure 11 showcases a potential application of the TD framework,
where different output formats in the FPP technique are employed. The figure illustrates
that the channel depth balance in the temporal slice remains at 1, utilizing either the pair of
wrapped phase and fringe order or the pair of wrapped phase and coarse map. However, as
stated earlier, using the wrapped phase typically leads to poor 3D reconstruction outcomes.
Hence, it has been excluded from this investigation.
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Figure 11. Potential application of TD framework with different output formats in FPP technique.

Although the proposed technique may not have been able to perform extensive
comparisons with other well-established 3D reconstruction methods in diverse fields like
image processing and computer vision, it has successfully carved out a unique niche in
the narrower domain of optics and experimental mechanics. Notably, integrating the
Fringe Projection technique and deep learning sets this approach apart as a novel and
innovative 3D reconstruction technique, overcoming the limitations and weaknesses of
previous multi-stage and multi-network approaches.

Moreover, the application of TimeDistributed Layer in this specific field is relatively
scarce, highlighting the significance of our proposed technique as a pioneering example
for a simple yet essential task such as image-to-image transformation. By showcasing the
potential of the TimeDistributed concept, our work can inspire further exploration and
adoption of this technique in various other fields, ultimately contributing to advancing 3D
reconstruction and deep learning applications. One compelling application for the TimeDis-
tributed Layer lies in reconstructing dynamic augmented reality (AR) views, incorporating
time-oriented data. Leveraging the overlapping four-dimensional (4D) representations at
different time viewpoints can effectively address occlusion issues in the real scene, resulting
in improved and comprehensive visualizations [76,77]. Moreover, the TimeDistributed
Layer shows promise in determining camera motion and pose for feature tracking in AR ap-
plications, enabling incremental motion estimates at various points in the time series [78,79].
Another intriguing use case is AR-based 3D scene reconstruction via the structure from
motion (SFM) technique, which establishes relationships between different images [80,81].
These applications exemplify the versatility and potential of the TimeDistributed Layer,
indicating its relevance beyond the specific field of 3D shape reconstruction.
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Future research could focus on refining the TD techniques to address the minor dis-
crepancies observed near the object edges and improve the detail level in the reconstructed
3D surfaces. Additionally, exploring the application of the proposed TD framework in
other domains or extending it to handle more complex scenes with occlusions and varying
lighting conditions could be valuable directions for future investigations. Exploring more
advanced network models [82–85] (e.g., Attention UNet, R2U-Net, ResUNet, U2-Net, etc.)
as alternatives to UNet for achieving even higher accuracy in shape measurement could
be an exciting avenue for future research. As a preliminary step, we have conducted
initial experiments with the proposed technique using the Attention UNet model, and the
results have been summarized in Table 2. However, to draw definitive conclusions, a more
comprehensive investigation is necessary in the future to make an accurate comparison.
The preliminary findings indicate differing outcomes for the DFFS and TFFS datasets,
with improved accuracy observed in the TFFS dataset, while there is a slight reduction in
accuracy for the DFFS dataset.

Table 2. Initial quantitative evaluation of TD Module and spatial F2ND techniques using the internal
Attention UNet network.

Dataset Method
Error (Lower Is Better) Accuracy (Higher Is Better)

rel rms log rms log δ < 1.25 δ < 1.252 δ < 1.253

DFFS Attention TD Module 0.003 1.334 0.005 0.060 93.6% 96.3% 98.1%
Attention F2ND 0.005 1.345 0.004 0.058 94.1% 96.4% 98.0%

TFFS Attention TD Module 0.003 0.150 0.002 0.035 97.0% 97.1% 97.3%
Attention F2ND 0.005 0.941 0.002 0.040 96.9% 97.0% 97.1%

5. Conclusions

In summary, this manuscript presents a novel time-distributed framework for 3D
reconstruction by integrating fringe projection technique and deep learning. The proposed
framework uses a single network and a time-distributed wrapper to convert fringe patterns
to their corresponding numerators and denominators. Unlike previous approaches employ-
ing multi-stage or spatial networks, this framework utilizes the same network parameters
to ensure consistent feature learning across time steps. It enables the learning of temporal
dependencies among different phase-shifting frequencies. Quantitative evaluations and
qualitative 3D reconstructions were conducted to validate the proposed technique, high-
lighting its potential for industrial applications and its contribution as a novel concept in
scientific research.
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