
Citation: Akbari Sekehravani, E.;

Leone, G. Evaluation of the

Resolution in Inverse Scattering of

Dielectric Cylinders for Medical

Applications. Sensors 2023, 23, 7250.

https://doi.org/10.3390/s23167250

Academic Editors: Antonio Lázaro,

Mikael Persson and Hoi-Shun

Antony Lui

Received: 1 June 2023

Revised: 5 August 2023

Accepted: 15 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Evaluation of the Resolution in Inverse Scattering of Dielectric
Cylinders for Medical Applications
Ehsan Akbari Sekehravani * and Giovanni Leone

Department of Engineering, University of Campania “Luigi Vanvitelli”, I-81031 Aversa, Italy;
giovanni.leone@unicampania.it
* Correspondence: ehsan.akbarisekehravani@unicampania.it

Abstract: The inverse scattering problem has numerous significant applications, including in geo-
physical explorations, medical imaging, and radar imaging. To achieve better performance of the
imaging system, theoretical knowledge of the resolution of the algorithm is required for most of these
applications. However, analytical investigations about the resolution presently feel inadequate. In
order to estimate the achievable resolution, we address the point spread function (PSF) evaluation
of the scattered field for a single frequency and the multi-view case both for the near and the far
fields and the scalar case when the angular domain of the incident field and observation ranges is a
round angle. Instead of the common free space condition, an inhomogeneous background medium,
consisting of a homogeneous dielectric cylinder with a circular cross-section in free space, is assumed.
In addition, since the exact evaluation of the PSF can only be accomplished numerically, an analytical
approximation of the resolution is also considered. For the sake of its comparison, the truncated
singular value decomposition (TSVD) algorithm can be used to implement the exact PSF. We show
how the behavior of the singular values and the resolution change by varying the permittivity of
the background medium. The usefulness of the theoretical discussion is demonstrated in localizing
point-like scatterers within a dielectric cylinder, so mimicking a scenario that may occur in breast
cancer imaging. Numerical results are provided to validate the analytical investigations.

Keywords: linear inverse scattering; number of degrees of freedom; point spread function; inhomoge-
neous medium; resolution; TSVD inversion; localization; breast cancer imaging

1. Introduction

The inverse scattering problem requires determining the physical and geometric
characteristics of an unknown object from scattered field data provided via the induced
perturbation of known incident fields. Since the inverse scattering problem is nonlinear,
approximations such as the Born [1] or Rytov [1,2] ones for dielectric objects and physi-
cal optics (PO) [3,4] approximation for metallic objects can provide a linear relationship
between the scattered field data and the scattering object.

The imaging method based on inverse scattering has gained significant interest and
has been thoroughly researched. This is because of its flexibility and appropriateness for
various applications, such as radar imaging [5], through-the-wall imaging [6,7], ground
penetration radar (GPR) applications [8,9], biological imaging applications [10,11], breast
cancer imaging [12–15], brain stroke detection [16,17], and medical imaging [18]. Far
and near field data can be available according to the application; in particular, medical
imaging can be accomplished in the near zone, which may provide better-resolution benefits
compared with far-field imaging.

The full view is a typical case in inverse scattering, which arises as the incident fields
illuminate the object from all angles, and the scattered fields are observed at all angles.
This case is suitable for various industrial applications or medical imaging applications
like head and breast imaging.

Sensors 2023, 23, 7250. https://doi.org/10.3390/s23167250 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2670-739X
https://orcid.org/0000-0002-2139-3398
https://doi.org/10.3390/s23167250
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167250?type=check_update&version=2


Sensors 2023, 23, 7250 2 of 18

The achievable resolution refers to the ability to accurately distinguish and locate
small features or details within an object or scene being imaged. It is related to the smallest
resolvable distance or size of the features that can be distinguished with the imaging system
and has raised much interest in microwave imaging.

In [19], based on nonlinear modelling and inversion, a super resolution was demon-
strated for a near-field experimental microwave tomography system; however, in nonlinear
inverse scattering, the results depend on the scattering scenario and cannot be investigated
a priori. In [20], the resolution within a linear scattering model was considered; however,
since the internal field is numerically computed as the exact one instead of being approxi-
mated by the incident one as in the Born approximation, no analytical discussion can be
performed and it should be computed numerically. In [21], an alternative definition of reso-
lution was introduced, but a numerical computation is always required for a comparison
of different scenarios. An approach based on deep learning has been proposed in [22] to
improve the spatial resolution for microwave imaging. Therefore, all these approaches
achieve results about resolution based on numerical computations.

Instead, in linear scattering, the achievable resolution can be defined in terms of the
point spread function (PSF) of the system and it represents the reconstruction of a point-like
object. For a compact linear operator, singular value decomposition (SVD) can be used to
introduce the PSF. The concept of PSF has found extensive usage in [23–27], showing its
broad applicability and relevance in various fields.

The analytical evaluation of the exact PSF can be performed for a limited number of
scattering geometries. For most scenarios, numerical methods are the only option. The
truncated SVD (TSVD) [28] algorithm can be used to obtain the exact PSF. To compute
the exact main lobe width of the PSF, an appropriate truncation value must be chosen, as
using an incorrect value may affect the main lobe width and the side lobes. An appropriate
truncation choice could be the number of degrees of freedom (NDF) of the scattering object,
which is defined as the number of significant singular values of the pertinent scattering
operator as they usually decay exponentially.

The NDF evaluation of the scattered field has been addressed in [29] for simple strip
geometries for the full-view case in the far zone. That study has demonstrated that the
same NDF can be obtained through the use of different variables. One way to provide
an analytical expression of the PSF is by evaluating an approximation of the exact PSF
to eliminate the limitations of the exact PSF. For instance, in [30], the evaluation of the
approximated PSF has been considered for strip source/scatterer geometries for the full
view. Those authors used the NDF as a truncation value in the TSVD algorithm. The
results showed that the resolution is constant for the full-view case, the approximation
worked well in the main lobe, and the NDF was a good choice for truncation. The same
analysis is available in [31] for circumference source/scatterer geometries, and the analytical
estimation of the NDF was also evaluated.

The NDF of the radiated field was considered in [32] for square sources, and the
authors showed that the NDF of a full 2D square is equal to the NDF of a void square
source. Sometimes, the analytical estimation of the NDF cannot be evaluated and it should
be computed numerically. For the aspect-limited case, the NDF of the scattered field was
computed numerically in [33] for curve geometries in different modalities. The analytical
approximation of the PSF was also evaluated to estimate the resolution, and it was shown
that the resolution is not constant.

A theoretical study on the achievable resolution and image quality of microwave
imaging systems has been addressed in [34]. That study clarifies the relationship between
resolution and limited-view versus full-view antenna array geometry, monostatic versus
multistatic configuration, single-frequency versus wideband operation, and near-field
versus far-field imaging. The theoretical relations of image resolution have been addressed
in [35] for both the full-view and aspect-limited cases.

Most of the scattering scenarios assume the free space as being in the background,
i.e., a homogeneous medium. In subsurface imaging for GPR applications, a two-layered
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medium has been taken into consideration [36–38] because the closed-form analytical
expression of the scattered field can be found. In this circumstance, the available data are
inherently aspect-limited to a half-space. Less attention has been paid to other layered
geometries, although the closed-form expression of the pertinent scattered field can be
available. In this paper, we are interested in a two-layered cylindrical medium composed of
a homogeneous dielectric cylinder with a circular cross-section, embedded in the free space.
This scenario can provide a theoretical reference for those applications, such as breast
cancer/tumor imaging when scattering objects are located within a dielectric medium of
known parameters. In this paper, we address the evaluation of the PSF of the scattered field
for the single-frequency case and the multi-view sensing configuration for the full-view
case to estimate the achievable resolution for both the far and near fields. We investigate
how the permittivity of the dielectric can affect the truncation level and the resolution.
In addition, an analytical approximate of the exact PSF is evaluated. Furthermore, a
localization application that can be used in breast cancer/tumor imaging is provided.
Numerical comparisons for the truncation index and two PSFs are provided to validate the
theoretical discussion.

The plan for this paper is as follows: In Section 2, the problem statement, a PSF
evaluation, and a discussion about how to choose the truncation level for a general scat-
tering geometry are presented. Section 3 introduces and investigates the approximated
PSF. Section 4 provides some numerical examples to validate the theoretical discussions. In
Section 5, a numerical application to a localization problem is shown. Finally, in Section 6,
conclusions are provided.

2. Statement of the Problem

The general geometry of the problem is depicted in Figure 1. An unknown scatterer
with relative permittivity εs(r) is located within a domain referred to as the investigation
domain (ID), which is embedded in a homogeneous dielectric cylinder (region 1) with a
circular cross-section, radius ra, and relative permittivity εra , centered at the origin. The
dielectric cylinder is located in a free space (region 2) with permittivity ε = ε0 and both
regions are nondispersive, while the magnetic permeability everywhere is equal to µ0.
(The external medium can be also assumed to be different, though always homogeneous,
provided that the appropriate dielectric permittivity is accounted for within the electro-
magnetic scattering model.) Accordingly, the background medium is inhomogeneous, as it
consists of a cylindrically stratified medium.
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Let us define as r = (ρ, φ), ri = (ri, θi), and rs = (rs, θs) as the position vectors span-
ning the scattering object, the source point (transmitter), and observation point (receiver),
respectively. Hereafter, ri and rs are also assumed to be constant, i.e., they are circumference.
In this paper, we consider the full-view case where the angular ranges of the excitation and
observation angles are 2π wide, i.e., −π < θi, θs < π.

Under the Born approximation, in the scalar case, the only component of the scattered
field is defined by

Es
(
rs, ri

)
=

x

ID
χ(r) Gs

(
r, rs

)
Ei
(
ri, r
)

dr = T (χ(r)) (1)

apart from some inessential factors, where χ(r) = εs(r)
εra
− 1 and T are a contrast function

and the pertinent linear operator for our multi-view and single-frequency scattering config-
urations of interest. Moreover, Gs is the Green function pertinent to the inhomogeneous
background medium and Ei is the incident field radiated by a filamentary line source
within the background medium, that is, in the presence of the dielectric cylinder.

In particular, the Green function can be computed in closed form as a series [39] as

Gs
(
r, rs

)
= ∑n d′n H(2)

n (βrs) Jn(β
√

εra ρ) ejn(θs−φ) (2)

where H(2)
n (·) is the Hankel function of the second kind and n-th order and Jn(·) is the Bessel

function of the first kind and n-th order. In addition, the wavenumber and wavelength
are denoted by β and λ, respectively. The generalized transmission d’

n coefficients are
provided by

d′n =

2j
πβra

Jn
(

β
√

εra ra
)

H(2)
n
′
(βra)−

√
εra J′n

(
β
√

εra ra
)

Hn(βra)
(3)

where H(2)
n
′

and J′n are the derivative of the Hankel function and the derivative of the Bessel
function, respectively.

Because of the reciprocity theorem, the incident field Ei in (1) is equal to the Green func-
tion Gs (apart from an inessential constant factor), i.e., Gs

(
r, ri
)
= Ei

(
ri, r

)
(see Appendix A

for more details).
Note that the series in (2) can apparently be approximated using a finite summation

of 2N + 1 terms, where N is equal to
[
β
√

εra max(ρ)
]
, with [·] representing the nearest

integer. This approximation arises due to the asymptotic behavior of the Bessel function for
order larger than the argument. However, the issue of the truncation of (2) will be further
considered in Section 3 and in Appendix B.

2.1. PSF Evaluation

In this subsection, we first recall the definition of the exact PSF as the impulse response
of an imaging system to a point-like scatterer and express it as the cascade of T −1, i.e., the
regularized inverse operator of T and the forward operator. In other words, the response
of the system to a Dirac delta function δ is the PSF of the system. Mathematically, the exact
PSF is provided by

PSF
(
r, r0

)
= T −1T δ

(
r− r0

)
(4)

When it is observed at (r) and the point-like scatterer is located at (r0), SVD is applied
to (2) because the T operator is linear and compact. Its singular system consists of the triple
{vn, σn, un} [28], where un and vn are the singular functions, which span the data and
the scatterer contrast function spaces, respectively, and σn is the singular values, arranged
under a decreasing order. We can rewrite (4) in terms of the completeness relation truncated
to the retained singular function vn. This is because the minimum–norm solution to the



Sensors 2023, 23, 7250 5 of 18

inverse scattering problem is a projection of the actual contrast function onto the singular
function having non-zero singular values.

PSF
(
r, r0

)
=

Nt

∑
n=1

vn(r) v∗n
(
r0
)

(5)

where ∗ indicates the conjugation operation. Equation (5) states that the exact PSF is
dependent on the number of retained singular values, which is related to the accuracy of
the solution. Hence, knowledge of the singular functions and the choice of Nt are required
to compute (5), and it can only be calculated in closed form for a limited number of scatterer
geometries. The truncation value Nt can be chosen in terms of the NDF, whenever the
singular values exhibit a rather flat behavior before the exponentially fast decay. Then,
Nt is chosen in correspondence with the knee of the singular value curve, and it is rather
independent of the noise on the data. If this is not the case, the correct choice of Nt can
be performed once the uncertainties on the data are available, as the choice of Nt can
vary and it depends on those uncertainties. Additionally, the inversion results depend on
the knowledge available a priori about uncertainties on the data. Therefore, it is worth
investigating the behavior of the SVD of (1) to understand what is the typical behavior of
singular values for the present inhomogeneous medium geometry.

To numerically calculate the SVD of the pertinent operator, a sufficiently fine dis-
cretization of the integral Equation (1) is employed and the resulting matrix equation is
processed in the MATLAB environment.

Figures 2 and 3 show the behavior of the singular values for εra = 4 and ra = 2λ in the far
and near fields, respectively. It is apparent that their behavior is not very different. However,
in contrast to the homogeneous background medium case, where a step-like behavior can be
expected due to the possibility to recast (1) as a Fourier transform [29,31], the singular value
behavior now depends on εra . Hence, it is worthwhile to examine how the truncation level of
the singular values, which determines the value of Nt in (5), impacts the behavior of PSF.

By observing Figures 4 and 5, which pertain to far and near fields (with ri = rs = ra + λ),
respectively, it can be appreciated that a high truncation level does not affect the main lobe
of the PSF, while a low level considerably reduces its side lobe level. Consequently, when
the main lobe of the PSF is the primary focus, as it defines the resolution of the inversion
algorithm, a rather high truncation level of the singular values can be tolerated. On the
contrary, when reconstructing a more complex object, such as a collection of closely located
point-like scatterers, it is important to employ a low truncation level (and consequently,
a low uncertainty level on data) to prevent adverse effects from high side lobes on the
resulting image.
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In this paper, the achievable resolution is estimated based on the general behavior of
such functions, specifically the main lobe. The resolution R is defined as half of the width
W of the main lobe of the PSF function.
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2.2. Approximate PSF

According to [30,31,33], the adjoint operator may approximate the inverse operator in
(4) if the singular values of the relevant operator have a nearly constant behavior before
the knee of its curve. Consequently, it is possible to replace the inverse operator with the
adjoint one in (4) to introduce a good approximation of the exact PSF to overcome the
abovementioned limitation. Notwithstanding, this is not true for the case at hand; hereafter,
we adopt the same approximation since it provides a simple analytical function to define
the resolution.

Then, the approximated
∼

PSF is defined by

∼
PSF

(
r, r0

)
= T +T δ

(
r− r0

)
(6)

The analytical evaluation of (6) is performed as follows. First, we define the adjoint
operator of (1) by

T +Es =
∫ 2π

0

∫ 2π

0
Es
(
rs, ri

)
G∗s
(
r0, rs

)
E∗i
(
ri, r0

)
dθs dθi (7)

as the source and observation domains are assumed to be the circumference. Then, the
spectral theorem for compact self-adjoint operators is applied to T +T :

T +T δ
(
r− r0

)
=

s
ID χ(r)

[∫ 2π
0

∫ 2π
0 Gs

(
r, rs

)
Ei
(
ri, r
)

G∗s
(
r0, rs

)
E∗i
(
ri, r0

)
dθs dθi

]
dr

(8)



Sensors 2023, 23, 7250 8 of 18

By using the addition theorem for the Hankel function and interchanging the integrals
and the summations, because of (2), (8) becomes a four-fold summation, which, in turn,
can be factored as the product of two identical functions with different arguments:

∼
PSF(ρ, ρ0, φ, φ0) = Fs(ρ, ρ0, φ, φ0, rs)·Fi(ρ, ρ0, φ, φ0, ri) (9)

where Fs(ρ, ρ0, φ, φ0, rs) and Fi(ρ, ρ0, φ, φ0, ri) pertain to the observation and incident field,
respectively, and are symmetric functions of the arguments. For the full-view case, for
instance, the Fs function can be written as a double summation:

Fs(ρ, ρ0, φ, φ0, rs) =
∫ 2π

0 Gs
(
r, rs

)
G∗s
(
r0, rs

)
dθs =

∫ 2π
0

N
∑

n=−N
d′n H(2)

n (βrs) Jn
(

β
√

εra ρ
)

ejn(θs−φ) .(
L
∑

l=−L
d′l H(2)

l (βrs) Jl
(

β
√

εra ρ0
)

ejl(θs−φ0)

)∗
dθs

 (10)

Then, since the observation domain is a circumference, so that rs is constant, by
performing the simple closed form integration, (10) becomes

Fs(ρ, ρ0, φ, φ0, rs) =
N

∑
n=−N

∣∣d′n∣∣2 ∣∣∣H(2)
n (βrs)

∣∣∣2 Jn(β
√

εra ρ) Jn(β
√

εra ρ0) ejn(φ−φ0) (11)

The evaluation of Fi proceeds in the same way as Fs. Finally, the evaluation of (9) is
given by

∼
PSF(ρ, ρ0, φ, φ0) =

[
N
∑

n=−N
|d′n|

2
∣∣∣H(2)

n (βrs)
∣∣∣2 Jn

(
β
√

εra ρ
)

Jn
(

β
√

εra ρ0
)

ejn(φ−φ0)

]
.[

M
∑

m=−M
|d′m|

2 Jm
(

β
√

εra ρ
) ∣∣∣H(2)

m (βri)
∣∣∣2 Jm

(
β
√

εra ρ0
)

ejm(φ−φ0)

] (12)

which provides the searched analytical evaluation of the approximated
∼

PSF. Although
(12) provides a closed-form expression under a finite series, further simplifications are
considered hereafter.

3. Discussion about the Approximated
∼

PSF

In this section, we provide a further discussion about the approximated
∼

PSF (12) to
simplify it and to demonstrate that the resolution is the same for both the near and far
scattered fields. In particular, we assume that the ID coincides with the whole circular
section or region 1 in Figure 1, so that max(ρ, ρ0) = ra. Therefore, we consider the influence

of
∣∣∣H(2)

n (βrs)
∣∣∣2, |d′n|

2 and cn =
∣∣Jn
(

β
√

εra ra
)∣∣2 in (12) on the resolution.

3.1. Far Field

For the far field, due to the asymptotic behavior of the Hankel functions for arguments

much larger than the order,
∣∣∣H(2)

n (βrs)
∣∣∣2 can be approximated by π

2(βrs)
, which becomes a

constant. Next, the influence of |d′n|
2 on the behavior of the Fourier coefficients in (12) needs

to be examined. To this end, Figure 6b shows a typical behavior of |d′n|
2 for ra = 3λ εra = 3.

It can be observed that they decay for large n (for an explanation, see Appendix B) and
that their amplitude is mostly close to 1. On the other hand, as discussed in Section 2 and
confirmed by Figure 6a, the cn coefficients decay asymptotically for n > N. Therefore, it is
interesting to examine the behavior of the product

∣∣d′n Jn
(

β
√

εra ra
)∣∣ (as max(ρ, ρ0) = ra).
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In the Appendix B, it is shown that this term decays asymptotically for |n| > N′ = [β ra].
Consequently, the Fourier series in (12) can be truncated to 2N′ + 1 terms as

∼
PSF(ρ, ρ0, φ, φ0) ∼=

(
N′

∑
n=−N′

Jn(β
√

εra ρ) Jn(β
√

εra ρ0) ejn(φ−φ0)

)2

(13)
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Figure 6. The behavior of two coefficients in (12): (a) the behavior of cn, (b) the behavior of |d′n|
2.

But, in virtue of the addition theorem of the Bessel functions, (13) is approximately
equal to

∼
PSF(ρ, ρ0, φ, φ0) ∼=

(
J0
(

β
√

εra

∣∣r− r0
∣∣))2 (14)

A comparison between (12) and (14) is provided in Figure 7 for ρ0 = 1.52λ and φ0 = 0.
The results confirm that the two approximations are completely overlapped.
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3.2. Near Field

The results obtained for |d′n|
2 are also valid for the near field as they are independent

of rs. Therefore, the influence of the
∣∣∣H(2)

n (βrs)
∣∣∣2 factor needs to be considered. Figure 8

shows a comparison of
∣∣∣H(2)

n (βrs)
∣∣∣2 for different rs. It is observed that while the curve

remains flat for large rs values, this is not the case for smaller values. However, even when
rs = a + λ, it can still be considered flat for |n| < N′, thereby having a negligible impact on
(12), and (13) and (14) still hold. Consequently, it can be concluded that the approximate
PSF is the same for both the near and far fields, except for cases where rs < ra + 0.5λ, i.e.,
very close to the dielectric ID. In such cases, it becomes necessary to consider more terms
for the convergence of the Fourier series and to account for the close proximity effects of
the reactive near field, which become significant.
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Figure 8. The behavior of
∣∣∣H(2)

n (βrs)
∣∣∣2 for different rs (dashed lines shows the value of N’).

Figure 9 shows a comparison of Equations (12)–(14) for ρ0 = 1.52λ and φ0 = 0. The
results verify that the three approximations coincide with each other, as expected. Based on
the results obtained from the two subsections, it can be concluded that (14) can serve as a
reliable approximation for the exact PSF instead of (12). Additionally, it is notable that the
resolution remains the same for both the far and near fields. Further numerical examples
will be provided in the next section.
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4. Numerical Validation

In this section, various numerical examples are presented to validate the theoretical
discussions from the previous sections. We consider a cylinder with a radius of ra = 3λ,
where the ID coincides with the cylinder. To highlight the focusing properties, only the
main lobe of the PSF is taken into account, and the amplitudes of both PSFs are normalized
to 1. For all subsequent numerical examples, ri and rs are set to ra + λ for the near field.

Firstly, we compare the behavior of singular values of (1) for the far and near fields
with different εra . Figure 10 illustrates the behavior of normalized singular values of the
relevant operators (1) for the near and far fields with varying εra . The analytical estimation
of the NDF for a free space was provided in [40,41] for the far field, and it is provided using
NDF = ΣA

(2π)2 , where A and Σ are the spectral domain area and the measure of the area of

the function to be transformed, respectively. For the full-view case, A is π(2β)2 [41] and Σ
is equal to πra

2 for the considered ID, and the NDF estimation is confirmed via the blue
solid line. The results provide evidence that the singular value behavior is approximately
the same for the far and near fields. In addition, the singular value behavior is not flat,
indicating that higher values of εra result in a faster overall decay.
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Figure 10. The behavior of the normalized singular values of the linearized inverse scattering for
different εra for the far and near fields.

A comparison between the exact PSF (12) and the approximated (14) one is performed
for both the far and near fields to further evaluate the performance of the achievable

resolution and to validate the accuracy of the approximated
∼

PSF. Figure 11 illustrates the
normalized amplitude of both PSFs along the φ-cuts when ρ0 = 1.5λ and φ0 = 0. It is
observed that the resolution is the same for both the far and near fields for different εra , as
the main lobe width of the PSF becomes slimmer as εra increases. Therefore, the resolution
R for εra = 1, εra = 4, and εra = 6 is equal to 0.38λ, 0.19λ, and 0.15λ, respectively, as it can
be predicted using (14) according to the first zero of the Bessel function of 0-th order. The
space-invariance of the PSF being achieved for the full-view case means that the resolution
is constant. This result confirms that two PSFs are approximately overlapped.

To check out the performance of the exact PSF (12) and the approximated (14) along a
ρ-cut for the far and near fields, a comparison between two PSFs is provided in Figure 12
for ρ0 = 1.5λ when φ0 = 0. The resolution is again the same for both the far and the near

fields for different εra , as expected. In addition, it is confirmed that the approximated
∼

PSF
works well. As a result, the resolution is proportion to 1√

εra
.
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plifications are required, such as assuming a dielectric homogenous cylindrical circular 

investigation domain and modeling tumors as point-like scatterers. For this case, the trun-

cation level of the singular values is selected at 40 dB. As discussed in Section 3, this choice 

ensures a low side lobe level for the exact PSF without affecting its main lobe. The ID is 

Figure 11. The comparison of the normalized amplitude of the exact (solid lines) and approximated
(dashed lines) PSFs along a φ-cut for φ0 = 0 and ρ0 = 1.5λ, for εra = 1 (red lines), εra = 4 (blue lines)
εra = 6 (green lines): (a) far field, (b) near field.
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Figure 12. The comparison of the normalized amplitude of the exact (solid lines) and approximated
(dashed lines) PSFs along a ρ-cut for ρ0 = 1.5λ when φ0 = 0, for εra = 1 (red lines), εra = 4 (blue
lines) εra = 6 (green lines): (a) far field, (b) near field.

5. Application to Breast Cancer Scenario

This section provides an application of the aforementioned theoretical discussions to
reconstruct a set of point-like scatterers located within an ID (blue circle) with ra = 1.5λ
and εra = 12 from the near-field scattered data (ri = rs = a + λ). We are aware that actual
breast cancer scenarios are more complicate, with strongly inhomogeneous background
media, which prevent any analytical work and require numerical modelling. However,
in this paper, the goal is to provide an analytical discussion of the resolution and some
simplifications are required, such as assuming a dielectric homogenous cylindrical circular
investigation domain and modeling tumors as point-like scatterers. For this case, the
truncation level of the singular values is selected at 40 dB. As discussed in Section 3, this
choice ensures a low side lobe level for the exact PSF without affecting its main lobe. The
ID is chosen to mimic a breast cancer scenario, where the dielectric background consists of
a medium with high dielectric permittivity, approximating a circular shape. Breast imaging
aims to identify the presence of breast cancer or tumors, and it has been extensively studied
in the field of microwave sensing and imaging. In particular, breast tumors exhibit relatively
high contrast compared with the predominating fat tissue in the breast [42] and can be
modelled as point-like scatterers. Therefore, this approach can be used for localizing
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or detecting breast cancer/tumors, as accurate detection is the first step in classifying
cancer/tumors.

In this application, we consider three point-like scatterers on a circumference (the
φ-cut) with a radius of ρ0 = 0.26λ located in the ID, representing a typical size of the array
for breast imaging. Figure 13 shows the geometry of the application.
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Figure 13. The geometry of the application. The red dots indicate the position of the point-like
scatterers. The dotted line indicates the positions of source and receivers.

Figure 14 shows a normalized reconstruction of the considered point-like scatterers,
computed via inversion of (1), compared with the result of the summation of three functions
(14) as centered at the scatterers positions. As can be seen in Figure 14a, if the distance
between point-like scatterers is equal to the width W = 0.2λ, they can be distinguished
from each other, as the predicted resolution is R = 0.1λ. However, when the distance is
less than R, they are not resolvable and appear as a single scattering point, as shown in
Figure 14b. The findings indicate that both reconstructions yield similar results.
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Figure 14. The exact (solid line) and approximated (dotted line) reconstruction of three point-like
scatterers: (a) the distance between them is equal to the resolution, (b) the distance between them is
less than the resolution. The black dots indicate the position of the point-like scatterers.
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Now, we consider an example where the three point-like scatterers are arranged along
the radius of the ID when φ0 = 0, as shown in Figure 15.
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Figure 15. The geometry of the application. The red dots indicate the position of the point-like
scatterers. The dotted line indicates the positions of source and receivers.

Figure 16 displays the normalized reconstruction of the point-like scatterers under
examination computed via inversion of (1), compared with the result of the summation of
three functions (14). Figure 16a demonstrates that, if the distance between the scatterers
is the same as the width W = 0.2λ, they can be identified separately. On the other hand,
if the distance is smaller than the resolution, with R = 0.1λ, they are not distinguishable
and appear as a single scattering point, as depicted in Figure 16b. These results once again
highlight that both reconstructions produce comparable outcomes.
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scatterers: (a) the distance between them is equal to the width, and (b) the distance between them is
equal to the resolution. The black dots indicate the position of the point-like scatterers.
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6. Discussion and Conclusions

We have evaluated the PSF of the linear inverse scattering problem for a dielectric
cylinder background to estimate the achievable resolution for the full-view case for both the
far and near fields. Our main goal has been to provide an analytical approximation of the
resolution because the exact evaluation of the PSF can be accomplished only numerically
and its accuracy is dependent on the truncation value. First, we have discussed the behavior
of the singular values and showed that the singular value behavior is approximately the
same for both fields. However, since their behavior is not flat, the accuracy of the result
can depend on the number of singular values to be retained, which, in turn, depends on
the uncertainties on data. It has been pointed out that the choice of the truncation level for
the PSF computation affects only its side lobe level, while the main lobe remains mostly
unchanged. Then, an approximate analytical PSF has been introduced and some numerical
simulations have validated the accuracy of the approximated PSF against the exact PSF. In
particular, the results have shown that there is good agreement in the main lobe region of
both PSFs for different permittivities, which is sufficient for predicting actual resolution in
a sensing configuration. The analytical and the numerical results have also demonstrated
that the resolution is the same for both fields and remains unchanged along the whole
ID, i.e., it is space-invariant. Additionally, both results clearly have highlighted that the
resolution changes by varying the permittivity of the ID in both fields and is inversely
proportional to

√
εra .

Finally, we have presented an application for reconstructing point-like scatterers lo-
cated within the ID from the near field, which is valuable for detecting breast cancer/tumors.
The application demonstrates that when the distance between two point-like scatterers
equals the width of the main lobe PSF, they can be distinguished from each other. Con-
versely, if the distance is less than the width, they cannot be differentiated. The results once
again have shown that both reconstructions achieved similar results. Indeed, the approach
suffers from a limitation. In fact, the approximate evaluation of the PSF is shown to be
accurate in the main lobe, while the behavior of the side lobes is less predictable. This
means that the reconstruction of the isolated point-like scatterers, even if randomly located,
can be expected to be accurate. On the contrary, if there are many point-like scatterers and
they are close to each other, it may not be possible to reconstruct all of them correctly due
to the effect of the side lobes of the corresponding approximate PSF.

For microwave imaging systems designed to operate up to 2GHz, for a reasonable
value of the relative permittivity of human tissues as εra = 6, a resolution of 2.25 cm can be
predicted. Of course, from the imaging point of view, this figure can provide unsatisfactory
results in actual complicated scenarios with many tumors with smaller separations. How-
ever, for detection purposes, especially in the very initial stage, the results of the presented
analysis can provide the minimum detection distance for isolated tumors. In any case, the
resolution at microwave frequencies is connected to the free space wavelength because of
the wave scattering interaction.

Author Contributions: Conceptualization, G.L.; methodology, G.L.; software, E.A.S.; validation,
E.A.S. and G.L.; formal analysis, E.A.S. and G.L.; investigation, E.A.S. and G.L.; resources, E.A.S.;
data curation, E.A.S.; writing—original draft preparation, E.A.S.; writing—review and editing, G.L.
and E.A.S.; visualization, G.L.; supervision, G.L.; project administration, G.L.; funding acquisition,
E.A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting the reported results were generated during the study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we demonstrate the connection between the Green function and the
incident field by starting from equations (7-32a) in [43], which provide an integral relating
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the file radiated in the region 2 by sources occupying region 1 to the field radiated in region
1 by sources occupying region 2. In the scalar case, where both electric sources and fields
have only the z-component, if we assume no magnetic sources and electric filamentary line
sources with a constant current, the integrals can be evaluated straightforwardly.

Then, the source 1, J1 = Iδ
(
r’− rs

)
, located in r’ = rs, radiates the field

E1(r’) = Ei
(
rs, r’

)
, while the source 2 , J2 = δ(r’− r), located in r’ = r, radiated the

field E2(r’) = Gs(r, r’). Consequently, the left-hand side of equations (7-32a) becomes
IGs
(
r, rs

)
and the right-hand side becomes Ei

(
rs, r

)
, and the two functions are proportional

when the argument variables are exchanged.

Appendix B

In this appendix, we examine the asymptotic behavior for large n of the Fourier
coefficients of (12) in the far-field case. In particular, we consider the factor

∣∣d′n Jn
(

β
√

εra ρ
)∣∣,

which is common to all summations. We make use of the following asymptotic expansion
of the Bessel and Hankel functions for orders larger than the arguments:

Jn(z) ∼
1√
2πn

( ez
2n

)n
(A1)

and

H(2)
n (z) ∼ j

√
2

πn

( ez
2n

)−n
(A2)

where e is Euler’s number.
We start from the denominator of (3), to be rewritten as

Jn(β
√

εra ra)H(2)
n−1 (βra)−

√
εra Jn−1(β

√
εra ra) Hn(βra) (A3)

in virtue of the Bessel functions. Then, via substitution of (A1) and (A2), we obtain

n
√

εra

π

2
eβra

nn

(n− 1)n−1

{[
eβra

2

(
n− 1

n

)n 1
n− 1

]2

− 1

}
(A4)

which can be simplified to
n
√

εra

π

2
eβra

(A5)

This provides ∣∣d′n∣∣ ∼ e
n
√

εra

(A6)

When we multiply this factor by the asymptotic expansion of the Bessel function,
we obtain ∣∣d′n Jn(β

√
εra ρ)

∣∣ ∼ e√
2πn

(
eβρ

2n

)n
∼ e|Jn(β ρ)| (A7)

This means that the product decays asymptotically for |n| > max(β ρ) = [βra] = N′.
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