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Abstract: Marginal spectrum (MS) feature information of humpback whale vocalization (HWV)
signals is an interesting and significant research topic. Empirical mode decomposition (EMD) is a
powerful time–frequency analysis tool for marine mammal vocalizations. In this paper, new MS
feature innovation information of HWV signals was extracted using the EMD analysis method.
Thirty-six HWV samples with a time duration of 17.2 ms were classified into Classes I, II, and III,
which consisted of 15, 5, and 16 samples, respectively. The following ratios were evaluated: the
average energy ratios of the 1 first intrinsic mode function (IMF1) and residual function (RF) to the
referred total energy for the Class I samples; the average energy ratios of the IMF1, 2nd IMF (IMF2),
and RF to the referred total energy for the Class II samples; the average energy ratios of the IMF1,
6th IMF (IMF6), and RF to the referred total energy for the Class III samples. These average energy
ratios were all more than 10%. The average energy ratios of IMF1 to the referred total energy were
9.825%, 13.790%, 4.938%, 3.977%, and 3.32% in the 2980–3725, 3725–4470, 4470–5215, 10,430–11,175,
and 11,175–11,920 Hz bands, respectively, in the Class I samples; 14.675% and 4.910% in the 745–1490
and 1490–2235 Hz bands, respectively, in the Class II samples; 12.0640%, 6.8850%, and 4.1040% in
the 2980–3725, 3725–4470, and 11,175–11,920 Hz bands, respectively, in the Class III samples. The
results of this study provide a better understanding, high resolution, and new innovative views on
the information obtained from the MS features of the HWV signals.

Keywords: humpback whale vocalization; intrinsic mode function; marginal spectrum;
feature information

1. Introduction
1.1. The Related References

Hilbert–Huang transformation (HHT) time–frequency (TF) analysis is an interesting
research topic. It is an empirical method that can be used to analyze non-stationary
and non-linear signals [1,2]. Moreover, it is an adaptive signal-analysis scheme, which
implies that the definition of the basis is signal-dependent. Further, the HHT-TF analysis
scheme has revealed physical concepts in several instances of signal analyses. The aim of
signal TF analysis is to extract information from the signal to demonstrate the underlying
mechanisms, structures, and actual behaviors of various physical phenomena [3]. The non-
stationary and non-linear characteristics of a signal with short durations can be extracted
using the HHT technique. The original motivation for HHT technique development was to
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determine a technique that could provide insight into hydrospheric conditions by observing
ocean topography. HHT was proposed as the solution for the non-linear class of spectrum
analysis problems [4]. Empirical mode decomposition (EMD) followed by the Hilbert
transform (HT) of the empirical decomposition data can be used for the analysis of non-
linear and non-stationary data using engineering a posteriori data processing based on the
EMD algorithm. This results in a non-constrained decomposition of a source real value data
vector into a finite set of intrinsic mode functions (IMFs) and one residual function (RF)
that can be further analyzed for the TF signal interpretation by the classical HT. The EMD-
based Hilbert spectral analysis method with application to the non-linear wave evolution
processes, the spectral form of the random wave field, and turbulence were studied [5].
The HHT method provides not only a more precise definition of particular events in the TF
space but also more physically meaningful interpretations and new views of the underlying
non-linear and non-stationary dynamic processes.

Adam [6–8] demonstrated the concept of HHT-TF-based analysis of marine mammal
signals, and an analytical scheme for sperm and killer whale (KW) vocalizations was
presented. KW vocalization with a time duration of 650 ms was analyzed using HHT meth-
ods. Thirteen IMFs and one RF were adaptively decomposed using the EMD method [6].
Accordingly, denoising and feature extraction can be achieved for KW vocalization. One
hundred regular clicks of the same single sperm whale (SW) with a time duration of
14 ms were adaptively decomposed into nine IMFs and one RF using the HHT method [7].
Subsequently, denoising SW clicks was investigated. Lin et al. [9] proposed an advanced
HHT-based approach to demonstrate the energy–frequency distributions corresponding
to the click signals of SWs. The spatial energy–frequency characteristics of IMFs, and
one RF for the click I and II samples were explored. Wen et al. [10] extracted the energy
characteristics distributions of IMFs and one RF using EMD schemes to determine the B
call vocalizations of blue whales (BWs). The detection schemes of the B call vocalizations
of BWs were proposed using EMD-based energy spectrum entropy distribution [11].

The Navy’s highly secret sound surveillance system, which consists of arrays of
bottom-mounted hydrophones, was developed to detect, localize, and track Soviet sub-
marines during the Cold War. In 1993, the Comprehensive Nuclear-Test-Ban Treaty Orga-
nization was proposed, and a system comprising 11 hydroacoustic stations with bottom-
mounted sensors was developed to detect seismic and acoustic waves owing to nuclear
detonation at any location worldwide. Many of the current passive acoustic monitoring
systems (PAMS) have evolved from the long-term monitoring system of bottom-mounted
low-frequency seismic sensors owing to research by geophysicists. These PAMS are able
to detect blue and fin whales (BFW) that emit very low-frequency sounds (LFS) between
10 and 20 Hz [12]. Goold et al. [13] analyzed the distinctive peak (DP) in the spectra of bull
male sperm whale vocalizations (BMSWV) using Fourier analysis, and the results showed
that the frequency range was 400 Hz–2 kHz. Keating et al. [14] analyzed the echolocation
signals (ES) of Blainville’s beaked whales (BBW) using frequency-modulated pulses. The
center frequency, 10 dB bandwidth, duration, and inter-pulse interval for the echoloca-
tion signals were 39.5 kHz, 9.3 kHz, 78 µs, and 209 ms, respectively. Houser et al. [15]
investigated frequency-modulated tonal up-chirp (FMTUC) stimuli which may enhance
auditory brainstem response amplitudes in KWs. The duration of the FMTUC could
reach 1400 µs, whereas its spectral density was flat (±4 dB) across the stimulus bandwidth
(10–130 kHz). The detections of Balaenoptera omurai whale vocalizations (BOWV) in
soundscape recordings with a frequency range of 15–62 Hz were compared using spec-
trogram cross-correlation, entropy computation, and spectral intensity computation [16].
The time taken for analysis was ≤15 s. The high and low-frequency components of bi-
phonic vocalizations in resident-type (R-type) KWs are not yet clearly understood [17].
Biphonic vocalizations have two independently modulated frequency components and
play an important role in pod communication. The possible physical meanings of biphonic
vocalizations in R-type KWs were examined in [18]. An autonomous recorder and a towed
hydrophone array were deployed to record stereotyped down-swept contour vocalizations
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(DSCV) for KWs in the North Pacific. High-frequency modulated signals were recorded
with a frequency range of 15.7–21.6 kHz, a 10 dB bandwidth of 5.9 kHz, and an analysis
time of 65.2 ms. An earlier report used summed auto-correlation and Fourier transform
frequency analysis methods to measure the pulse rate and peak frequency for Southeast
Pacific blue whale (BW) song types [19]. The peak frequency of these s vocalizations was
approximately 32 Hz.

Frazer et al. [20] found the frequency range of humpback whale vocalization (HWV) to
be from 20 Hz to 8 kHz, whereas Au et al. [21] reported that the high-frequency harmonics
of HWV songs extended beyond 24 kHz. Mature male HWVs produce elaborate acoustics
in low-frequency bands of 0–1.5 kHz. Daily root-mean-squared sound pressure levels
can be calculated to compare variations in low-frequency acoustic energy and monitor
the population of HWV [22]. Male HWV presents long, structured sequences of acoustic
vocalization, and the frequency distributions of the mean pulse-repetition rate can reach
3.97 kHz. Male HWV songs have a minimum frequency below 400 Hz and a maximum
frequency above 3 kHz but below 8 kHz [23]. The songs are loud and of long duration; they
are produced in the frequency range of 8 Hz–8 kHz, last from several minutes to hours,
and have been noted to be frequency and amplitude modulated [24]. Angela et al. [25]
examined the non-song vocalizations of HWV frequencies, which vary from 9 Hz to 6 kHz.
The frequencies of the majority of vocalizations were under 200 Hz, and the duration of
non-song vocalizations was found to be between 0.09 and 3.59 s.

Table 1 lists the comparison of features extracted from BFWV, BMSWV DP, BBW ES,
KW FMTUC, BOWV, KW DSCV, BW song, HWVs, HWV, HWV songs, and HWV non-song.
The Fourier method is often used to analyze HWVs. The energy in the frequency domain is
a representation of the original HWVs. However, the Fourier method is not used to analyze
nonlinearity and non-stationarity signals. The EMD-based analysis method [9] can be used
to distribute the energy over the space–time–frequency space as a representation of the
HWVs. Several IMFs and one RF signal (spaces) are generated in parallel and analyzed
using the EMD method. The analysis method can be adopted to non-linearity and non-
stationarity signals. It is suitable for extracting features from HWVs. The aims of this study
are to provide a better understanding, high resolutions, and new perspectives regarding
the MS features innovation information contained in HWV signals.

Table 1. Comparison of features extracted from (a) BFW LFS, BMSWV DP, BBW ES, KW FMTUC,
and BOWV; (b) KW DSCV, BW song, and HWVs; (c) HWV, HWV songs, and HWV non-song.

(a)

Whitlow
et al. [12]

Goold
et al. [13]

Keating
et al. [14]

Houser
et al. [15]

Madhusudhana
et al. [16]

Whale
species BFW LFS BMSWV

DP
BBW

ES
KW

FMTUC BOWV

Analysis
method PAMS Fourier Fourier Fourier Fourier

Important
band 10–20 Hz 400–2000 Hz

Center
frequency
39.5 kH
10 dB

bandwidth
9.3 kHz

10–130 kHz 15–62 Hz

(b)

Reyes
et al. [18]

Malige
et al. [19]

Frazer
et al. [20]

Au
et al. [21]

Kugler
et al. [22]

Whale
species

KW
DSCV

BW
song HWV HWV HWV

Analysis
method Fourier Fourier Fourier Fourier Fourier
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Table 1. Cont.

Important
band

15.7–21.6 kHz
10 dB

bandwidth
5.9 kHz

Peak
frequency

32 Hz
>21 kHz 0–1500 Hz

(c)

Mercado
et al. [23]

Bilal
et al. [24]

Angela
et al. [25]

Whale
species HWV HWV song HWV

Non-song
Analysis
method Fourier Fourier Fourier

Important
band

<400 Hz
3–8 kHz Hz 9–6000 Hz

Zhang et al. [26] developed a 3D spatial and spectral-aware convolution module in
which the spatial and spectral features of the target spectrum were extracted using 3D
convolution. The spatial and texture features were extracted using a 2D convolution module
with channel and spatial attention. A hyperspectral image dataset containing 1200 samples
taken from ten corn varieties was constructed. The nondestructive identification of corn
seeds was demonstrated using a hyperspectral image.

The remainder of this paper is organized as follows. Section 1.2 demonstrates the re-
lated EMD-based MS analysis method. Section 2 presents the humpback whale vocalization
(HWV) samples. Section 3 presents the analysis results. The discussions and concluding
remarks are presented in Sections 4 and 5.

1.2. The Related EMD-Based MS Analysis Method [9]

Lin et al. [9] proposed the EMD-based MS analysis method with application to the
extraction of the new MS feature information views for HWV samples. The HWV samples,
denoted as hwv(t), were adaptively decomposed into N IMFs and one RF using empirical
mode decomposition (EMD), as follows:

hwv(t) = ∑N
i=1 IMFhwvi(t) + rf(t), (1)

where IMFhwvi(t) and rf (t) are the i-th IMF and RF of the HWV samples, respectively.
The referred total energy of hwv(t) is provided by

Ehwvref = ∑N
i=1 IMF2

hwvi(t) + rf2(t). (2)

The energy ratio of the i-th IMF to the referred total energy of hwv(t), IMFREhwvi, is
defined [9] as

IMFREhwvi =
IMF2

hwvi(t)
Ehwvref

× 100%. (3)

The energy ratio of the RF to the referred total energy of hwv(t), RFREhwv, is defined [9] as

RFREhwv =
rf2(t)

Ehwvref
× 100%, (4)

where zhwvi(t) is expressed as

zhwvi(t) = IMFhwvi(t) + jHT{IMFhwvi(t)},

zhwvi(t) = Ahwvi(t)ejϕhwvi(t).
(5)
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In Equation (5), Ahwvi(t) and ϕhwvi(t) are the amplitude and the phase of zhwvi(t),
respectively, and are provided by

Ahwvi(t) =
√

IMF2
hwvi(t) + [HT{IMFhwvi(t)]

2,

ϕhwvi(t) = tan−1(HT{IMFhwvi(t)}
IMFhwvi(t)

).

Here, HT{ } is the Hilbert transform.
The i-th IF of the HWV sample, IFhwvi(t), is provided by

IFhwvi(t) =
1

2π
dϕhwvi(t)

dt
. (6)

The marginal spectrum (MS) of IMFhwvi(t) in the m–n kHz band [6], i.e., MSREhwvimn
is calculated as

MSREhwvimn =
IMF2

hwvimn(t)
Ehwvref

× 100%, (7)

where IMF2
hwvimn(t) is the energy of IMFhwvi(t) in the m–n kHz band.

The MS of RFhwv(t) in the m–n kHz band, MSRFREhwvmn, is calculated as

MSRFREhwvmn =
rf2

hwvmn(t)
Ehwvref

× 100%, (8)

where r f 2
hwvmn(t) is the energy of r f (t) in the m–n kHz band.

2. Humpback Whale Vocalizations

An HWV sample (Recording No. 9220100Q) was downloaded from the Watkins
Marine Mammal Sound Database [27] (https://cis.whoi.edu/science/B/whalesounds/
index.cfm (accessed on 10 August 2023)) with an HWV number. The HWV was recorded
in the sea area around the British Virgin Islands (18◦ N, 64◦ W) at a water depth of 15 m.
Figure 1 shows the full HWV, which is 5.7 s long; the sampling frequency of the vocalization
was 14,900 Hz. Thirty-six HWV samples, 17.2 ms in duration, were extracted from the
full 9220100Q recording. These samples were categorized into Classes I, II, and III, which
contained 15, 5, and 16 samples, respectively. The time-analysis resolution was 17.2 ms
so the time-analysis resolution would be high. We evaluated the average energy ratios of
the IMF1 and RF to the referred total energy for the Class I samples, the average energy
ratios of the IMF1, 2nd IMF (IMF2), and RF to the referred total energy for the Class II
samples, and the average energy ratios of the IMF1, 6th IMF (IMF6), and RF to the referred
total energy for the Class III samples. All of these energy ratios were larger than 10%. The
classification strategies were discussed as follows. The energy ratios of the IMF1 and RF
and to the referred total energy were larger than 40% and 20%, respectively, for every Class
I sample. The energy ratios of the IMF1 + IMF2 and RF and to the referred total energy of
were larger than 55% and 15%, respectively, for every Class II sample. The energy ratios
of the IMF1 + IMF6 and RF and the referred total energy were larger than 40% and 55%,
respectively, for every Class III sample.

Figures 2–4 show the start and end times of Class I, II, and III HWV samples, which pro-
vides a visual sense of these samples. As shown in Figure 2, the start and stop times of sam-
ples 1 and 2 for the Class I HWVs, were, respectively, 0.6870–0.7042 s and 0.7043–0.7215 s;
they were 1.5977–1.6149 s and 4.8793–4.8965 s for the Class II HWVs (Figure 3) and
0.6700–0.6872 s and 0.7388–0.7560 s for the Class III HWVs (Figure 4). The maximum
and minimum amplitudes of the samples for the Class I HWVs were 0.015 V and −0.005 V,
respectively. They were 0.010 V and −0.005 V for the Class II HWV samples and 0.015 V
and −0.005 V for the Class III HWV samples. Figures 2–4 illustrate the wave structure,
vision insight of the Class I, II, and III HWV samples, and the amplitude changes with

https://cis.whoi.edu/science/B/whalesounds/index.cfm
https://cis.whoi.edu/science/B/whalesounds/index.cfm
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time. Figures 2–4 show that Class I, III, and II HWV samples exhibit the fastest, second,
and slowest oscillation phenomena (frequencies), respectively, from visual analysis.
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3. Analysis Results

In this section, the HWV samples were adaptively decomposed into six IMFs and one
RF. One original HWV sample in the time domain was expanded to six IMFs and one RF
in the time domain; higher resolution TF signal analysis for the HWV samples could be
achieved. The wave structure and vision insight of the IMFs and RF for the Class I, II, and
III HWV samples were illustrated using the EMD analysis method.

The number of IMFs, for the Class I, II, and III HWV samples were demonstrated. The
average instantaneous frequencies (IFs) of IMF1–IMF6 and RF for the Class I, II, and III
HWV samples were evaluated. The average energy ratios of the IMF1–IMF6 and RF to the
referred total energy and the average energy ratios of IMF1–IMF6 and RF in the several
frequency bands were elaborated. The significant and meaningful feature information
views, such as the analysis sample duration, number of IMFs, average energy ratios of
the significant IMFs and RF to the referred total energy, and average energy ratios of the
significant IMFs and RF in the significant frequency bands to the referred total energy for
the Class I, II, and III HWV samples were extracted in detail.

3.1. Class I HWV Samples

Fifteen Class I HWV samples were analyzed. Sample 1 from this class was adaptively
decomposed into six IMFs and one RF using the EMD method, as illustrated in Figure 5. The
number of IMFs depends on the input Class I HWV samples. The average instantaneous
frequencies (IFs) of IMF1-IMF6 and RF for Class I HWV sample 1 were 5.633, 3.140, 1.428,
0.582, 0.254, 0.141, and 0.043 kHz, respectively. The average mean IFs of IMF1-IMF6
and RF for Class I HWVs were 5.561, 2.876, 1.313, 0.531, 0.262, 0.137, and 0.040 kHz,
respectively. The average energy ratios of the IMF1-IMF6 to the referred total energy of
hwv(t) (IMFREhwv1), IMFREhwv2, IMFREhwv3, IMFREhwv4, IMFREhwv5, and IMFREhwv6,
were 46.37%, 4.43%, 4.73%, 1.52%, 2.36%, and 6.37%, respectively, and the average energy
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ratio of the RF to the referred total energy of hwv(t) (RFREhwv) was 34.21%. Among these
results, the energy distributions of IMF1 and RF are significant. Figures 6 and 7 show the
average MSs of IMF1 and RF. The average energy ratios of IMF1 in the high-frequency
bands of 2.980–3.725, 3.725–4.470, 4.470–5.215, 10.430–11.175, and 11.175–11.920 kHz were
9.825%, 13.790%, 4.398%, 3.977%, and 3.329%, respectively. The average energy ratios
of the RF in the low-frequency bands of 14.9–22.35 and 22.35–29.8 Hz were 26.987% and
3.510%, respectively.
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3.2. Class II HWV Samples

Five Class II HWV samples were analyzed. Sample 1 from this class was adaptively
decomposed into six IMFs and one RF using the EMD method. The number of IMFs
depended on the input Class II HWV samples. The mean IFs of IMF1–IMF6 and RF
for Class II HWV sample 1 were 4.915, 1.445, 0.691, 0.336, 0.135, 0.116, and 0.022 kHz,
respectively. The average mean IFs of IMF1-IMF6 and RF for Class II HWVs were 4.218,
1.783, 0.888, 0.481, 0.221, 0.121, and 0.025 kHz, respectively.

The average IMFREhwv1, IMFREhwv2, IMFREhwv3, IMFREhwv4, IMFREhwv5, and
IMFREhwv6, were 32.06%, 29.22%, 2.62%, 1.88%, 5.02%, and 6.55%, respectively, and the
average RFREhwv was 22.64%.

Among these, the energy distributions of IMF1, IMF2, and the RF were important.
Figures 8–10 show the average MSs of IMF1, IMF2, and RF. The average energy ratios of
IMF1 in the high-frequency bands of 1.490–2.235, 2.235–2.980, 2.980–3.725, 3.725–4.470,
12.665–13.410, and 13.410–14.115 kHz were 14.68%, 4.91%, 1.50%, 2.18%, 1.23%, 1.20%,
and 2.66%, respectively. The average energy ratios of IMF2 in the high-frequency bands
of 0.745–1.490 and 13.410–14.115 kHz were 18.99% and 2.84%, respectively. The average
energy ratio of RF in the low-frequency bands of 14.9–22.35 Hz was 21.63%.
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3.3. Class III HWV Samples

Sixteen Class III HWV samples were analyzed. Sample 1 from this class was adaptively
decomposed into six IMFs and one RF using the EMD method. As for the other classes,
the number of IMFs depended on the input Class III HWV samples. The mean IFs of
IMF1-IMF6, and RF for Class III HWV sample 1 were 5.720, 2.890, 1.445, 0.330, 0.245,
0.141, and 0.038 kHz, respectively. The average mean IFs of IMF-IMF6, and RF for Class II
HWVs were 5.422, 3.153, 1.407, 0.475, 0.242, 0.138, and 0.040 kHz, respectively. The average
IMFREhwv1, IMFREhwv2, IMFREhwv3, IMFREhwv4, IMFREhwv5, and IMFREhwv6, were
34.29%, 2.48%, 3.04%, 1.57%, 4.47%, and 15.80%, respectively, and the average RFREhwv
was 38.33%. Among these, the energy distributions of IMF1, IMF6, and the RF were
important. Figures 11–13 show the average MSs of IMF1, IMF6, and RF. The average
energy ratios of IMF1 in the high-frequency bands of 1.490–2.235, 2.235–2.980, 2.980–3.725,
3.725–4.470, 4.470–5.125, 11.175–11.920, and 11.920–12.665 kHz were 1.02%, 2.70%, 12.06%,
6.89%, 1.84%, 4.10%, and 1.20%, respectively. The average energy ratio of IMF6 in the
low-frequency bands of 52.15–59.60 Hz was 10.24%. The average energy ratios of RF in the
low-frequency bands of 14.9–22.35 and 22.35–29.80 Hz were 32.83% and 3.73%, respectively.
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4. Discussion

Figure 14 shows that the average values of IMFREhwvi and RFREhwv for the Class
I, II, and III HWV samples were higher than 10%. The average values of IMFREhwv1 for
the Class I, II, and III HWV samples were 46.37%, 32.06%, and 34.29%, respectively. The
average values of IMFREhwv2 and IMFREhwv6 for the Class II and III HWV samples were
29.22%, and 15.81%, respectively. The average values of RFREhwv for the Class I, II, and III
HWV samples were 34.20%, 22.64%, and 38.32%, respectively. Those results reveal a new
characteristic view of significant IMF-based energy distribution.
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Figure 14. Average values of IMFREhwvi and RFREhwv for the Class I, II, and III HWV samples,
which were larger than 10%.

Table 2 lists the HHT-based feature extraction vocalizations of the HWV, SW clicks [9]
samples, and blue whale B call vocalizations (BWBCV). The durations of the Class I, II, and
III HWV samples were 17.2, 17.2, and 17.2 ms, respectively; those of the Click I and II SW
samples were 10 and 5 ms, respectively; the durations of the Class I and II BWBCV samples
were 180 and 180 ms, respectively. The numbers of IMFs for the Class I, II, and III HWV
samples were 6, 6, and 6, respectively. Those for the Click I and II SW samples were 7 and 6,
respectively, and those for the Class I and II BWBCV samples were 5 and 5, respectively.
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Table 2. Comparison of (a) HHT-based features extracted from HWV, SW click samples, and blue
whale B call vocalizations; (b) HHT-based features extracted from HWV, SW click samples, and blue
B call whale vocalizations.

(a)

Proposed
Features
Class I

Proposed
Features
Class II

Proposed
Features
Class III

Lin et al. [9]
Click I

Whale species HWV HWV HWV SW
Analysis sample

duration 17.2 ms 17.2 ms 17.2 ms 10 ms

Number
of

IMFs
6 6 6 7

Important
IMFs IMF1 (46.37%) IMF1 (32.06%)

IMF2 (29.22%)
IMF1 (34.29%)
IMF6 (15.80%)

IMF1 (61.50%)
IMF2 (12.41%)

Important
RF 34.21% 22.64% 38.33% -

MS1

2980–3725 Hz
(9.825%)

3725–4470 Hz
(13.79%)

745–1490 Hz
(14.675%)

2980–3725 Hz
(12.064%)

3725–4470 Hz
(6.885%)

11–15 kHz
(30.05%)

MS2 - 745–1490 Hz
(18.990%) -

4–5 kHz
(1.20%)
6–7 kHz
(1.04%)

MS3 - - - -
MS4 - - - -

MS6 - - 52.15–59.60 Hz
(10.237%) -

MS RF 14.9–22.35 Hz
(26.987%)

14.9–22.35 Hz
(21.633%)

14.9–22.35 Hz
(32.828%) -

Application Features extraction Features extraction Features extraction Features extraction

(b)

Lin et al. [9]
Click II

Wen et al. [10]
Class I

Wen et al. [10]
Class II

Adam
[6]

Whale species SW BWBCV BWBCV KW
Analysis sample

duration 5 ms 180 ms 180 ms 650 ms

Number
of

IMFs
6 5 5 13

Important
IMFs

IMF1
(73.33%) IMF2

(13.89%)

IMF1
(83.40%)

IMF1
(32.63%)

IMF2
(37.00%)

IMF3
(11.95%)

IMF4
(12.07%)

-

Important
RF - - - -

MS1 - 34–52 Hz
(74.18%)

41–52 Hz
(24.08%) -

MS2 8–15 kHz
(46.94%) - 10–18 Hz

(28.29%) -

MS3 3–7 kHz
(10.08%) - 4–7 Hz

(10.38%) -
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Table 2. Cont.

MS4 - - 5–6 Hz
(11.36%) -

MS6 - - - -

MS RF 0–1 kHz
(7.83%) - - -

Application Features
extraction

Features
extraction

Features
extraction

Denoise and
Features

extraction

The average energy ratios of the IMF1 to the referred total energy for the Class I, II,
and III HWV samples were 46.37%, 32.06%, and 34.29%, respectively. The average energy
ratios of the IMF1 to the referred total energy for the Click I and II SW samples were 61.50%
and 73.33%, respectively. The average energy ratios of the IMF1 to the referred total energy
for the Class I and II BWBCV samples were 83.40% and 32.63%, respectively.

The average energy ratios of the IMF2, IMF3, and IMF4 to the referred total energy
for the Class II BWBCV samples were 32.63%, 37.00%, 11.95%, and 12.07%, respectively.
The highest ratio of the average energy of IMF1 to the referred total energy of the Class I
BWBCV samples was 83.40%. Additionally, the highest ratio of the average energy of IMF2
to the referred total energy of the Class II BWBCV samples was 37.00%. Finally, the ratio of
the average energy of IMF1 to the referred total energy of the Class II BWBCV samples was
the second highest at a ratio of 32.63%. The average energy ratio of the IMF2 to the referred
total energy for the Class II HWV samples was 29.22%, and the average energy ratios of
the IMF2 to the referred total energy for the Click I and II SW samples were 12.41% and
13.89%, respectively. The average energy ratios of the RF to the referred total energy for the
Class I, II, and III HWV samples were 34.21%, 22.64%, and 38.33%, respectively. The energy
distributions of IMF1 and IMF2 for the Click I and II SW samples were important.

Table 2 shows that the average values of MS1, MS2, MS6, and MSRF for the Class I, II,
and III HWV samples and of MS1, MS2, and MSRF for the Click I and II SW samples in
the low and high-frequency bands were all greater than 5%. The average values of MS RF
for the Class I, II, and III HWV samples in the 14.90–22.35 Hz band were 26.99%, 21.63%,
and 32.83%, respectively, and 7.83% for the Click II SW samples in the 0–1 kHz band. The
average value of MS6 for the Class III HWV samples in the 52.15–59.60 Hz band was 10.24%.
The average values of MS1 and MS2 for the Class II HWV samples in the 745–1490 Hz band
were 14.66% and 18.99%, respectively. The average values of MS1 for the Class I and III
HWV samples in the 2980–3725 Hz band were 9.83% and 12.06%, respectively, and 13.79%
and 6.89% in the 3725–4470 Hz band, respectively.

The average value of MS1 for the Click I SW samples in the 11–15 kHz band was
30.05%. The average value of MS1 for the Class II SW samples in the 8–15 kHz band was
46.94%, and the average value of MS2 for the Class II SW samples in the 3–7 kHz band was
10.08%. The average value of MS1 for the Class I BWBCV samples in the 34–52 Hz band
was 74.18%. The average values of MS1, MS2, MS3, and MS4 were determined for the Class
I IBWBCV samples in the 41–52 Hz band with a ratio of 24.08%, in the 10–18 Hz band with
a ratio of 28.29%, in the 4–7 Hz band with a ratio of 10.38%, and in the 5–6 Hz band with a
ratio of 11.36%. The higher-frequency components of the Class I and II BWBCV samples
were 34–52 and 41–52 Hz, respectively. The lower-frequency components of the Class II
BWBCV samples were 34–37 Hz.

The higher-frequency components of the Class I, II, and III HWV samples were
3735–4470, 745–1490, and 2980–3725 Hz, respectively, and those of the Click I and II SW
samples were 11–15 and 8–15 kHz, respectively. The lower-frequency components of the
Class I, II, and III HWV samples were in the range of 14.9–22.35 Hz, and of the Click I
and II SW samples were 4–5, and 0–1 kHz, respectively. These results thus reveal the new
MS-based energy distribution characteristic views of Class I, II, and III HWV samples.
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The average energy ratios of MS1 to the referred total energy in different frequency
bands can be added for the proposed Class I HWV samples. The average energy ratios of
MS1 in the ranges of 2980–3725 Hz and 3725–4470 Hz to the referred total energy for Class
I HWV samples were 9.83% and 13.79%, respectively. The average energy ratio of MS1 in
the range of 2980–4470 Hz to the referred total energy for the Class I HWV samples was
23.62%. The average energy ratio of MS1 in the range of 2980–4470 Hz to the referred total
energy for Class III HWV samples was 18.95%.

The average energy ratios of MS1 and MS2 to the referred total energy in the same
frequency bands can be added for the proposed Class II HWV samples. The average energy
ratios of MS1 and MS2 to the referred total energy in the range of 745–1490 Hz were 14.68%
and 18.99%, respectively. The average energy ratios of MS1 and MS2 to the referred total
energy in the range of 745–1490 Hz for the Class II HWV samples were 33.67%.

Table 1 shows the comparison of the features extracted from HWVs, HWV, HWV songs,
and HWV non-song. Using the Fourier analysis method. Frazer et al. [20], Au et al. [21],
Kugler et al. [22], Mercado et al. [23], Bilal et al. [24], and Angela et al. [25] demonstrated the
important frequency bands of HWV to be in the ranges of 20–8000 Hz, >21 kHz, 0–1500 Hz,
<400 Hz and 3000–8000 Hz, 8–8000 Hz, and 9–6000 Hz, respectively. Table 2 lists the HHT-
based feature extraction vocalizations of HWV. The important high-frequency bands of the
proposed HWV Class I, II, and III features were in the ranges of 2980–4470 Hz, 745–1490 Hz,
and 2980–4470 Hz, respectively. The important low-frequency bands of the proposed HWV
Class III features were in the range of 52.15–59.60 Hz. The important low-frequency bands
of the proposed HWV Class I, II, and III features were in the ranges of 14.90–22.35 Hz,
14.90–22.35 Hz, and 14.90–22.35 Hz, respectively. The results of this study provide a better
understanding, high resolution, and new innovative views on the information obtained
from the MS features of the HWV signals.

5. Conclusions

In the paper, 36 HWV samples were classified into Classes I, II, and III, which consisted
of 15, 5, and 16 samples, respectively. These samples were decomposed into six IMFs and
one RF using the EMD method. The first sample of Class I was illustrated. The average
values of IMFREhwv1 and RFREhwv for the Class I samples, IMFREhwv1, IMFREhwv2, and
RFREhwv for the Class II samples, and IMFREhwv1, IMFREhwv6 and RFREhwv for the Class
III samples were all greater than 10%.

The average important energy ratios of IMF1 to the referred total energy for the Class
I, II, and III HWV samples were 46.37%, 32.06%, and 34.29%, respectively. The average
important energy ratios of RF to the referred total energy for the Class I, II, and III HWV
samples were 34.21%, 22.64%, and 38.33%, respectively. The average important energy
ratios of MS1 in the high-frequency bands of 2980–3725 and 3725–4470 Hz to the referred
total energy for the Class I HWV samples were 9.83% and 13.79%, respectively. The average
important energy ratio of the MS1 in the high-frequency band of 745–1490 Hz to the referred
total energy for the Class II HWV samples was 14.68%.

The average important energy ratios of the MS1 in high-frequency bands of 2980–3725
and 3725–4470 Hz to the referred total energy for the Class III HWV samples were 12.06%
and 6.89%, respectively. The average important energy ratio of the MS2 in the high-
frequency band of 745–1490 Hz to the referred total energy for the Class II HWV samples
was 18.99%. The average important energy ratio of the MS6 in the low-frequency band of
52.15–59.60 Hz to the referred total energy for the Class II HWV samples was 10.27%. The
average important energy ratios of the MS RF in the low-frequency band of 14.90–22.35 Hz
to the referred total energy for the Class I, II, and III HWV samples were 26.99%, 21.63%,
and 32.83%, respectively.

The MS characteristics of Class I, II, and III samples in the high and low-frequency
bands were revealed. The high time and frequency analytical resolutions of the proposed
HHT-based analysis method for HWV samples were 17.2 ms and 7.45 Hz, respectively.
High TF analytical resolutions of HWV samples were achieved. The proposed MS-based
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analytical method for HWV samples is easy to implement using software and hardware,
and a short analytical time can be achieved. The results of this paper provide a better
understanding of the IMF and MS energy distribution characteristics of HWV samples when
HHT-TF analytical methods are used. EMD-based analysis results show that the analysis
sample duration, number of IMFs, significant and meaningful IMFs, and significant and
meaningful RF, MS1, MS2, MS6, and MS RF new feature information views were revealed.
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Abbreviations

BBW Blainville’s beaked whales
BFW blue and fin whales
BMSWV bull male sperm whale vocalizations
BOWV Balaenoptera omurai whale vocalizations
BW blue whale
DP distinctive peak
DSCV down-swept contour vocalizations
ES echolocation signals
EMD empirical mode decomposition
FMTUC frequency-modulated tonal up-chirp
HHT Hilbert–Huang transformation
HT Hilbert transform
HW humpback whale
HWV humpback whale vocalization
IMF intrinsic mode function
IF instantaneous frequency
KW killer whales
LFS low-frequency sounds
MS marginal spectrum
PAMS passive acoustic monitoring system
RF residual function
R-type resident-type
SW sperm whale
TF time–frequency
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