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Abstract: The integration of the Internet of Things (IoT) with machine learning (ML) is revolution-
izing how services and applications impact our daily lives. In traditional ML methods, data are
collected and processed centrally. However, modern IoT networks face challenges in implementing
this approach due to their vast amount of data and privacy concerns. To overcome these issues,
federated learning (FL) has emerged as a solution. FL allows ML methods to achieve collaborative
training by transferring model parameters instead of client data. One of the significant challenges of
federated learning is that IoT devices as clients usually have different computation and communica-
tion capacities in a dynamic environment. At the same time, their network availability is unstable,
and their data quality varies. To achieve high-quality federated learning and handle these challenges,
designing the proper client selection process and methods are essential, which involves selecting
suitable clients from the candidates. This study presents a comprehensive systematic literature review
(SLR) that focuses on the challenges of client selection (CS) in the context of federated learning
(FL). The objective of this SLR is to facilitate future research and development of CS methods in
FL. Additionally, a detailed and in-depth overview of the CS process is provided, encompassing its
abstract implementation and essential characteristics. This comprehensive presentation enables the
application of CS in diverse domains. Furthermore, various CS methods are thoroughly categorized
and explained based on their key characteristics and their ability to address specific challenges. This
categorization offers valuable insights into the current state of the literature while also providing a
roadmap for prospective investigations in this area of research.

Keywords: machine learning; federated learning; client selection; participant selection; node selection;
device selection

1. Introduction

IoT refers to a network of interconnected devices, sensors, and objects that collect and
exchange data. These devices can be anything from smartphones and wearables to smart
home appliances, industrial sensors, or autonomous vehicles. The convergence of the IoT
and ML presents a compelling alliance with the capability to revolutionize IoT applications
across diverse sectors. IoT devices continuously collect extensive data from various sources
such as sensors and cameras. ML algorithms can effectively utilize this data to derive
valuable insights, enable real-time decision-making, and enhance process optimization. In
ML used in conjunction with the IoT, there is a concern about the amount of data involved in
the training process, especially when the data are sensitive [1–3]. One of the most promising
solutions to the isolated data island [1] problem is FL, where many clients ranging from
edge devices to IoT devices collaboratively train a model under the orchestration of a
central server. In FL, local data do not need to leave the clients. This means that ML
training can be performed without transferring client data from their original location to
the servers [4]. Using FL, clients can create centralized, robust, and precise local models
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that are sent to the server [5]. In this way, it reduces privacy concerns while allowing
users to keep their information private [6,7]. In addition, it speeds up and improves local
model training [8]. For instance, Dayan et al. [9] performed a representative study of an
extensive, real-world healthcare FL examination across several sites and datasets. In their
study, FL provided fast cooperation and improved results with no data transferred between
the participating clients. They concluded that rapid and collaborative development of AI
methods in healthcare can be accomplished with FL [9]. FL is also useful in the following
areas:

• RS: RS are information filtering systems designed to anticipate user preferences and of-
fer personalized recommendations. Employing FL in RS yields numerous benefits and
enhancements, including the delivery of efficient and privacy-preserving personalized
recommendations to users across diverse platforms and devices [10].

• IoT applications:

â IoV: FL also has the potential to bring about a revolutionary transformation
in the automotive industry and the development of intelligent transportation
systems [11].

â MEC: The incorporation of FL into MEC is anticipated to have a crucial impact
in achieving efficient and privacy-preserving intelligent applications at the
network’s edge [12].

â IIoT: The integration of IIoT with FL has the potential of revolutionizing in-
dustries and streamlining industrial operations. IIoT involves a network of
interconnected devices, sensors, and equipment in industrial environments,
enabling data collection and exchange. On the other hand, FL is a privacy-
preserving machine learning approach that facilitates model training across
distributed devices without the need to share sensitive raw data [13].

â IoHT: The integration of IoHT with FL is a solution to enhance healthcare prac-
tices, enabling advancements in remote patient monitoring, disease prediction,
and treatment optimization [14].

Despite the advantages of FL, there are some serious challenges such as expensive
and inefficient communication [15,16], statistical heterogeneity, poor data quality [17], pri-
vacy concerns [18–20], and client heterogeneity [21]. To solve these challenges, numerous
investigations and studies have been performed. For instance, the authors in [22] focused
on the communication efficiency and client heterogeneity problem of FL and proposed a
new solution. However, the proposed solution suffers from a growing number of clients.
The issue was solved by increasing the computation capability of clients [23]; however,
this solution increased costs. In relation to the problem of poor data quality, an intelli-
gent medical system was studied [24]. In such systems, different types of diseases have
different data structures and non-IID data, so training heterogeneous datasets is a major
issue [17,25]. To address this challenge, a solution of enabling local model training and
only communicating model updates is proposed [26,27]. Researchers also have proposed
various training methods, such as clustering of training data [28], multi-stage training and
fine-tuning of models [29], and edge computing [30]. However, these approaches are still
immature, and dealing with data quality while preserving model performance remains an
open problem [12,31]. While FL does not require raw data to leave client devices, it is still
possible for the information to leak from local model gradient updates [28,32]. In addition,
the existence of malicious clients in the training process can reduce system reliability and
poison model performance. This can happen by disrupting the training process or provid-
ing false updates to the central server [6]. Hence, there is a need to develop and employ
more comprehensive and robust solutions for enabling FL to better handle its challenges.

In recent years, client selection (CS) methods have been introduced as one of the
essential solutions to alleviate the above challenges [33–35]. Overall, the server evaluates
a client’s performance based on information from the local models it receives [36]. Due
to bandwidth limitations [37] and the availability of many clients [34], a selected subset
of them can take part in the process at each training round [37]. It should be noted that
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clients usually have significant differences in terms of resource constraints, heterogeneous
hardware conditions, and data resources in many procedures [38]. The CS process ac-
tively selects participating clients based on predefined criteria for each training round.
Researchers have demonstrated that different criteria can be adopted to achieve objectives
like fast convergence, low communication costs, optimal final model, and maximizing
the overall performance of a model [1,34,35]. For example, the authors in [1] show that
compared with the vanilla CS algorithm for FL, given the same number of rounds, their
proposed CS solution (RBCS-F) decreased the training time. However, it is not clear why
and how CS can enhance global model accuracy, and how to ensure a secure, reliable, and
fast CS method that can cope with non-IID, unbalanced data, and bandwidth restrictions.
More specifically, unlike data centers with unlimited resources and adequate bandwidth,
clients in FL have resource constraints and are heterogeneous hardware systems, which
can lead to training latency and significantly decreases the FL performance [35,39]. For
instance, sensor faults and environmental restrictions can cause a cluster of mislabeled
and non-IID on mobile clients, resulting in reduced local learning qualities [17,25]. Every
client has differences in its dataset distribution, performance, model parameters, available
computing resources, energy consumption, etc. As a result, they have different impacts
on the round of training, the convergence speed of the FL process, and the global model’s
accuracy. Furthermore, bandwidth limitations [5,40] pose a risk in the training of all clients
and uploading all parameters to the server [41]. From a model owner’s standpoint, it is
important to know whether CS has a significant influence on reducing the training time of
a model. It is important to know whether CS can enhance the convergence rate, achieve
more stable training, and improve final accuracy. In relation to these considerations, CS
can be an effective solution for FL optimization [34,41]. Under large-scale FL scenarios,
finding a suitable CS technique requires a massive search area with a non-polynomial time
complexity that cannot be performed in real-time. As a result, to achieve a high standard of
FL, the CS process and its categories are essential to selecting the best clients from the pool
of candidates [28]. Therefore, it is necessary to thoroughly review, analyze and categorize
this research domain. So far, different aspects of FL development have been examined
and reviewed in the literature. However, to date, there is limited work on systematically
reviewing the CS process and existing CS methods, along with their potential challenges,
characteristics, and shortcomings. This paper provides an in-depth overview and detailed
analysis of CS categories based on existing research. The aim of this is to assist industry
practitioners and researchers in exploring the challenges and potential gaps related to
CS methods and their development. The main contributions of this systematic literature
review (SLR) are as follows:

â A thorough SLR is presented that examines the challenges of FL in adopting CS
methods that can be used to aid future research and development of CS in FL.

â A detailed overview of the CS process, including its abstract implementation and
characteristics, is presented that can be used in various domains.

â Different CS methods are categorized and explained based on their main characteris-
tics and the challenges they solve. This provides insight into current literature and
provides a plan for future investigations on this topic.

This article is organized as follows. Section 2 presents a comprehensive background
including the definition, challenges, and importance of CS in FL. Then, Section 3 discusses
the research methodology. In Section 4, the challenges associated with FL, an overall
structure-based review of CS as a potential solution to these challenges, and the prominent
factors impacting a model’s performance are discussed. This is followed by Section 5,
which presents different methods for enhancing the performance of FL based on CS.
Additionally, major side effects and categories of CS methods are explained and analyzed.
Finally, Section 6 future trends and directions, and Section 7 concludes the paper’s outlines.
In general, this work presents a comprehensive study of the overall vision, structure,
configurations, and significant structures associated with CS for FL.
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2. Background
2.1. Client Selection

The increasing number and type of network services and the proliferation of mobile
edge have prompted the deployment of IoT [2] devices with advanced sensors, computing,
and communication capabilities for crowd-sensing tasks [42]. The advent of AI has led to
significant developments in numerous modern applications, such as air quality, weather
monitoring, and video surveillance [1,2]. Nowadays, ML algorithms and intelligent ap-
plications have made it possible to analyze various types of data, including text, numeric,
photographs, videos, and locations, from different IoT devices [20,43,44]. However, ML
typically employs centralized data, which raises several problems [45]. Data privacy [46] is
a major problem since data cannot be transferred from the devices. There are also challenges
related to massive scale [47] and optimization [48]. In addition, non-uniform data distri-
bution refers to a significant discrepancy between the size and distribution of data (texts,
images, and videos) stored on devices, which makes data transfer challenging [3]. This is
compounded by the limited bandwidth between devices and the server. To overcome these
ML problems, FL was proposed by Google [8]. FL means that multiple entities are able to
create common ML without data sharing. This addresses critical issues such as data privacy,
access rights, and access to non-uniform data distribution data on a massive scale. FL can
be classified into two types based on the participation of clients and the training scale:

â Cross-device FL with millions of clients such as smartphones, wearables, and edge
device nodes, where each client typically stores local data [49].

â Cross-silo FL in which the client is typically a company or organization, with a small
number of participants and a huge amount of data, and each client is expected to
participate in the entire training process [18].

Using cross-device FL, the parties, entities, or clients can share trained and updated
models more easily since the bandwidth obstacle in ML is removed [41]. In FL, raw data
from the clients do not need to be transferred to the central server to achieve an aggregated
final model because all training is conducted locally on the clients [6,7]. To be specific,
only the post-trained model or parameters are sent to the server once the training process
has been completed by the local client nodes, which in turn protects the privacy of the
data owners [33]. Then, the model parameters or the post-trained model in FL should be
optimized with minimal loss by using a gradient approach, such as stochastic gradient
descent (SGD) [45]. In basic FL, randomly selecting clients from a list of candidate clients
is not the best method to achieve an optimal global model [7,8,33]. Local clients train the
global model by using local data. This step is conducted by utilizing aggregated model
updates before committing the model updates to the server for aggregating the final model.
The global model is then adapted before being returned to each device for the subsequent
iteration [8]. So, the convergence speed of the model can be affected by the number of
participant clients, training iteration, resource allocation, data diversity, and aggregation
method. In this process, hardware issues and data resources can significantly impact
learning performance. In other words, end client nodes usually have different computation
and communication capacities and are connected in an unstable environment. There is a
risk of stragglers, which means that some clients with low-level resources are unable to
complete their training within the deadline. Moreover, mislabeled and non-IID data [3,25]
with different data quality are frequently gathered from clients due to sensor flaws and
environmental restrictions, leading to various local learning shortcomings. To deal with
these challenges, it is necessary to employ an efficient method to select appropriate clients
during FL training. Therefore, greater understanding and research on the CS process
are needed to optimize FL effectiveness and acceptable accuracy [8], leading to increased
overall performance. For this, a comprehensive review of the CS process, methods, and
categories will provide much-needed insight for the research community. So far, several
review papers have been published on this topic, presenting proposals, methods, and
practical examinations [6,50,51]. However, a rigorous and well-defined SLR is required to
classify and analyze the most important and latest research papers on this topic. Hence,
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an SLR of CS concepts, developments, and methods based on qualitative analysis from a
design perspective is presented in this article for the first time. This review paper addresses
the following RQs:

(1) RQ1: Why and how can adopting an appropriate CS method optimize the overall
performance of FL?

(a) RQ1.1: In which aspects should FL be improved?
(b) RQ1.2: How can CS help resolve the FL challenges?

(2) RQ2: From the structural perspective, what are the main pros and cons of different
CS methods?

(a) RQ2.1: How can different methods be categorized in different terms?
(b) RQ2.2: What challenges have been addressed with CS methods?

By addressing the above-mentioned questions, this paper provides insights into cur-
rent research gaps and future research directions.

2.2. Related Surveys

This subsection aims to summarize and discuss the most relevant survey work related
to the RQs. As mentioned in Section 2.1, from the aspects of scale and training, there
are two main types of FL, namely, cross-silo FL and cross-device FL. Cross-silo FL aims
to foster collaboration among several organizations at a large scale, while cross-device
FL focuses on ML across large populations, such as mobile devices [3,18,49]. This paper
mostly focuses on cross-device FL; thus, this type of FL and its related publications are
discussed. In different application domains of cross-device FL, such as IoT devices, mobile
edge computing, and cloud computing, there are severe challenges like highly heteroge-
neous data, heterogeneous client configurations, privacy, and communication efficiency
issues [18,38,52] among clients (all mobile or IoT devices). Mishandling these challenges
can adversely affect the performance of FL. Hence, CS methods are used to help solve these
challenges [6,34]. Employing an effective FL CS method, handling the heterogeneity of data
and clients, reducing training overheads, guaranteeing privacy, efficient communication,
strengthening robustness, and improving model accuracy can be achieved. Thus, the
development of FL based on improved or new CS methods is increasingly being studied
within the research community [18,51,52].

In Table 1, different review papers are compared based on their main features and
criteria. As listed in Table 1, there are three kinds of review papers written on this topic:

â Focusing on FL challenges without considering different CS methods: Li et al. [19],
Zhang et al. [24], Liu et al. [27], Wen et al. [32], Zhang et al. [36], Nguyen et al. [53],
Antunes et al. [54], Campos et al. [55], and Banabilah et al. [38] focus on FL challenges
from the perspectives of IoT devices, IoT, privacy applications, 6G communication,
privacy protection, intelligent healthcare, healthcare applications, intrusion detection
in IoT, and edge computing respectively.

â Reviewing FL challenges and introducing CS as a solution without discussing its
challenges: Lo et al. [18] examined the development and challenges of FL systems
from the software engineering perspective.

â Focusing on the challenges of CS methods: Only two papers focus on CS and its
importance for FL. In [41], only system and statistical homogeneity challenges are
discussed without considering fairness, robustness, and privacy issues. In contrast,
the authors in [6] briefly examines the critical challenges of CS methods extracted from
current research, compares them to find the root causes of the challenges, and guides
future research. However, it is not a comprehensive survey and does not contain data
privacy issues or the design architecture of CS methods.

Consequently, it is important to present a comprehensive and organized review that
covers all of the criteria listed in Table 1. As stated, the literature on CS is relatively
recent and has been advancing rapidly. Also, there is no thorough understanding of
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FL challenges and CS as a solution from the structural design lens to respond to these
challenges. Moreover, the role of CS methods in improving convergence speed, model
performance, decreasing communication costs, and attaining an optimal model has not
been clearly understood. For addressing these research gaps, this review paper supplies
an in-depth understanding of the CS process from the design perspective along with
specifying the importance of CS methods as an effective solution for FL challenges. To
be more specific, it demonstrates the significance of CS on the accuracy of an FL model
through various techniques, including characteristics associated with each technique. This
paper systematically demonstrates how CS can solve FL challenges, how it is evolving,
and its challenges and opportunities. The aim of this is to assist practitioners in selecting
the most appropriate CS method for their applications and to encourage investigators
and researchers to gain a deeper understanding of this exciting research topic. This will
undoubtedly shed light on the existing research gaps and future research directions.

Table 1. Main focuses and features of different surveys that exist in literature. (×: Include criteria.
X: Do not include criteria).

Criteria/
References

[6] [18] [19] [24] [27] [32] [36] [38] [41] [53] [54] [55] This Work

Systematic Literature Review × X × × × X × × × × X × X

Focusing on the CS issue X × × × × × X × × × × × X

Compare the Pros and Cons of
other papers X × × × × X X × × × × × X

Compare methods of CS X × × × × × × × × × × × X

Client heterogeneity issues
discussion X X X X × X X X X X × X X

Data heterogeneity issues
discussion X X X × × X X X X X × × X

Fairness issues discussion X X × × × × × × × × × × X

Dynamicity issues discussion X × × × × × × × × × × × X

Trustworthiness issues discussion X × × X X × × × × × × × X

Data Privacy issues discussion × X X X X X × X X X X X X

CS Categories X × × × × × × × × × × × X

Designing an architecture for CS × X × × × × × × × × × × X

3. Research Methodology

An SLR is a comprehensive scientific method of investigating, determining, and
evaluating research questions. It aims to determine, diagnose, and evaluate research
responses corresponding to the specified RQ containing high-quality findings. Other than
providing a thorough review of relevant studies, an SLR also determines current study
gaps, supplies a basis for additional investigations, and elucidates new phenomena [56].

In this paper, after collating research papers through manual and automated searches
using the SLR research methodology, the latest and most important literature on CS is
categorized and analyzed. Figure 1 summarizes the steps and methodology used in this
study to produce this comprehensive SLR. The following subsections explain these steps in
more detail.
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A. Defining research questions.

As the first step of a research methodology, it is required to define the RQs. In Figure 1,
the RQs of this study are listed.

B. Determine data literacy and keywords.

To answer the research questions, it is essential to choose the best and most helpful
and valid data sources [56,57]. Here, the needed data were gathered from solid and well-
known databases like IEEE, ACM, Springer, and Elsevier. Based on the RQs, a set of search
queries, related abbreviations, and alternative synonyms such as “machine learning”,
“federated learning”, “client selection”, “participant selection”, and “node selection” were
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used for gathering data from those databases. Conducting a keyword search yielded an
initial pool of 130 resources. This study aims to encompass a comprehensive overview
by incorporating scholarly publications from esteemed journals and reputable conference
proceedings, ensuring the inclusion of high-quality academic work.

C. Selecting studies based on inclusion and exclusion criteria.

The inclusion criteria in this paper contain which type of research literature, from pa-
pers to technical reports, can be utilized for extracting data by searching specific terms [56].
For instance:

• The papers explicitly addressed challenges in FL related to CS.
• The papers were published in internationally recognized computer science journals

and conferences. These publishers contribute to computer Science applications, and
algorithms are used to structure the logic of their programs, perform computations,
manipulate data, and control the flow of execution to simplify the CS process.

• The papers were written in English.

Moreover, the studies irrelevant to the scope of this paper were excluded and are
based on the following categories:

• Papers without evaluation results, such as white papers or short papers.
• Papers that provided background information on FL.
• Papers without peer review, such as theses.
• Papers not written in English.

By applying rigorous inclusion and exclusion criteria, the number of resources was
narrowed down to 86.

D. Finalizing the source selection.

First, the primary source selection was performed by reading the title and abstract of
the papers. Then, the final selection from the shortlisted papers is made based on details of
their content and contributions. A meticulous examination of the title and abstract of the
remaining papers in accordance with the selection criteria resulted in a total of 80 papers.
Finally, after an in-depth evaluation of the papers in the initially selected list, 69 papers
emerged as the final selection that met all of the selection criteria.

E. Data extraction from the selected sources

In this step, the critical information of each paper was extracted and gathered, which
contains their references, publication date, title, authors, datasets, applications, questions
and sub-questions, criteria, merits, and demerits.

F. Using study quality factor assessment.

To assess the selected papers, three main quality factors were used, which are listed in
Figure 1. This assessment guarantees that the steps taken up to now, i.e., steps 1–5, have
been carried out correctly.

G. Analyzing the extracted data.

Table 2 categorizes the selected papers based on the RQs defined in this paper. In this
table, it is clear where each paper falls within the RQs. As can clearly be seen, this review is
a novel attempt to contribute significantly to the understanding of CS. Clearly, this survey
outweighs the previously published studies in terms of scope, depth, and coverage, since it
aims to answer all of the defined RQs at the same time.
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Table 2. A summary of the existing studies based on the defined RQs.

Research Question Refs. No Research Type

RQ1.1

[38,41,55] Review

[18,54,57] SLR

[8,28,33,34,39,58–60] Experimental research

[6] Survey

RQ1.2

[18,61] SLR

[5,8,37,50,51,57,58,62–83] Experimental research

[36] Survey

[19,41] Review

RQ2.1

[6,41,55] Review

[1,2,4,5,7,8,10,13,26,28,31,33–35,40,42,49,52,60,62,84–93] Experimental research

[6,36] Survey

RQ2.2

[18] SLR

[1,2,5,8,13,28,33–35,40,49,62,84] Experimental research

[38] Review

4. Discussing CS’s Impact on FL Challenges and Its Challenges
4.1. FL Structure and Its Challenges

In this part, the overall structure of FL along with the main challenges of FL are presented.
As mentioned in Section 2, FL was developed due to the challenges of ML, including

the lack of privacy in transferring data, its massive scale and heterogeneity, and non-
uniform data distribution. The general flowchart of FL is shown in Figures 2 and 3.
The server (Figure 2) and the client (Figure 3) are two significant parts of FL. These two
significant parts are explained in the following.
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Figure 3. Client training includes data collection, pre-processing data, encryption/decryption com-
pression, model training, model evaluation, model deployment, and audit training process.

• Central Server. The server is one of the key parts of FL. The server initializes the
process by completing a foremost global model using a sample dataset generated
by itself or by collecting data from clients [62]. In some FL systems like in [75],
clients start the global model. Then, an encrypted and compressed global model
is broadcasted to clients based on an examination of the available clients [50,51,63]
or based on the participating clients’ performance in the last step [64]. After that, a
trained local model can be collected from all clients or only the participating clients
accordingly. The communication coordinator is an administrator that provides a
channel between the server and multiple clients for communication [37]. It is also
possible to collect local models either synchronously or asynchronously [57,66]. In
contrast to synchronous, an asynchronous scheme means that clients do not need
to wait for each other to synchronize. When the server receives all or part of the
updates, it performs model aggregation. After that, clients are notified of the updated
global model. In the end, the evaluation part assesses the system performance of
the process. This process continues until convergence is reached. In addition to
orchestrating the exchange of model parameters, FL also has other parts, especially a
resource manager and a CS process [18]. The resource manager is to make the best
use of resources. It is the administration system for the optimization of resource
consumption and control of the allocated resources of clients. The result of this is
reflected in the CS mechanism for selecting suitable clients to conduct model training
and reaching desirable system performance [68]. In addition, clients may be motivated
to participate through incentive mechanisms [71–73].
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• Clients. As another important part of FL, clients train local models at each iteration
using their local data. To begin (see Figure 3), each client gathers and pre-processes
its data through various steps, including cleaning, labeling, data augmentation, data
transformation, feature extraction, data reduction, anomaly detection, feature fusion,
and selection optimization [20]. Then, each client receives the global model and
initiates the operations of decryption, decompression, and parameter extraction from
the global model. This step is followed by performing local model training by clients.
After being trained for multiple rounds [77], the model is evaluated by the client and
audited as being complete. Model evaluation is to ensure that the model has reached
the expected level of performance. This step is followed by model deployment and
model inference. After this step, the model is compressed to acquire a sufficient level
of performance and to decrease communication costs [63,72,74]. Encryption is applied
to the local model before it is uploaded to secure the process and the data. Then, the
local models are sent to the server to aggregate the results [78].

It is clear that FL has a comprehensive and coherent structure. Other than its advan-
tages, FL also suffers from severe problems, which are briefly explained as follows:

4.1.1. Expensive and Inefficient Communication

Communication is a fundamental problem in federated networks. Due to communica-
tion costs and privacy concerns in federated networks, data generated by each client node
must remain local [6]. Instead of forwarding the complete dataset through the federated
network for model fitting, clients transfer information or model updates repeatedly to the
server during training. This means that several rounds of training are needed before the sys-
tem converges to achieve the required level of accuracy. Hence, the federated network may
be overloaded because of numerous clients sending their updates to the server. Moreover,
network communication speed cannot be guaranteed because a federated network may
contain many smartphone clients, which have limited communication bandwidth, energy,
and power, and there are different transmission standards such as 3G, 4G, 5G, and Wi-Fi.
As a primary solution, expensive communication can be employed to avoid overload and
achieve high data transfer speed simultaneously. However, this is not desirable. As an alter-
native, a desirable solution is for a more efficient communication method to be developed
and used. Hence, the design of a method with high communication efficiency is essential
for practical FL [38]. So far, some suggestions to achieve this aim have been presented, in-
cluding local updating techniques, compaction strategies, and decentralized training [6,28].
However, these solutions still have efficiency problems in terms of communication, and
there is large room for further research.

4.1.2. Statistical Heterogeneity

Statistical heterogeneity is the second challenge in FL. It refers to the distribution
of data volume and class distribution variance among clients. It contains two factors:
data quality and non-IID heterogeneity [18]. Variations in data quality can arise from
diverse data samples used during training for each client in each iteration round [8,41].
Furthermore, each client owns a small portion of data, which it independently uses for
training [58], so differences in unbalanced data classes (model parameters) result in fluc-
tuated distribution reflecting non-uniform distribution [25] and local data overfitting,
which are two issues that lead to non-IID. Model training latency and accuracy can be
affected by these factors [6,34]. As a result, it is important when each client trains on
local data independently to create a local model, and these models must be very flexible
to reduce the statistical heterogeneity risk. Some methods have been suggested to con-
trol this, such as data modeling for heterogeneous datasets and a converged dataset for
non-IID [53]. However, it is possible to design better solutions to balance accuracy and data
heterogeneity efficiently.
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4.1.3. Client Heterogeneity

Differences in the client resources, such as computation, storage capabilities, and
battery level, mean heterogeneity of clients, which is the third challenge in FL. These
differences are due to various reasons. First, there may be differences in hardware, which
affects the capacity of CPUs and memory that run AI models. Training models may take a
long time since AI instances cannot fit into the memory of AI accelerators, or it is possible
that AI model operators are not supported on devices [24,55]. Battery power can be the
second cause of differences among clients. The battery power level of clients depletes when
running applications and taking part in the training process [59,60].

Due to the above-mentioned causes and network status [19], only a fraction of clients
can be active simultaneously. Ignoring client resource capabilities affects dropouts of
the model during the training process, leading to training deficiency, which impacts the
accuracy of the model. So, FL should cater to the following considerations to reduce the
risk of client heterogeneity:

• Expect an inferior portion of the participation.
• There is a need to consider this attribute specifically.
• Tolerate faults in heterogeneous hardware. It is a vital attribute of classical distributed

systems to support fault tolerance, including Byzantine formalism failures [88]. Since
some remote clients may drop out before completing training, fault tolerance becomes
even more critical. For instance, suppose the failed clients have specific data properties.
Ignoring such client failures, like in FedAvg [18], may lead to bias. FedAvg is difficult to
analyze theoretically in such realistic scenarios and thus lacks convergence guarantees
to characterize its behavior.

• Be sufficiently solid to drop clients in the transmission. As there is a risk of dropping
clients during FL due to computational capability or poor network connection, the FL
process should be solid enough even when encountering this issue [59].

• Asynchronous communication. Due to client variability, they are also more exposed to
stragglers [57]. Stragglers mean that some clients with low-level resources are unable
to complete their training within the deadline. The use of this scheme, particularly
in shared memory systems, is an attractive technique to mitigate stragglers [19,59],
although they generally use boundary-delay assumptions to deal with staleness.
Li et al. [39] also proposed a FedProx optimization method in FL to cope with hetero-
geneity, but it lacks formalization. Although asynchronous FL has been demonstrated
to be more practical even with its restrictions [59], new solutions to ensure more
expected performance are under-explored.

• Active device sampling. Each round of training in federated networks typically
involves just a small number of clients. Nevertheless, most of these clients are passive
in that round and each round does not aim to control which clients participate.

As a result, as was explained, some techniques have been examined in recent studies.
However, providing the mentioned attributes in a complete solution is of high importance.

4.1.4. Data Privacy

An FL training process should keep user details private since FL aims to solve data
privacy issues in ML [19,55]. As previously stated, FL is a step toward preserving the
privacy of data generated on clients while transferring model changes instead of the
raw data. Nevertheless, this communication may still disclose data and bring privacy
risks. There are two privacy strategies in the FL structure, global privacy and local
privacy [18,19]. Current strategies improve FL privacy by utilizing secure multiparty
computation clients or differential privacy that preserve privacy at the client level rather
than after data aggregation. These techniques mainly decrease the performance of the
model or the efficiency of the design. In FL, the server may fail to aggregate the global
model when clients upload untrustworthy and unreliable data. It is, therefore, cru-
cial to find trustworthy and reliable clients in this scheme. A reputation measure was
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proposed in [28] to identify highly reliable clients and calculate their trustworthiness rating
during the model update process.

In summary, this section corresponds to RQ1.1 and explains the significant challenges
of FL in research. Theoretically and empirically, understanding and addressing these
challenges are significant difficulties in FL approaches.

4.2. CS in FL

As seen in Figure 2, the server initiates model training and orchestrates training
rounds while clients carry out local model training. By choosing an appropriate CS method,
suitable clients can be selected for evaluating the model and system performance [68].
Furthermore, Figure 4 shows the detailed CS process in a simple and categorized way. This
provides a better and more general understanding of the CS process and its different parts
and steps. The server sends a ticket to the clients for detecting and monitoring clients. The
online clients who want to take part in the model training process respond to the server’s
request. Then, the server computes the available resources and uses a specific strategy to
choose participating clients. Resource allocation to the selected clients is conducted for
the training process. After that, tasks are assigned to participants in two ways. First, use
a hybrid algorithm and scheduling to repeat the chosen CS method until convergence is
achieved. Second, the process is repeated for each iteration round. Scheduling the task can
improve the system’s efficiency [26,85]. However, the implementation of this strategy is
sometimes impossible, especially in a volatile environment. According to the explanations
in this part, the mentioned challenges in the FL are in need of a solid solution. Focusing on
the CS process can be a suitable approach to address the mentioned challenges in FL. As it
is evident, RQ1.2 was addressed in this section.
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5. Pros and Cons of Different CS Methods
5.1. CS Methods

The main aim of this part is to describe different CS methods.
(1) Client selection methods based on the probability of selection: four CS methods

based on the probability of selection at each round are presented as follows.
Random selection
There are several CS methods in FL, but randomly selecting clients is the conventional

approach [86–88]. Based on the FedAvg method [18], all clients will have the same prob-
ability of being selected for model training. In this method, aggregation is inefficient as
this method ignores value differences among clients. In this method, each client trains its
local model using its own data and then sends the updated model to the central server for
aggregation. During aggregation, the central server simply averages the model updates
from all clients and uses this average to update the global model. The inefficiency arises
because FedAvg treats all client updates equally, regardless of the amount or quality of
data each client has. Some clients might have more diverse or informative data, while
others might have noisy or less relevant data. By blindly averaging all updates, valuable
information from high-quality clients may be diluted or lost in the process. Additionally,
this method does not consider the data heterogeneity of clients. The weak point of this
method in a distributed computing environment is its high communication costs because
the central server receives updates from distributed clients on a fixed bandwidth [5]. It is
possible to save transportation costs by randomly selecting a part of the updated model
parameters for transportation by random masking [33]. However, it has restrictions, which
we will discuss in more detail in the evaluation section.

Greedy selection
This method chooses clients with high-level quality grades and low expenses. It

utilizes a heuristic method to characterize the quality rate of each client [33,85]. Each client
employs a tiny subset of local data to train the global model and evaluate the FL platform
model. Recently, this method has been widely used to evaluate the quality of budgeted
incentive mechanisms in selecting the most influential clients for incentives [62]. In other
words, this method selects the set of clients with the most considerable collaborative
feedback. The FedCS algorithm proposed by Nisho [8] is mainly based on the greedy
method. This algorithm is a typical example that is adjusted by picking the clients with
the most significant average contribution instead of selecting the clients that complete the
training in less time. This approach of CS prefers clients with high-level efficiency during
each iteration training round. Then, it can effectively enhance the aggregation efficiency
of FL models by completing the training model quickly and before the deadline. In this
method, data collection is performed in FL regardless of existing clients in a federated
network. As the amount of data varies significantly in different clients in FL, the data are
non-IID in real-world datasets. Similar to the random method, the quality of client data is
neglected [8,18]. Accordingly, they cannot reduce the number of clients selected with low-
quality data, resulting in low-level accuracy for the global model and gradual convergence.
Choosing superior clients accelerates global model convergence and improves global
model accuracy along with keeping bandwidth boundaries. This is the primary objective
of FL CS.

Clustering selection
In this method, clients that train the model are clustered according to their attribute

similarities, including their resources, allocated data, characteristics, location, segment
similarities, and gradient loss, to enhance the overall model efficiency and boost model
training performance. In other words, k-center grouping is performed on the set of clients
before training, and then the closest clients to the center client of each cluster are assigned
to the cluster and the model training is conducted based on the clusters [13,89,90].

Multi-Armed Bandit (MAB)
MAB is mainly used to get the root of repeated discovery situations in which a player

(in the FL scenario, typically represented as the server) encounters a situation where it must
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choose from multiple arms (corresponding to the clients). The player honors the related
reward (refer to model performance in FL) when an action is taken (choosing specific
clients to participate in model training at each iteration round). Boosting the total prize and
making sequential decisions simultaneously is the MAB’s primary goal. Players should
examine the surroundings to gain more knowledge on each training round, recognize
activities that boost the chance of achieving higher rewards, or exploit existing knowledge
to execute the actions that reasonably worked in the past. This method has been used to
design client scheduling [1,7,59] or in the CS process [91–93]. Three main categories arise
from the proposed procedures to decrease the training latency in FL:

1. Update compression (quantizing gradient is a solution for efficient communication).
2. Over-the-air analysis [63].
3. Reducing transmission (periodic updates of model parameters to lessen the transmis-

sion expenses) [34,59].

To summarize, CS method categories are described in this section in response to RQ2.1.
These methods have some merits and demerits that we will discuss in the evaluation section.

5.2. CS Side Effects

This section describes the side effects of CS methods. Clearly, the implementation of CS
methods improves the overall performance of FL in terms of client heterogeneity, statistical
heterogeneity, and data quality. However, it is noteworthy that employing these methods
may cause or intensify some side effects in FL. A brief explanation of these problems is
as follows.

• Fairness: Fairness means that every client has an equal chance to be selected for
training. When fairness is ignored, the server may prioritize the client with a different
dataset size but in a shorter response time. This may significantly affect the training
performance. So, clients with insufficient abilities have a lower chance of being selected
to participate in the training process, which may lead to bias and low-level model
accuracy [1,41]. Fairness boosts the accuracy and speed of convergence of models by
enabling clients with various datasets to participate in the FL [34,35,59]. Consequently,
all end devices should be involved in the FL process to decrease model bias.

• Trustworthiness: Because the FL server is unaware of the local training procedure,
malicious clients can launch attacks and manipulate the training outputs. A primary
priority should be recognizing and removing malicious clients from the procedure [6].

• Dynamic environment: This means that because of the existence of deficiencies,
including high mobility, poor network conditions, and energy constraints, some
clients might not be available to take part in model training [35,49,59]. Moreover,
channel fading in wireless networks may result in losing some local model updates.
Therefore, a dynamic condition with high-mobility devices and volatility including
client population, client data, training status, and biased data [84] significantly impacts
the performance of the CS process and FL.

This section clarifies the most significant side effects in CS such as client heterogeneity,
statistical heterogeneity, data quality, fairness, trustworthiness, and dynamic environment
(addresses RQ.2.2).

In Table 3, all of the findings and results of CS categories, along with each side effect,
main characteristics, application, strategy of each source, and evaluation metrics of each
work, are presented. It should be noted that the evaluation metrics are discussed in more
detail in Appendix A.
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Table 3. CS Categories based on the probability of selection.

CS Methods CS Challenges Ref. No. Main Characteristics Applications Strategy Evaluation Metrics

Clustering

statistical
heterogeneity

[28]

Non-IID data

Mobile/the IoT devices CFL Accuracy, F1 score, Micro-Acc,
Micro-F1 Macro-Acc, Macro-F1

[89] Mobile phones/IoTs Federated SEM Ac, Convergence speed,
Communication round

[90] Wireless edge Federated MF Accuracy, Convergence speed,
Communication round

[31] Recommender systems Iterative FCA Accuracy

[13] Industrial IoT Gradient-based
Binary P-CS Accuracy, Convergence speed

[10] Unbalanced Data Recommendation systems 3-step modular
solution Iteration count

Client
Heterogeneity

[49] Statistical heterogeneity
communication cost Mobile Phones One-Shot FC, k-FED Accuracy, Convergence speed

[4] Computation and
communication cost issues Mobile and IoT devices FL with HC Accuracy, Convergence speed,

training round
[2] IoT systems- wireless devices THF Accuracy, Convergence speed

Greedy
Selection

Client
Heterogeneity

[40] Bandwidth allocation issues Mobile devices Wireless FL network (WFLN) Accuracy, Convergence speed
[33] Communication cost issues Wireless communication dynamic sampling Accuracy
[8] Computational resources MEC Fed CS Accuracy

[85]
Convergence time

communication computation
constraint

IoT devices Online Hybrid FL Accuracy

Random
Selection

statistical
heterogeneity

[86] Bandwidth allocation Wireless FL system Accuracy, Latency

[42] Energy consumption, delay,
computation cost issues Edge networks A data-centric CS, DICE Accuracy, Training round, Training

time

Client
Heterogeneity

[26] Energy consumption, latency
issues IoT ELASTIC Number of selected clients and

energy consumption

[5] Bandwidth allocation issues IoT networks FL in fog-aided
IoT ALTD Accuracy, Convergence speed

[87] Resource allocation-
Convergence issues MUEs

Scheduling and resource
allocation Accuracy, Convergence speed

[88] Model training efficiency,
resource constraints Stochastic integer CS Accuracy
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Table 3. Cont.

CS Methods CS Challenges Ref. No. Main Characteristics Applications Strategy Evaluation Metrics

Multi-armed
bandit-
based

Selection

Client
Heterogeneity

[93] Training latency, dynamic
wireless environment Wireless networks

A CS based on UCB and queue Accuracy, Convergence speed

[7] Training latency Online scheduling scheme Accuracy, Training latency

[84] Convergence issues and
Volatility IoT devices CE Participation

Data Accuracy, Convergence speed

statistical
heterogeneity

[52] Data Quality (Mislabeled and
non-IID) Wireless networks AUCTION Accuracy, Scalability

[91] Training performance
communication time Mobile devices Context-aware

Online CS Accuracy, Convergence speed

Fairness

[35] Training efficiency IoT (Exp3)-based CS Accuracy, the communication
rounds[34]

Convergence speed-the training
latency

IoT

CEB3
[1] Fairness-guaranteed, RBCS-F Accuracy, Training time

[62] UCB-GS Communication and computational
cost, Execution time

[92] FLACOS Accuracy, Convergence speed,
Training time
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5.3. Overall Evaluation of Different CS Methods

• Clustering methods

In typical dynamic FL training and clustering methods, FL clients display system and
statistical heterogeneity. The main issue in data heterogeneity in clustering is non-IID data
issues [10,13,28]. The clustering method can be based on training data [31,89,90] or based
on the location of clients and the required skills and efficient collaboration among each
other [2,13]. Some work performed clustering if necessary [28] and handled varying client
populations. This provides distribution imbalance while its extent in conjunction with
privacy strategies and compaction mechanisms is unclear. One work used the successive
non-convex penalty (SNCP) approach as a performance evaluator, which can reduce com-
munication costs [90]. However, it cannot handle outlier and noisy data. Some works [28,90]
use multi-task learning in times when the clustering structure is ambiguous [31], but it
goes with high communication and computation overheads. This challenge has been
resolved in [10], and the mentioned method is only suitable for use in the risk functions
context and evaluates the similarity of the loss value as a technique of secure data similarity
evaluation. The authors in [13] address the divergence issues in class distributions by using
a gradient-based binary permutation algorithm (GBP- CS) and tackle the issue of robust FL
in a heterogeneous setting by having a functional convergence rate compared to FedAvg.
Such methods are time-efficient models along with high-level efficiency.

• Greedy methods

In greedy or dynamic methods, resource constraint issues [87,88] contain bandwidth
allocation issues [5,40], communication cost issues [33,85], limited computational resources
issues [8,42,85], and the energy consumption of selected clients [26,42], which can lead to
low accuracy and high convergence time and latency. The authors in [40] proposed a novel
perspective to resource allocation in WFLNs, realizing that learning rounds are temporally
interdependent and have varying significance toward the final learning outcome. It is
adaptive to varying network conditions, and it can enhance the training loss and model
accuracy and reduce energy consumption. However, in this method, participation rounds
of clients are limited because of the limited battery energy of clients. Clients in a wireless
network are limited by finite wireless bandwidth in each iteration, with an adaptive choice
to unstable phases of wireless channels. Although they reasoned that always picking the
highest number of clients is not necessary, some other work [8,40] considers maximizing
the number of the selected clients in each round to upload their local models before the
deadline. In another paper, the authors offered a novel strategy [26] to choose fewer clients
in earlier global iterations and more clients in later global iterations in the same period of
training time. This can increase model accuracy and reduce training loss when compared
to choosing more clients at first. Because it overlooks the local data quality of clients and
cannot decrease the number of client selections with low-quality data, the global model
needs to be more accurate, and convergence needs to be faster. Neither CS nor resource
management solutions were discussed in terms of how they affect the convergence and
accuracy of global models. Likewise, [87] ignores client data quality, so it is unable to
decline client selections with low-level data quality and does not consider the clients’
waiting time leading to clients’ latency. However, it considers client channel conditions
and the importance of their local model updates. The authors studied diverse scheduling
models to select an appropriate participant client in the learning process at each round.
In contrast, the authors in [42] prefer to choose high-data quality clients, ensuring system
efficiency and prioritizing the clients who have suitable data rates rather than those with
poor calculation and transmission capacities. So, it optimizes on-device data quality across
clients while reducing delay, energy consumption, and packet size. Moreover, it provides a
higher level of accuracy while improving convergence speed. Extremely dynamic scenarios
were ignored in [8], where the average amount of resources and the required time for
updating and uploading fluctuate dynamically. It assumes the scheduler has a pre-known
local training time, which may only be realistic in some cases. It ignores client waiting time
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and undervalues the client’s latency in a global iteration. Moreover, transmission resource
management and client data quality were neglected, and it could not decline the number of
choices for clients with poor-quality data, leading to low global model accuracy and slow
convergence. It only evaluates communication time, which accounts for a considerable
amount of time for a training round.

• Random methods

In random selection, which is the conventional and basic form of CS, resource con-
straint issues [87,88] contain bandwidth allocation issues [5], limited computational re-
sources issues [42], and the energy consumption of selected clients [26,42], which can lead
to low accuracy and high convergence time and latency. In [26], the authors offered a novel
strategy to choose fewer clients in earlier global iterations and more clients in later global
iterations in the same period of training. This can increase model accuracy and reduce
training loss when compared to choosing more clients at first. Because it overlooks the
local data quality of clients and cannot decrease the number of selections for clients with
low-quality data, the global model needs to be more accurate, and convergence needs to be
faster. Neither CS nor resource management solutions were discussed in terms of how they
affect the convergence and accuracy of global models. Likewise, [87] ignores the client data
quality, so it is unable to decline the clients selected with low-level data quality and does
not consider the client waiting time, leading to client latency. However, it considers client
channel conditions and the importance of their local model updates. The authors studied
diverse scheduling models to select an appropriate participant client in the learning process
at each round. In contrast, the authors in [42] prefer to choose high-data quality clients,
ensuring system efficiency and prioritizing the clients who have suitable data rates rather
than those with poor calculation of transmission capacities. So, it optimizes on-device data
quality across clients while reducing delay, energy consumption, and packet size. Moreover,
it provides a higher level of accuracy while improving convergence speed.

• MAB methods

Multi-armed bandit-based method side effects are divided into four groups: dynamic
wireless environment [93], client heterogeneity [7], data quality [52,91], and fairness [35,62,92].
In each sub-group, their main characteristic is the training latency [91–93]. To illustrate,
authors in [93] proposed a CS algorithm based on the UCB policy and virtual queue tech-
nique (CS-UCB-Q). The method considers the availability of clients during FL training in
the study because of the deep fade concern in wireless channels in both ideal and non-ideal
strategies and unbalanced data in a volatile environment. However, the mentioned method
and [1,7], cannot run asynchronously. In contrast, [91,92] can run asynchronously and
provides a trade-off between training efficiency and fairness. A CS framework (AUCTION)
as a model to obtain a root of fairness is suggested by [38], which employs a heuristic
method to characterize the quality of each client and analyze the data quality challenges
of each client in terms of the mislabeled and non-IID data. It is robust, adjustable, and
scalable in diverse learning tasks and makes CS easy and flexible by automatically knowing
procedures for variable client scales. Moreover, the research [38] develops a procedure
network based on the encoder–decoder structure, which can be adjusted to dynamic modifi-
cation clients and make sequential CS decisions to decrease RL searching space significantly.
However, it did not consider the transmission expense of clients and computing latency to
expand its CS functionality further. In another paper [35], a deadline-based aggregation
model was offered to handle FL aggregation in a changing training environment, reaching
faster convergence to fixed model accuracy. However, low-priority clients were denied
training. Therefore, inequality selection does not guarantee data diversity on the global
model aggregation. It ignores the local data quality of the clients, and it cannot decline the
selections count for clients with low-quality data, resulting in low-level global model per-
formance and slow convergence. The first research in mixing Lyapunov optimization and
the C2MAB long-term constrained online scheduling issue is [1], which is a fairness-based
CS while ensuring training efficiency and minimizing the average model exchange time
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when it is subject to a relatively flexible long-term fairness guarantee. It can handle unfair
CS and large bias in data distribution, but it is unable to follow the theoretical analysis
of the fairness for FL from the literature. It ignores the data quality factors, including
mislabeling or non-IID, and it cannot find a way to trade-off between fairness and accuracy.
It blindly considers fairness restrictions for each client while ignoring their contributions.
Fairness quota metrics can severely impact training efficiency and should be assigned
before training. Furthermore, it cannot run asynchronously. The authors of [62] introduce
cumulative effective participation data (CEPD) as an optimization objective of volatile CS.
They designed and implemented a CMAB model for learning efficient client participation
and derived a finite constant upper bound on T-step regret based on UCBGS; however, they
did not analyze the effect of policy fairness on training, nor the trade-off between fairness
and overall training performance in a volatile FL. They also avoided focusing on selection
adaptation when new clients are added. Overall, our findings indicate that MAB aims
to minimize training latency. Considering an ideal and a non-ideal situation, it contains
both local computation and data transmission times. The ideal scenario involves clients
possessing IID datasets and always being available, whereas the non-ideal scenario involves
clients being unavailable and the datasets being distributed non-IID. The primary purpose
of the dynamic client sampling method is to improve the convergence rate. A non-convex
training time minimization problem is developed by dynamic client sampling that gives an
upper bound on convergence for arbitrary CS possibilities. Adopting such strategies can
achieve the same target loss faster than the baseline. Using clustered sampling, different
clients can be selected with different data allocations. An unbiased clustered sampling
strategy for CS is offered that declines the weight variance of clients for the aggregating
and provides unique client distribution. According to the authors, clustered sampling
techniques were utilized for sample size and client similarity, so there is faster and better
homogeneity with clustered sampling, especially for non-IID data.

Table 4 summarizes the advantages and disadvantages of the mentioned methods that
were extracted through RQ2.

Table 4. The advantages and disadvantages of each CS method.

CS Strategies Advantages Disadvantages

Random
• Clients’ similar selection chance.
• Controllable sampling data.

• Neglecting the client data quality.
• Latency.
• Unable to reduce the number of clients selected with

low-quality data.
• Increased energy consumption.
• Inefficient aggregation model.

Greedy

• Improved data quality.
• Each client’s effective participation is known in

advance.
• Optimal time running.

• Underestimated client latency
• The risk of finding the optimal clients.
• Difficulties in obtaining accurate resource information for

all clients before the FL process.

Clustering

• Reduced variance of the local and global models.
• Reduced communication costs and

communication rounds.
• Reduced network congestion.
• Reduced device failure.

• Hard to tune clusters.
• Difficulties in obtaining accurate resource information for

all clients before the FL process.
• Difficulties in the scalability of the infrastructure.
• Extra overheads.

MAB

• Able to find clients with rich resources.
• Fairness in selecting clients.
• Alleviates bandwidth, time, and

computation limitations.
• Remembers models and stops repeated models.
• Increased the convergence speed.
• Uncertainties for decision making.
• Balanced CS.

• Computational complexity.
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6. Limitations and Research Possibilities

To highlight motivations for future work, we first identify the limitations of current
work and then discuss the critical potential points that should be considered for future
work. This field of research is in its early stages, and there is limited research in literature.
Hence, this work has the limitation of the number of reviewed publications. However, it
should be considered that this is the first step to creating a comprehensive overview of
this field. There are numerous unresolved concerns and issues surrounding CS in both the
cross-silo and cross-device settings. This field of study presents numerous examination
possibilities that need more in-depth analysis. In addition to developing high-performance
CS algorithms for diverse application systems, existing work supposes the following issues
as future open directions:

1. Privacy and Communication: In the FL process, the communication between clients
and parameter servers usually occurs over an impaired wireless channel, which
introduces some research queries about privacy issues and how the updates can be
transferred to a secure channel.

2. Trade-off between metric factors: A considerable number of factors to improve
model performance were used. However, different factors are not comparable. So, a
need exists to balance factors for performance evaluation among various techniques
for the same problem. For instance, selecting more clients in each training round boosts
model performance and training efficiency but does not guarantee time efficiency,
especially in a volatile environment. In the research that was reviewed in the paper,
the rate of volatility in that space was unclear. This issue can be a potential research
gap for future researchers.

3. Asynchronous communication schemes: Regarding analysis approaches, asynch-
ronous communication schemes for local data updates remain an open issue demand-
ing additional examination.

4. Communication resource handling: There is space to explore appropriate commu-
nication resource methods for allocating resources (same or different bandwidth,
energy, and computational capacity) based on the network topology. This strategy
can remarkably affect learning performance. This issue becomes essential when many
client devices join the FL process. Remarkably, the training rate can be greatly reduced
due to different client heterogeneity of computational capacities and data qualities. A
favorable answer would be developing additional parts to encourage clients to use
high-quality training data.

5. Channel characteristics: Analyzing the network requirements impacts the accuracy of
federated model training. It is a future examination direction, particularly in wireless
communication, when noise, path loss, shadowing, and fading impairments exist.

6. Available datasets for clients: The availability of client datasets is needed to obtain
suitable training performance. Clients needed to use feature extraction for their local
training. In this regard, one of the critical problems is the non-IID matter, potentially
causing the local training to be highly divergent. Therefore, some solutions to cope
with this matter need to be developed.

7. Conclusions

This paper provides a comprehensive SLR of FL in IoT devices and CS methods
and their challenges. FL faces severe challenges, including expensive and inefficient
communication, statistical heterogeneity, poor data quality, privacy concerns, and client
heterogeneity. Based on the reviewed literature, CS is a suitable solution to these challenges.
To better understand the importance of CS in FL, a categorization of CS methods, including
clustering, random selection, greedy selection, and multi-armed bandit was presented.
However, these methods contain some side effects, such as fairness, dynamic environment,
and trustworthiness issues. Hence, finding a suitable CS method is still an open problem,
and further exploration is needed. As a result, based on this work, it is possible to classify
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existing CS methods, understand their current status, and plan and move to develop more
desirable and efficient approaches.
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Appendix A

The assessment of FL can be categorized into two distinct dimensions: model perfor-
mance and system performance. The evaluation of model performance entails quantifi-
cation through metrics convergence and accuracy. Accuracy is also allied with measures
such as Recall, Precision, F1-Score, Micro-Acc, Micro-F1, Macro-Acc, and Macro-F1. These
metrics serve as valuable methodologies to gauge the effectiveness of individual clients’
contributions to the overall FL system.

The evaluation of model convergence is achievable through multiple facets, encom-
passing criteria such as training loss, the count of communication rounds, the number of
local training epochs, and the establishment of formal convergence boundaries. Conversely,
the assessment of system performance metrics directs its attention to parameters such as
communication efficiency, computational efficiency, system heterogeneity, system scalabil-
ity, and the capability to withstand faults [93,94]. These metrics are elucidated in greater
depth in the subsequent paragraph.

â Model performance metrics

• Accuracy

Accuracy pertains to the proportion of correctly classified instances within the test set.
Throughout the annals of machine learning research, accuracy has wielded considerable
influence as a performance metric [28].

Accuracy =
TP + TN

FP + FN + TP + TN
(A1)
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TP signifies the count of instances that have been accurately forecasted as positive by
the model.

TN quantifies the instances that have been correctly predicted as negative.
FP delineates instances that have been erroneously categorized as positive. FN

accounts for instances that have been inaccurately classified as negative by the model.

• Precision

Precision assesses the veracity of positive predictions generated by the model. It
involves the computation of the proportion of true positive predictions relative to the total
instances that have been predicted as positive (sum of true positives and false positives). In
essence, precision provides insight into the fraction of positive predictions that have been
accurately determined. Elevated precision signifies that the model demonstrates a reduced
frequency of false positive predictions [95].

Precision =
TP

FP + TP
(A2)

• Recall

Referred to as sensitivity or true positive rate, this metric gauge the model’s compe-
tence in apprehending all factual positive instances. It quantifies the correlation between
true positive predictions and the entirety of actual positive instances (sum of true positives
and false negatives). In simpler terms, recall provides insight into the percentage of positive
instances that have been accurately anticipated as positive. A heightened recall signifies
that the model adeptly identifies a significant portion of positive instances [95].

Recall =
TP + TN
FP + TP

(A3)

• F1-Score

The F1-score represents the harmonic mean achieved by integrating precision and
recall, amalgamating these two metrics into a solitary value to offer an equilibrium-based
gauge of the model’s performance [28].

F1 − score = 2 ∗ Precision × Recall
Precision + Recall

(A4)

• Micro-Acc

Micro-Acc is an evaluation measure deployed in the context of multi-class classification
endeavors. It serves to compute comprehensive accuracy by aggregating the accurate
predictions across all classes. This approach conceptualizes the problem akin to a binary
classification scenario, where the affirmative class signifies correct predictions, while the
negatory class denotes incorrect ones. This metric accords equal significance to each
individual instance [28].

Micro − Acc =
TP1 + TP2 + . . . TPn

TP1 + TP2 + . . . TPn ++FP1 + FP2 + . . . + FPn
(A5)

TPi denotes the numerical representation of true positive instances exclusively associ-
ated with class I.

FPi signifies the cumulative enumeration of false positive instances linked to class I.
n denotes the entirety of classes that are presently being considered [28].

• Macro-Acc

Macro-Acc constitutes an additional assessment metric that finds application in the
realm of multi-class classification endeavors. In contrast to micro-accuracy, which accords
equal significance to each individual instance, macro-accuracy ascertains the mean accuracy
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for each distinct class. Subsequently, it computes the average of these accuracies pertaining
to individual classes, thereby deriving a holistic evaluation of the model’s performance.

Macro − Acc =
Acc1 + Acc2 + . . . + Accn

n
(A6)

Acci represents the accuracy pertaining to class I.
n signifies the total count of classes encompassed [28].

• Micro-F1

Micro-F1 is determined through an inclusive process encompassing all instances,
along with their respective true positive, false positive, and false negative tallies across
various classes. These data are subsequently employed to compute precision and recall.
The ultimate Micro-F1 score materializes as the harmonic mean of micro-precision and
micro-recall. Micro-F1 effectively addresses the challenge of class imbalance according
to equal weight in all instances. This metric finds pertinence in scenarios wherein an
overarching assessment of model performance across diverse classes is sought, with no
bias towards larger classes.

Micro − F1 =
2 ∗ (Micro − Precision ∗ Micro − Recall)

Micro − Precision + Micro − Recall
(A7)

where
Micro − Precision =

TP_total
TP_total + FP_total

Micro − Recall =
TP_total

TP_total + FN_total

TP_total: The cumulative count of true positives across all classes.
FP_total: The cumulative count of false positives across all classes.
FN_total: The cumulative count of false negatives across all classes [28].

• Macro-F1

Macro-F1 is ascertained through an initial process involving the independent compu-
tation of F1-scores for individual classes, followed by the aggregation of these class-specific
F1-scores to derive an average. Every class’s F1-score carries identical weightage in this
computation, irrespective of the class’s magnitude. This metric equipped an equitable
assessment of the model’s efficacy spanning all classes. It guarantees uniform consider-
ation to each class, an attribute particularly advantageous when evaluating the model’s
adeptness in dealing with smaller classes [28].

Macro − F1 =
(F1_class1 + F1_class2 + . . . + F1_classn)

n
(A8)

where

F1_classi =
2 ∗ (Precision_classi ∗ Recall_classi)
(Precision_classi + Recall_classi)

Precision_classi corresponds to the precision value attributed to class I.
Recall_classi pertains to the recall value pertaining to class I.
n denotes the total count of classes in consideration.

• AUC

One metric to consolidate the ROC curve into a single metric involves the calculation
of AUROC, often denoted as AUC. This metric carries a well-established statistical inter-
pretation, specifically defined as the probability that a randomly chosen instance from a
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particular class demonstrates a lower estimated likelihood of belonging to the opposing
class in comparison to a randomly chosen instance from the opposing class [95].

AUC = ∑∞
i=1

(TPRate[i] + TPRate[i − 1]) ∗ (FPRate[i]− FPRate[i − 1])
2

(A9)

True Positive Rate[i] designates the true positive rate, also known as sensitivity, ob-
served at the i-th threshold.

False Positive Rate[i] signifies the false positive rate, denoted as 1 minus specificity, as
assessed at the i-th threshold.

• Convergence speed

By having a faster convergence speed on clients, local models adapt quickly to their
respective datasets and contribute effectively to global model improvement. During the
assessment of model performance, it encompasses the subsequent metrics:

� Training time/training duration

It denotes the actual time taken by each distinct client to conduct localized training
utilizing its local dataset. In every training round, each client engages in the training of
a model on its local data, thereby strengthening the model underlying parameters. This
metric encompasses the cumulative time needed for executing multiple localized epochs
on the client dataset. This metric serves as an assessment of the computational exertion
entailed in the process of enhancing the model on each client [92].

� Training loss

It signifies the measurement of the discrepancy between the model projected outcomes
and the factual ground truth during the localized training phase executed on each client.
This metric of loss functions as an indicator of the model’s congruence with the intended
target results and assumes a guiding role in the optimization procedure aimed at reducing
the variance between predictions and factual values.

� Training round (number of local training epochs)

Its emphasis lies in the procedure of revising model parameters on a particular dataset
through repeated iterations. This represents a foundational concept within the realm of
machine learning, extending its applicability to both conventional training methodologies
and the domain of federated training.

â System performance metrics

• Convergence speed

The concept of convergence speed observed at the server level indicates the rapidity
with which the amalgamated global model, derived from client updates, progresses toward
optimal performance. This aspect is related to the speed at which the aggregation proce-
dure, completed at the server level, combines the diverse client model updates. A rapid
convergence speed on the server emphasizes the proficient integration of diverse client
contributions. This issue facilitates accelerated attainment of convergence for the global
model. It contains the following metrics:

� Execution Time

Execution time in FL encapsulates the complete duration required for an entire it-
eration round. An iteration round involves multiple phases, including distributing the
global model to the client, conducting local training on each client, aggregating model
updates, and generating a new global model. Execution time takes into account not only
the training time on each client but also the time needed for communication, aggregation,
and synchronization between the central server and clients [62,96].
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� Iteration count

It pertains to the frequency of iterations through which the training process is iter-
atively executed across the clients. FL encompasses the cooperative training of a model
across a multitude of devices while upholding the data’s localization on these devices as
opposed to its centralization. The iteration count in federated learning encompasses the en-
tire cycle of communication, local training, and model aggregation across all client devices.
It refers to the number of times this complete cycle is repeated. Each iteration consists
of distributing the global model to clients, clients performing local training, aggregating
model updates, and generating a new global model. The iteration count represents the
number of times this process is repeated until convergence [10].

• Communication efficiency

Assessing communication efficiency involves scrutinizing metrics such as the count
of communication rounds, the tally of parameters, and the sizes of transmitted messages.
Communication rounds facilitate data exchange between clients and servers in a training
network. This measure provides a quantitative assessment of models trained with data
from different clients [35].

• Computational efficiency

The evaluation of computational efficiency encompasses the examination of metrics
including the duration of training. This assessment pertains to the computational resources
essential for model training, encompassing aspects such as CPU and GPU utilization,
memory consumption, and other hardware-related considerations to handle latency arising
from non-IID data [62].

• System scalability

Indicates the capacity of a model to effectively manage growing quantities of data,
workload, or users while maintaining its performance at a satisfactory level. The assessment
of system scalability involves the analysis of its efficacy across an extensive array of clients,
encompassing criteria such as performance outcomes, overall time taken, and aggregate
memory usage [52].
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