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Abstract: In indoor environments, reverberation can distort the signalseceived by active noise
cancelation devices, posing a challenge to sound classification. Therefore, we combined three speech
spectral features based on different frequency scales into a densely connected network (DenseNet) to
accomplish sound classification with reverberation effects. We adopted the DenseNet structure to
make the model lightweight A dataset was created based on experimental and simulation methods,
andhe classification goal was to distinguish between music signals, song signals, and speech signals.
Using this framework, effectivexperiments were conducted. It was shown that the classification
accuracy of the approach based on DenseNet and fused features reached 95.90%, betterhan the results
based on other convolutional neural networks (CNNs). The size of the optimized DenseNet model
is only 3.09 MB, which is only 7.76% of the size before optimization. We migrated the model to
the Android platform. The modified model can discriminate sound clips faster on Android thanhe
network before the modification. This shows that the approach based on DenseNet and fused features
can dealith sound classification tasks in different indoor scenes, and the lightweight model can be
deployed on embedded devices.

Keywords: multilevel feature; reverberation; densely connected network; convolutional neural
network

1. Introduction

The development of active noise-canceling headphones and hearing aids has resulted
in users demanding increasingly high levels of performance from these devices. One of the
development directions of active noise cancelation technology is to achieve noise reduction
or speech enhancement through sound classification techniques to distinguish the sound
environment the user is in and improve the user’s listening experience. Sound classification
techniques are widely used in spoken language recognition [1], environmental sound
classification [2], music genre classification [3], heart sound classification [4], and breathing
sound classification [5].

When indoors, reverberation from the internal structure of a house can alter the
original sound signal, creating delays and causing the distortion of the corresponding
features. Most of the datasets used to train sound classification models do not have
reverberation effects. Therefore, the models trained from these datasets will be less accurate
when applied to indoor environments. We therefore considered the indoor application of
hearing aids and active noise-canceling headphones and set our classification targets as
music signals, specifically instrumental music, song signals that contain both instrumental
music and human voices, and speech signals that contain only human voices.

When training sound classification models, the time-domain signal of the sound is usu-
ally made into artificial features, such as the mel frequency cepstral coefficient (MFCC) [6],
perceptual linear predictive (PLP) coefficient [7], the linear prediction coefficients (LPC) [8],
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and the linear prediction cepstral coefficient (LPCC) [9], which are used as inputs to the
classification models.

A single artificial feature implies incomplete information. Therefore, combining these
features to improve the classification model’s accuracy is a hot topic in the research on
sound classification problems. In [10], Li combined features such as the MFCC, fundamental
frequency, spectral center of mass, and sub-band energy as input feature vectors. In [11],
the discrete wavelet transform (DWT) and MFCC features were combined to improve the
accuracy of the classification of heart sounds.

Due to the powerful performance of CNNs in image processing, spectrograms can also
be used for sound classification [12]. In [13], spectrograms were fed into a CNN-LSTM to
distinguish between speakers with face masks. In [14], optimized S-transform OST features
based on different scales were combined and fed into a CNN model to perform the triple
classification of breath sounds. In [15], researchers used mel spectrograms as data and
combined self-focus and multilayer feature extraction methods to classify normal breath
sounds. Similar to residual networks (ResNet) [16], DenseNet establishes close connections
between layers, allowing the training of deeper models [17]. The better performance of
DenseNet makes it widely used for sound classification. In [18], DenseNet showed good
performance in lung sound classification. In [19], the dense module in DenseNet was
used to perform feature extraction on sound data. In [20], the mel spectrogram and log-
mel spectrogram were fed to a CNN to automatically diagnose cardiovascular diseases
(CVDs). In [21], continuous wavelet transform (CWT), mel spectrogram, and Gammatone
spectrogram data were combined into a 3D channel spectrogram for the automatic detection
of speech and phoneme class recognition to extract telephone attribute features.

In this paper, we propose a classification method based on fusion features and
DenseNet to distinguish music signals, song signals, and speech signals under the reverber-
ation effect and make a reasonable reverberation dataset to test the method. Reverberation
introduces distortion into the signal. This distortion can be reflected in the spectrogram.
As in the case of speech signals and song signals, the audio features are lengthened and
intuitively look more similar to the spectrogram of a musical signal. In addition, different
rooms correspond to different impulse responses, causing the distortion from reverberation
to be different. On this basis, the dataset in this paper was produced with sound signals
with different reverberation effects using the impulse responses of several rooms. As shown
in Figure 1, these signals are combined with the recorded sound signals to form the dataset.
Therefore, this is a challenging dataset. We propose combining the short-time Fourier
transform (STFT), mel, and bark data to form a multichannel spectrogram. These three
spectrograms are from different frequency scales and have more features than single-scale
spectrograms. We modified DenseNet to make it more lightweight. In the proposed method,
the fused features are used as the input to DenseNet for classification. The challenging
dataset used in this study includes sound signals with multiple reverberation effects, and
DenseNet was trained and tested on this dataset.

Figure 1. Flowchart of sound classification based on fused features and deep residual network.
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2. Proposed Method

In this study, we trained the model on DenseNet by fusing STFT, bark, and mel features
to distinguish three sound signals: music, songs, and speech. A classification flowchart
based on the improved DenseNet and fused features used in this paper is shown in Figure 1.
First, feature extraction was performed on the time-domain signal to obtain three speech
spectrogram features based on different frequency scales to compose fusion features. After
the training and classification processes of DenseNet were completed, the three signal sets
were recognized. The extraction method and combination method of the three features
are described in Section 2.1. The training and classification processes using DenseNet is
described in Section 2.2. Section 2.3 briefly introduces concepts related to reverberation
and shows the effect of reverberation on the features.

2.1. Feature Extraction and Fusion

In convolutional neural network-based sound classification, spectrogram features
are often used as input to the training model. Since the STFT, bark, and mel features are
extracted based on different frequency-domain scales, each feature contains unique infor-
mation. To make the information extracted from the time-domain signal more comparable,
we used the same frame length and step size to ensure that the features were aligned on
the time axis and to facilitate the subsequent training.

2.1.1. STFT

STFT reflects the frequency change in the signal over time at standard frequencies and
is one of the most commonly used features for sound classification. The basic idea of STFT
is to truncate the signal in the time domain by a window function and treat the signal in
the window as a smooth signal, then perform a Fourier transform on the intercepted signal
in the window to finally obtain a two-dimensional time–frequency matrix.

In this paper, the frequency dimension of the STFT feature was set to 256, and the
sampling frequency of the sound signal used in this paper was 8192 Hz, resulting in a
frequency resolution of 16 Hz.

2.1.2. Mel Scale

Considering that the response of the human ear to frequency is nonlinear, we converted
the frequency domain of the sound signal from the standard scale to the mel scale. Mel
filter banks were used to delineate the critical bands and extract the feature coefficients
to represent the human ear’s perception of isometric pitch changes [22]. In the past, due
to the limitations of machine learning algorithms, highly correlated features such as mel
features needed to undergo a discrete cosine transform to extract MFCC features from mel
features, and then the MFCC was input into a model such as the Gaussian mixture model–
hidden Markov model (GMM-HMM) [23]. Since the discrete cosine transform is linear, a
considerable portion of nonlinear information was lost in this process. In recent years, with
the development of deep learning in speech and the fact that deep neural networks are not
easily affected by highly correlated inputs, people have started to use mel features as input
data for models [24]. In this paper, the range of the mel scale was set to 128.

Figure 2 shows the mel filter bank when the sample rate was set to 8192 Hz and the
number of filters was 32.
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Figure 2. Mel filter banks.
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2.1.3. Bark Scale

The bark scale is a psychoacoustic scale that uses a trapezoidal filter bank to map
standard frequencies to the 24 critical frequency bands of psychoacoustics [25,26]. Similar
to the relationship between mel and the MFCC, the bark filter bank is the preprocessing
step to extract PLP features.

Figure 3 shows the bark filter bank when the sample rate was set to 8192 Hz and the
number of filters was 32. In this paper, the range of the bark scale was set to 128.
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Figure 3. Bark filter banks.

2.1.4. Fusion

In this paper, a fusion method based on feature extraction was used to integrate
multiple features into a new feature, and then the integrated feature set was fed into
a neural network or classifier. Figure 4 illustrates the process of combining the three
spectrogram features into three data channels.

Combine

Figure 4. Feature fusion methods.

The time-domain signal was first divided into equal-sized lengths, and equal windows
and steps were used for each segment of the time-domain signal in feature extraction to
ensure the consistency of the time scale. Here, the duration of each signal was 4 s, the
sampling rate was 8192 Hz, the selected window length was 512, and the step size was 128.
The final extracted STFT image size was 257 × 257, the mel feature size was 128 × 257, and
the bark feature size was 128 × 257. the size of these three features was uniformly resized to
128 × 256 using the OpenCV image processing library. To reduce the quantity of data and to
facilitate computations, each 128 × 256 matrix was deflated into the interval 0 to 255. Each
matrix was then rounded to the nearest whole number, and the data type of such a sample
was converted from float32 to uint8. These fused features were fed into the convolutional
neural network for training.

Spectrogram fusion was performed by combining three spectrograms, i.e., three two-
dimensional arrays, in a third dimension. Similar to the RGB channels of a color picture,
here, we enter one spectrogram per channel.

2.2. DenseNet

Many efforts were made to overcome overfitting. The emergence of ResNet makes
it possible to increase the number of layers to make the network more capable. The main
advantages of DenseNet include that it requires fewer parameters and demonstrates good
regularity [17]. Considering these advantages, we input the fused features into DenseNet
for training.

Considering the application scenario of active noise reduction and the characteristics
of fused features, some adjustments were made to the structure of the DenseNet model, and
the modified model was named DenseNet-v1. As shown in Table 1, only four convolutional
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layers were set in each dense block to make the model lightweight. In addition, the
preprocessing layer was modified from a 7 × 7 convolutional layer with a step size of 2 to a
3 × 3 convolutional layer with a step size of 1, and the fill amount was modified from 3 to 1.

Table 1. DenseNet-121 and DenseNet-v1 architectures.

Layers Output Size (DenseNet-121) DenseNet-121 (k = 32) DenseNet-v1 (k = 32) Output Size (DenseNet-v1)

Convolution 64 × 128 7 × 7 conv, stride 2 3 × 3 conv, stride 1 128 × 256

Pooling 32 × 64 3 × 3 conv, stride 2 64 × 128

Dense Block(1) 32 × 64
[

1 × 1 conv
3 × 3 conv

]
× 6

[
1 × 1 conv
3 × 3 conv

]
× 4 64 × 128

Transition Layer(1)
32 × 64 1 × 1 conv 64 × 128

16 × 32 2 × 2 average pool, stride 2 32 × 64

Dense Block(2) 16 × 32
[

1 × 1 conv
3 × 3 conv

]
× 12

[
1 × 1 conv
3 × 3 conv

]
× 4 32 × 64

Transition Layer(2)
16 × 32 1 × 1 conv 32 × 64

8 × 16 2 × 2 average pool, stride 2 16 × 32

Dense Block(3) 8 × 16
[

1 × 1 conv
3 × 3 conv

]
× 24

[
1 × 1 conv
3 × 3 conv

]
× 4 16 × 32

Transition Layer(3)
8 × 16 1 × 1 conv 16 × 32

4 × 8 2 × 2 average pool, stride 2 8 × 16

Dense Block(4) 4 × 8
[

1 × 1 conv
3 × 3 conv

]
× 16

[
1 × 1 conv
3 × 3 conv

]
× 4 8 × 16

Classification Layer
1 × 1 Global average pool 1 × 1

3-d fc, softmax

2.3. Reverberation

When sound waves travel indoors, they are reflected many times by different materials
and housing structures, and the sound that reaches the human ear can be divided into
direct sound and reflected sound. As a result, the reverberated sound sounds longer.
The reverberation time is the time it takes for the sound reflected in the space to decay
by 60 dB after the source sound stops. Because of the material absorption properties of
different frequency bands, the reverberation time in each band is also different, and these
reverberation times together are called the reverberation time curve.

The multipath effect occurs when one attempts to transmit and receive an audio signal
in a relatively narrow area. That is, there is more than one path from the sound source
to the reception point. Depending on the path of sound propagation, these paths can be
categorized into paths made up of direct and nondirect sound waves. The number of
reflections and propagation paths of these nondirect waves each occurring in the room are
different, and each reflection will lead to a certain degree of amplitude attenuation and
phase delay.

The reverberation effect in the time-domain signal is demonstrated in the spectrogram,
making the continuation of the band energy longer so that the syllable becomes blurred. As
an example, the STFT characteristics of three sound signals are shown in Figure 5, where
the STFT of a sound signal recorded in the studio is compared with the STFT of this sound
after playback and recording in the room.

As seen in Figure 5, the special structures of song and speech signals are blurred due
to the effect of reverberation, and the energy of each frequency band becomes longer in the
time domain and appears to be shaped similarly to music signals from an intuitive visual
point of view.
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Figure 5. The effect of reverberation on the STFT spectrogram. (a,b) are the spectra of the speech
signal without and with the reverberation effect, respectively. (c,d) are the spectra of the song signal
without and with the reverberation effect, respectively. (e,f) are the spectra of the music signals
without and with the reverberation effect, respectively.

Data can also be obtained by means of simulation in addition to recording sound
directly in the room to obtain a signal with the reverberation effect. There are three types of
digital artificial reverberation methods that are commonly used: impact response convolu-
tion methods, computational acoustic methods, and delay network methods. Convolution
methods convolve a clean and reverberation-free signal with the room’s impact response.
Reilly proposed this method in 1995 [27]. Lehman [28] et al. proposed a mirror source
model spectrum based on the impulse response of the room.

In the room, the source signal s0(t) is set to arrive at the receiving microphone after
multipath propagation, and the received signal s(t) can be expressed as

s(t) = s0(t) ∗ h(t) + n(t) (1)

where h(t) denotes the room impulse response between the sound source and the micro-
phone, ∗ is the sign of the convolution operation, and n(t) is the noise signal.

The reverberation time [29] is the most important reverberation parameter; it can be
understood as the duration of reverberation and reflects the strength of the reverberation
effect. The reverberation time is defined as the time elapsed from the emission of the sound
from the source to the stabilization of the reverberant environment in the room. It is often
expressed by RT60. In different acoustic scenarios, there are different requirements for
reverberation. For example, RT60 in classrooms is adjusted to 0.5~0.9 s, which is higher
than the value of 1.8 s considered for concert halls. In contrast, for regular indoor call
scenes, RT60 is usually required to be lower than 0.6 s. For speech recognition devices
trained with conventional speech, the reverberation time should preferably be controlled
within 0.2 s.

3. Dataset Production

In this section, the process of making a dataset is described. Datasets with reverbera-
tion effects are prepared by live recordings and simulations. We conducted the experiments
in December 2022 in the acoustic hall of the Laoshan campus of the Ocean University of
China. To ensure experimental accuracy, the key instrument used in the experiment was
the B&K instrument. The specific experimental instrument models are shown in Table 2
below. The connections of these devices are shown in Figure 6.
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Table 2. Experimental apparatus list.

Instrument Type

Audio power amplifier Type 2716-C
Omnidirectional sound source Type 4295

Sound quality head and torso simulator Type 4100
Free-field microphone Type 4190

Compact data acquisition unit Type 3560-B
Sound calibrator Type 4231

Sound quality software Pulse (version 11.1)
Room acoustics software DIRAC (version 6.0)

Figure 6. Experimental apparatus connection method.

Before starting the experiment, the free-field microphone was calibrated using a sound
calibrator. The calibrator produces 94 dBSPL at 1 kHz, allowing the acoustic transducer to
be calibrated at this standard. The sample rate was set to 8192 Hz. The receiver was placed
in the center of the acoustic hall, and the ambient noise at the receiver was measured by
a sound level meter when audio was not being played. The sound pressure level of the
ambient noise was approximately 30 db SPL. The speakers were placed 10 m away from
the receiver. The audio signals were recorded for 200 s for each type of audio signal by
playing and recording three types of audio data in the room: music, songs, and speech.

To expand the dataset and to improve the robustness of the model, a dataset with
reverberant features was produced using a simulation method. The clean audio data were
convolved with the impulse response of the room using the time-domain signal convolution
method to simulate the effect of the sound signal playing in the room.

The DIRAC room acoustics software and its accompanying equipment were used to
measure the reverberation time; the sound source was a firing gun. Table 2 shows the main
instruments used in the experiments, as well as the software. The experimental procedure
was as follows: the measurement personnel holding the firing gun held the gun above their
heads at a distance of approximately 2 m from the horizontal plane. The measurement
points were greater than 1 m from each reflecting surface. In total, the impulse responses
were recorded in five rooms, and their corresponding reverberation time curves are shown
in Figure 7.

Rooms 1 and 4 are a stepped classroom and a regular classroom, respectively. Rooms 2
and 3 are acoustically designed stepped classrooms and general classrooms, respectively,
which were retrofitted with sound-absorbing structures, such as perforated panels. Room
5 is a music classroom. Typically, the reverberation time requirements for different room
functions are reflected in the midfrequency (average between 500, 1000, and 2000 Hz)
reverberation times [30]. The midfrequency reverberation times of Room 3 and Room 4
fulfill the requirements to hold a general verbal conversation. Room 1 and Room 2 have
midfrequency reverberation times adequate for general singing scenarios. Room 5 has a
midfrequency reverberation time that meets the general concert hall reverberation time
requirements. These five rooms represent, as much as possible, the scenarios that will be
encountered in life.
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Figure 7. Reverberation time curve.

Acoustic measurements were made in these rooms, and the corresponding impulse
responses were obtained for each room. As shown in Figure 8, these impulse responses were
convolved with the acoustic signal to obtain the acoustic signal with the reverberation effect.
Since the reverberation time curves of these five rooms have their own characteristics, they
can represent the different rooms in which we performed sound playback and recording.
Therefore, the reverberation dataset we simulated based on the impulse response of these
rooms is robust.

Convolution

Figure 8. Convolution of signal and impulse responses to obtain the reverberation effect.

As shown in Figure 8, the measured impulse responses were convolved with the clean
signals in the time domain to obtain signals with reverberant characteristics. Figure 9 was
taken in the field experiment, and the instruments shown are the sound quality head and
torso simulator. The dataset consists of the signals recorded in the hall and the signals
obtained from the simulation; both types of signals were included to make our dataset
more diverse.

We chose a time window of 4 s and a step size of 2 s. A total of 294 samples were extracted
from the recorded audio. For each sound signal, 200 samples were selected to prepare the
dataset. By processing each of the five impulse responses with these time-domain signals,
3000 samples were obtained. Each of these samples was 4 s long. They were combined into a
fused feature dataset according to the method described in Section 2.1.4.
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Figure 9. On-site experiments.

In this paper, the training, validation and test data were divided according to the ratio
of 6:2:2. In summary, we trained the model with approximately 66 min of audio, validated
the model with 22 min of audio, and tested the model with 22 min of audio.

4. Results

To evaluate the effectiveness of the proposed fusion feature-based network model and
the DenseNet-v1 network model, the Visual Geometry Group (VGG) [31], DenseNet-121,
Google Inception Net (GoogLeNet) [32], and ResNet-18 models were trained on the same
dataset for comparison. In this study, the models were trained using a stochastic gradient
descent (SGD) optimizer with a batch size set to 64 and an initial learning rate of 0.005.
The best models within 400 epochs were retained on the validation set, and the accuracy
of these models was tested on the test set. All networks were implemented in PyTorch.
We saved the model network parameters locally after we finished training the model. We
compared the models’ sizes to the network parameters. Additionally, we deployed the
models on embedded devices based on each network’s parameters. The training platform
was an NVIDIA TESLA T4 GPU. The test platform was a Qualcomm Snapdragon 662.

We can obtain the following from Table 3. GoogLeNet had the worst accuracy. The
accuracy of VGG-11 was better, but its model size of 373 MB made it difficult to migrate to
embedded platforms. Similar to ResNet-18, which uses 4 convolutional layers per residual
block, DenseNet-v1 also uses 4 convolutional layers per dense block, and the accuracy
of DenseNet-v1 was 2.43% higher than that of ResNet-18. The accuracy of DenseNet-v1
was higher than that of DenseNet-121, and the size of the DenseNet-v1 model was only
7.76% of the size of the DenseNet-121 model, which was only 3.09 MB. This was because
we reduced the dense Block structure in the model. Smaller network models were easier to
migrate to embedded platforms.

Table 3. Comparison of the classification accuracy and model size of different network architectures.

Model Accuracy (%) Model Size (MB)

GoogLeNet 83.00 23.9
VGG-11 90.74 373

ResNet-18 93.47 44.8
DenseNet-121 94.69 39.8
DenseNet-v1 95.90 3.09
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Figure 10a,b shows the training loss and training set accuracy of the DenseNet-v1
and DenseNet-121 model training processes based on the training set and validation set,
respectively. The trend of the curves in Figure 10 shows that both models reached global
convergence. In addition, compared with DenseNet-121, the training loss of DenseNet-
v1 decreased more slowly, and the rate of the increase in the training set accuracy was
slower, although both values were almost the same in the end. This shows that after we
adjusted the network structure, the initial learning ability of the model was reduced, which
is consistent with the simplified nature of the network structure. We simplified part of the
network structure but weakened protections against possible overfitting simultaneously.
As a result, DenseNet-v1 outperformed DenseNet-121 on the test set. We found that the
peaks on the training loss curve remained after adjusting the batch size and learning rate.
Therefore, we believe that this peak was caused by erroneous samples. For the song signal,
when the window slid to the gap between two lyrics, the intercepted signal contained less
vocal signal. Therefore, the features of this part of the signal were closer to the music signal.
During the training process, when a certain batch size contained more such erroneous
samples, the training loss fluctuated more widely.
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Figure 10. Comparison of the training process before and after DenseNet modification. (a) Training
loss. (b) Training accuracy.

Figure 11 and Table 4 show that DenseNet-v1 outperforms DenseNet-121 on the
confusion matrix, precision, recall, and F1 scores. It can be seen that DenseNet-v1 is
significantly better than DenseNet-121 in recognizing sound signals with reverberation
when fusion features are used as input. In addition, we reduced the dense block structure
of the architecture.

Table 4. Comparison of the performance of DenseNet-121 and DenseNet-v1.

Model Sound Class Prec (%) Rec (%) F1 (%)

DenseNet-121

Speech 98.6 96.36 97.47
Song 92.44 94.55 93.48
Music 93.18 93.18 93.18
Macro Avg. 94.74 94.7 94.71

DenseNet-v1

Speech 98.20 99.09 98.64
Song 94.98 94.55 94.76
Music 94.52 94.09 94.31
Macro Avg. 95.90 95.91 95.90

Prec Precision, Rec recall, F1 F1-score.
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Figure 11. Confusion matrix. (a) DenseNet-121. (b) DenseNet-v1.

We migrated the model to the Andriod platform to complete our tests and better
illustrate our model’s validity. First, we converted the saved network parameters from
PyTorch to an MNN. The size of the network model remained largely unchanged during
this process. The platform chosen for testing was Snapdragon 662, which is an entry-level
processor. As shown in Table 5, on the same test platform, the time used by DenseNet-v1 to
predict a sample was only 64.56% of that of DenseNet-12.

Table 5. The time required for DenseNet-121 and DenseNet-v1 to predict a sample.

Model Time Spent (ms) Model Size (MB)

DenseNet-121 191.3 37.6
DenseNet-v1 123.5 2.9

Test platform was Qualcomm Snapdragon 662.

Thus, compared with other CNNs, DenseNet-v1 can recognize speech signals, song
signals, and music signals very well. In addition, due to the reduction in the model’s
dense block structure, DenseNet-v1 is a small model that is still capable of making fast
predictions. These characteristics make our proposed approach ideal for migrating to
embedded devices.

5. Conclusions

Pursuing active noise reduction techniques requires a more accurate determination of
the acoustic environment in which the device is located. In other words, distortion in the
spectrogram is caused by scattering between the sound and obstacles during propagation.
Reverberation brings difficulties and challenges to sound classification. In this paper, we
propose the fusion feature and DenseNet-based differentiation of sounds with reverberation.
In this paper, three spectrogram features of the STFT, mel, and bark data based on different
frequency scales are extracted from the time-domain signal, and these features are scaled
according to the same range and combined into three-channel data. These features are
then input into the optimized DenseNet network model for training and classification. The
experimental results show that the accuracy of our method is 95.90% on the dataset with
reverberation features, and the size of the model is only 3.09 MB, which is much smaller
than that of other CNNs. In summary, the method based on fusion features and DenseNet
can reliably identify signals with reverberation features and is both lightweight and capable
of fast recognition.

In the future, our research related to the method presented in this paper will be
improved in the following aspects. We will try other deep learning based methods to create
lighter classification models with fewer model parameters. Additionally, we will create
datasets with more sound types and reverberation effects to improve the usefulness and
robustness of the model.
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