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Abstract: Internet of Things (IoT) enables day-to-day objects to connect with the Internet and transmit
and receive data for meaningful purposes. Recently, IoT has resulted in many revolutions in all
sectors. Nonetheless, security risks to IoT networks and devices are persistently disruptive due
to the growth of Internet technology. Phishing becomes a common threat to Internet users, where
the attacker aims to fraudulently extract confidential data of the system or user by using websites,
fictitious emails, etc. Due to the dramatic growth in IoT devices, hackers target IoT gadgets, including
smart cars, security cameras, and so on, and perpetrate phishing attacks to gain control over the
vulnerable device for malicious purposes. These scams have been increasing and advancing over the
last few years. To resolve these problems, this paper presents a binary Hunter–prey optimization with
a machine learning-based phishing attack detection (BHPO-MLPAD) method in the IoT environment.
The BHPO-MLPAD technique can find phishing attacks through feature selection and classification.
In the presented BHPO-MLPAD technique, the BHPO algorithm primarily chooses an optimal subset
of features. The cascaded forward neural network (CFNN) model is employed for phishing attack
detection. To adjust the parameter values of the CFNN model, the variable step fruit fly optimization
(VFFO) algorithm is utilized. The performance assessment of the BHPO-MLPAD method takes place
on the benchmark dataset. The results inferred the betterment of the BHPO-MLPAD technique over
compared approaches in different evaluation measures.

Keywords: Internet of Things; phishing attack; machine learning; hunter prey optimization;
feature selection

1. Introduction

The Internet of Things (IoT) allows convergence and applications between real-time
substances irrespective of their geographic localities [1]. Execution of these in network
management and control makes the protection and privacy approach gain great importance
and challenge in this setting [2]. IoT applications should protect data privacy from fixing
security problems like jamming, intrusions, DoS attacks, eavesdropping, spoofing attacks,
spam, malware, and DoS attacks [3]. The safety measure of IoT gadgets relies on the
type and size of the entity in which it is enforced. The user’s behavior forces the security
gateway to cooperate. In simple, the application, location, and nature of IoT gadgets decide
the security measure [4]. For example, smart IoT security cameras can capture various
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variables for intellectual decision making and analysis in the smart organization [5]. The
utmost care is to be taken with web-related gadgets, as more IoT gadgets depend on the
web. It is ubiquitous in the workplace that the IoT gadgets deployed in an entity can be
utilized for applying privacy and security features [6]. For instance, wearable gadgets that
send and collect users’ health data to connected smartphones must avoid data leakage to
ensure privacy. Nearly 25 to 30% of workforces link their personal IoT gadgets with the
entity network [7]. The IoTs’ expanding nature allures the attackers and the users.

The wide-ranging implementation of IoT gadgets by numerous entities, government
sectors, trades, etc., is at high risk because of the devastating impact of data breaches and
IoT gadget exploitation [8]. Hackers utilize the weakness of IoT gadgets, gain control over
IoT gadgets, and then carry out malicious actions on confidential data with botnet attacks
leading to the exposure of valuable information that causes financial loss [9]. One common
threat that resulted in data breaches is phishing, a method where adversaries attempt
to steal a user’s credentials utilizing fraud attempts [10]. Many large companies like
Companies House (UK), Facebook, UPS, WhatsApp, and Fargo have experienced phishing
attacks in recent years [11]. In addition to these phishing methods that use delicate data
regarding their targets, phishing emails may be modified to look like real emails for
increasing the response time to attacks [12]. There has been a rise in spear-phishing and
email phishing attacks nowadays since these emails were aimed to directly attack victims,
with an increased possibility of getting a response. Still, with the advent of ML in different
attack scenarios [13], IoT devices select a protective approach and determine the critical
parameter in the security protocol for a trade-off between computation, security, and
privacy [14]. This is difficult since it is hard for an IoT platform with limited resources to
predict the current network and prompt attack status [15].

The study introduces a binary Hunter–prey optimization with a machine learning-
based phishing attack detection (BHPO-MLPAD) method in the IoT environment. The
BHPO-MLPAD technique can detect phishing attacks through feature selection and classifi-
cation. In the presented BHPO-MLPAD technique, the BHPO algorithm primarily chooses
an optimal subset of features. The cascaded forward neural network (CFNN) model is em-
ployed for phishing attack detection. To adjust the parameter values of the CFNN model,
the variable step fruit fly optimization (VFFO) algorithm is utilized. The performance
assessment of the BHPO-MLPAD method takes place on the benchmark dataset.

2. Literature Review

As IoT environments become increasingly susceptible to phishing threats, a compre-
hensive literature review is given to explore existing methodologies and advancements in
phishing attack detection within this unique and complex ecosystem. Mughaid et al. [16]
developed a detection method using an ML algorithm by splitting the data to train the
recognition technique and validate the outcomes with the use of the testing dataset, to
capture specific features of the emails and other characteristics to be categorized as phish-
ing or non-phishing with three datasets, and we attained the most efficient and accurate
outcomes after making a comparison between them. Abdulrahman et al. [17] introduced
an effective ML-based method with the potential to find whether the website is phishing or
not. Performance validation of the popular classification method was implemented and
revealed Random Forest as the better classifier for the phishing data. An ML-based method
for recognizing phishing attacks was constructed using RF with a wrapper based on the
classifier attributes evaluator and ranker (CAER) feature selection model.

Jain and Gupta [18] introduced an ML-based anti-phishing technique (PHISH-SAFE)
with URL features. We have considered fourteen features from URLs for detecting a web
page as phishing or non-phishing to evaluate the performance of the presented method. The
presented technique is trained by around 33,000 phishing and legitimate URLs with NB and
SVM classifiers. Huang et al. [19] developed a new phishing website detection method by
identifying the URL websites that is proved to be an efficient and robust detection method.
Specifically, the new capsule-based NN primarily involves many related branches where
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a single convolution layer extracted shallow features from the URL, and the succeeding
two capsule layers produce precise feature representation of the URL from shallow features
and discriminates the legitimacy of the URL.

The author in [20] investigated an agreement on a definitive feature that must be
utilized in phishing recognition. Fuzzy Rough Set (FRS) concept selects an efficient feature
from three benchmarked datasets. The features selected are given to three commonly
utilized classifiers for phishing recognition. Jain and Gupta [21] developed a method
to identify phishing attacks in e-banking and commercial websites through the link and
visual similarity. Phishers often try to stimulate the visual design of a website, and fake
websites have hyperlinks and identify keywords that point towards legitimate webpages
for trapping Internet users. Thus, the presented method inspects keywords, hyperlinks,
and CSS layout of websites to identify phishing attacks. Azeez et al. [22] introduced an
automatic whitelist method for recognizing phishing. The whitelist can be defined by
implementing a thorough review between the actual and the visual links. The similarity of
the known trusted websites can be evaluated with the content of the whitelist and matching
it with the IP address beforehand, making decisions and inspecting the actual and visual
links by evaluating the similarity of the known trusted website. In study [23], the authors
devised an email phishing detection structure CNNPD, depending on CNN. CNNPD
identify incoming emails as benign or phishing.

In study [24], a novel MFO-RELM approach was presented for cyber-security threat
detection and classification in the IoT platform. The proposed MFO-RELM approach
achieves the effective detection of cybersecurity attacks that occur in the IoT platform.
Ruiz-Villafranca et al. [25] examined MECInOT which is a structure dependent upon
openLEON and able of creating test conditions for the IoT platform. The performance of
this structure has been validated by generating an intelligent attack detector dependent
upon tree-based algorithms, namely, RF, DT, and other ML approaches. Rookard and
Khojandi [26] introduced a reinforcement learning-based network IDS for detecting attacks
on IoT systems employing the TON-IoT database. Specially, the authors utilized the usage
of DQN for cyber-attack detection. The authors defined that our DQN carries out an
optimum for cyber-attack recognition. Mengash et al. [27] developed a novel search and
rescue optimizer with ML-enabled cybersecurity method for an online social networks
(SRO-MLCOSN) approach. The proposed SRO-MLCOSN approach concentrates on the
detection of CB that ensued in social media.

The research gap exists in the scarcity of studies that systematically explore and
optimize the highly related features specific to IoT data and the lack of comprehensive
investigations into fine-tuning hyperparameters to achieve optimal performance for phish-
ing detection in this unique and dynamic setting. Existing research often concentrates
on traditional feature sets and generic hyperparameter settings, failing to address the
IoT-specific challenges and intricacies that can significantly impact detection accuracy and
robustness in real-world IoT scenarios. A more targeted and in-depth exploration of feature
selection techniques and hyperparameter optimization tailored to the IoT environment
is needed to enhance the effectiveness and reliability of phishing attack detection in IoT
systems. Table 1 provides a summary of the existing works discussed in the literature.

Table 1. Summary of existing works.

Reference Year Method Performance Dataset

Mughaid et al. [16] 2022

ML models
such as SVM,
DT, LR, NN, and
decision forest

Accuracy,
Precision, Recall,
F-Score

Phishing email
collection
dataset

Abdulrahman et al. [17] 2019
Random Forest
and CAER
feature selection

TPR, FPR,
Accuracy,
Precision, Recall,
F-Measure

UCI phishing
website dataset
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Table 1. Cont.

Reference Year Method Performance Dataset

Jain et al. [18] 2018
PHISH-SAFE,
an ML-based
classifier

Accuracy PhishTank
URL dataset

Huang et al. [19] 2019 Capsule-based
neural network

TPR, FPR,
Accuracy,
Precision, Recall,
F-Measure

PhishTank and
Openphish data

Zabihimayvan
and Doran [20] 2019 Fuzzy Rough Set F-measure

UCI Phishing
and Mendeley
dataset

Jain and Gupta [21] 2018
Link and visual
similarity
relation

TPR, FPR -

Azeez et al. [22] 2021 Whitelist
approach

TPR, TNR, FPR,
FNR, Accuracy

PhishTank
and Alexa data

Alotaibi et al. [23] 2020 CNN Accuracy
PhishingCorpus
and
SpamAssassin

Alrowais et al. [24] 2023
Mayfly
optimization
with RELM

Accuracy,
Precision, Recall,
F-score

N-BaIoT dataset

Ruiz-Villafranca et al. [25] 2023 MECInOT
Accuracy,
Precision, Recall,
F-score

Mendeley
dataset

Rookard and
Khojandi [26] 2023 Deep Q-network Accuracy -

Mengash et al. [27] 2023 SRO-MLCOSN
model

Accuracy,
Precision, Recall,
F-score

-

3. The Proposed Model

This paper uses an automated phishing attack detection method, the BHPO-MLPAD
technique, in the IoT environment. The BHPO-MLPAD technique can find phishing attacks
through feature selection and classification. In the presented BHPO-MLPAD technique, a
series of subprocesses are followed: BHPO-based feature subset selection, CFNN- based
attack detection, and VFFO-related parameter tuning. Figure 1 depicts the workflow of the
BHPO-MLPAD approach.
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3.1. BHPO-Based Feature Selection

Here, the BHPO algorithm primarily chooses an optimal subset of features and re-
duces the computation complexity. HPO is a newly developed metaheuristic approach to
resolving the optimization problem [28]. This model is stimulated by predatory behavior
between predator animals, like leopards, lions, and wolves, and prey, including gazelles,
deer, and stags. The calculation method and principles are referred to as Naruei.

As per Naruei, the typical HPO technique performs better in resolving continuity
issues but because of the uniqueness of discrete problems, the continuous HPO technique
could not attain the best solutions. The “0–1” problem can be an integer programming
problem, mathematically expressed below:

max Z =
D

∑
i=1

qiX i

s.t.
D

∑
i=1

ωixi < V, (1)

xi ∈ {0, 1}, i = 1, 2, · · · , D.
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In Equation (1), D denotes the overall amount of items, χi indicates the i-th items
chosen by the travelers, the respective weight is ωi, the value is qi, and V signifies the
maximal load.

Since the “0–1” problem restricts all the dimensions of the parameter to 0 or 1, it was
not appropriate to apply the continuous method to resolve the problem; a binary discrete
algorithm was used to resolve these problems. A binary HPO technique is developed that
could efficiently resolve the ”0–1” issues making the typical HPO method inappropriate
for resolving discreteness [29].

The generation model of the initial population is given below:

xj =

{
1 if R1 > 0.5
0 otherwise

(2)

In Equation (2), xi shows the location of its dimensions in all the individuals, and
R1 means the randomly generated value within [0–1]. The location of every individual’s
dimensions in the population comprises 0 or 1 once the population is initialized. Whether
this location is 0 or 1 is defined by the random value within [0, 1] produced by this location.
When the randomly generated value is more extensive than 0.5, this location is 1; or else,
this location is 0.The metaheuristics approach has different ways to expand the continuity
model into a binary model; however, it is the most effective and easiest way to utilize the
transfer function. A transfer function mapped the continuous real value of inputs to values
within [0,1]. There are different types of transfer functions; here, we apply the more often
used transformation function, that is, Sigmoid function:

S(x(t + 1)) =
1

1 + e−x(t+1)
(3)

In Equation (3), x(t + 1) denotes the prey location or hunter for the following iteration.
Even though the individual in the population was normalized through the transformation
function, it is still essential to transform the mapped value from zero to one:

x(t + 1) =

{
0 if S(x(t + 1)) ≥ R2

1 if S(x(t + 1)) < R2
(4)

In Equation (4), R2 denoted the randomly generated constant within [0, 1].
Once the typical HPO approach upgrades the location of prey or hunter, the binary

solution is effectively attained by discrete processing [30]. The binary Hunter–prey opti-
mization (BHPO) technique maintains the features of the typical HPO method.

3.2. Phishing Attack Detection

At this stage, the phishing attack detection process is performed by the CFNN model.
CFNN is a kind of NN that performs similarly to an FFNN. The major difference between
FNN and CFNN is that it has a link with the prior HLs and input that provides the benefits
of integrating the nonlinear relationships without eliminating the linear relationships
between output and input [31]. Furthermore, it is a standard network since it needs fewer
neurons to resolve the problems than FNN, making it efficient and compact. It includes
hidden, input, and output layers. All the layers have different neurons and each layer is
connected. Figure 2 illustrates the infrastructure of CFNN.
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Utilizing the data from the input layer (Ii), a weighted sum can be defined by a biased
value (bi), and the summation function, that is commonly an endless number, is included to
alter the outputs. The activation function ( fact) was leveraged for transferring the weighted
sum to the output value [32]. Here, activation functions are applied for output, and hidden
layers are pure linear (a2) and tangent sigmoid (a), formulated as follows:

a1 =
1− e−2x

1 + e−2x (5)

a2 = x

The calculation at single hidden neuron (H) and output neuron (Out) are given below:

Hi = fact

(
m

∑
i=0

(
Ii ×Wij

)
+ bi

)
(6)

Outk = fact

(
n

∑
k=0

(Hj ×Wjk + Ii ×Wik) + bk

)
(7)

where Hj denotes the hidden neuron, Wij, Wjk, and Wik represent the weight vector, and
bk indicates the biased value.
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3.3. VFFO-Based Parameter Tuning

Finally, the VFFO algorithm is used to adjust the parameter values of the CFNN model.
The FFO algorithm is a recent approach to search for global optimization depending on
foraging behaviors of FFs [33]. The optimization method is split into two stages. Firstly,
the FF population exploits an olfactory search to discover the optimum solution, and later,
other FFs exploit a visual search to determine the optimum individual and fly toward the
direction. This can be repetitive until the fittest solution is found.

The primary steps of the FFO are given below:
Step 1: Randomly initialize the location of the FF population:

Init X−axis, Init γ−axis (8)

Step 2: An FF performs a random search for generating a new location:{
Xi = X−axis + Random Value
γi = γ−axis + Random Value

(9)

Step 3: Compute the distance between the origin and the individual FF and later attain
the taste judgment value Si:

Disti = sqrt
(

X2
i + γ2

i

)
(10)

Si =
1

Disti
(11)

Step 4: The taste judgment values substituted with the judgment function for obtaining
fitness) value of the FFs:

Smell(i) = Function(S) (12)

Step 5: Retain optimum fitness fruit fly:

[bestSmell bestIndex] = min(Smell) (13)

Step 6: Record the fitness value and location of the better individuals. Next, each of
the flies fly toward the location using a visual search:

Smellbest = bestSmell (14){
X−axis = X(bestIndex)
γ−axis = γ(bestIndex)

(15)

Step 7: In an iterative operation, repeat steps 2 to 6; the optimum FF is output once the
maximal iterative value is obtained.

The FFO algorithm has the lesser control parameter, usability, and simple structure,
and its running speed was very fast [34]. But the FFO has related problems to other SI
techniques. The optimization can be disorderly and blind, and the search range was smaller,
which leads to local optimal solutions and lower optimization accuracy that are easier to
fall into local optima because of the random search step sizes leveraged in the process of
iterative optimization. In the VFFO method, a dynamic search step size was exploited
to enhance the optimization method of the FFO in response to this deficiency, using the
ordered convergence features of function to optimize the algorithm efficacy and balance
the local optimization and global search abilities:

lv = ei/gen − w ∗ i ∗ e−i/gen (16)

where i characterizes the existing FF individual, gen denotes the existing amount of iterations,
and w shows the weight factor of 0 to 1. To explain the search curve, every generation of
search steps has taken a minimal value. The population size was 50, and the maximal amount
of iterations was 500 once the weight factor was fixed at 0.8. The variable step sizes enhance
the range of search step sizes which change in the original model, considerably extending an
efficient searching space of the model and enhancing a variety of solutions. Moreover, the
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search step size could attain a convergence rate with the rise in iteration, which makes the
algorithm’s resolving procedure effective and orderly, efficiently enhancing the optimization
performance and resolving the drawbacks of random search step size [35].

The fitness selection was a crucial factor in the VFFO approach. Solution encoding
was utilized for assessing the goodness of solution candidate. The accuracy value was the
major condition used to devise a fitness function:

Fitness = max (P) (17)

P =
TP

TP + FP
(18)

where FP and TP indicate the false and true positive values.

4. Experimental Evaluation

The proposed model is simulated using the Python 3.6.5 tool. The outcomes of the
BHPO-MLPAD technique can be investigated on the UNSW dataset [36], which holds 6000
samples and six classes, as provided in Table 2.

Table 2. Details of the dataset.

Class No. of Samples

Normal 1000
Fuzzers 1000

DoS 1000
Analysis 1000
Exploits 1000
Generic 1000

Total Number of Samples 6000

Figure 3 exhibits the classifier results of the BHPO-MLPAD method under the test
dataset. Figure 3a,b portrays the confusion matrix rendered by the BHPO-MLPAD approach
on 70:30 of TRP/TSP. The result indicated that the BHPO-MLPAD algorithm has precisely
classified and identified all six class labels. Likewise, Figure 3c reveals the PR analysis
of the BHPO-MLPAD method. The figures stated that the BHPO-MLPAD methodology
has gained maximal PR performance under six classes. Eventually, Figure 3d shows the
ROC study of the BHPO-MLPAD method. The figure depicted that the BHPO-MLPAD
algorithm has productive outcomes with higher ROC values under six class labels.

In Figure 4, the detection outcomes of the BHPO-MLPAD technique are clearly stated
under 70% of TRP. The experimental outcomes highlighted that the BHPO-MLPAD tech-
nique recognized six types of classes. In the normal class, the BHPO-MLPAD technique
attains accuy of 99.38%, precn of 98.30%, recal of 98.02%, Fscore of 98.16%, and AUCscore of
98.84%. Also, in the Fuzzers class, the BHPO-MLPAD method reaches accuy of 99.33%,
precn of 97.69%, recal of 98.26%, Fscore of 97.98%, and AUCscore of 98.90%. Additionally, in
the DoS class, the BHPO-MLPAD approach reaches accuy of 99.02%, precn of 97%, recal of
97.40%, Fscore of 97.20%, and AUCscore of 98.38%. Lastly, in the Generic class, the BHPO-
MLPAD algorithm achieves accuy of 98.93%, precn of 97.11%, recal of 96.42%, Fscore of
96.76%, and AUCscore of 97.92%.



Sensors 2023, 23, 7207 10 of 17
Sensors 2023, 23, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 3. Classification outcome of (a,b) Confusion matrices, (c) PR-curve, and (d) ROC-curve. 

The overall performance of the BHPO-MLPAD technique is revealed in Table 3. 

Table 3. Detection outcome of the BHPO-MLPAD approach on 70:30 of TRP/TSP. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

Training Phase (70%) 

Normal 99.38 98.30 98.02 98.16 98.84 

Fuzzers 99.33 97.69 98.26 97.98 98.90 

DoS 99.02 97.00 97.40 97.20 98.38 

Analysis 99.19 98.80 96.20 97.48 97.99 

Exploits 98.81 95.20 97.68 96.42 98.36 

Generic 98.93 97.11 96.42 96.76 97.92 

Average 99.11 97.35 97.33 97.33 98.40 

Testing Phase (30%) 

Normal 99.61 98.31 99.32 98.81 99.49 

Fuzzers 99.28 97.75 98.06 97.91 98.80 

Figure 3. Classification outcome of (a,b) Confusion matrices, (c) PR-curve, and (d) ROC-curve.



Sensors 2023, 23, 7207 11 of 17

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17 
 

 

DoS 99.06 97.37 96.28 96.82 97.91 

Analysis 98.78 97.12 95.89 96.50 97.64 

Exploits 98.83 95.58 97.74 96.65 98.40 

Generic 99.00 97.65 96.36 97.00 97.95 

Average 99.09 97.30 97.28 97.28 98.36 

 

Figure 4. Detection outcome of the BHPO-MLPAD approach on 70% of TRP. 

In Figure 5, the detection outcomes of the BHPO-MLPAD method are clearly stated 

under 30% of TSP. The outcomes emphasized that the BHPO-MLPAD algorithm recog-

nized six types of classes. In the normal class, the BHPO-MLPAD method reaches 

�� �����  of 99.61%, �����  of 98.31%, �����  of 99.32%, ������  of 98.81%, and �������� 

of 99.49%. Similarly, in the Fuzzers class, the BHPO-MLPAD method a�ains �����  of 

99.28%, �����  of 97.75%, �����  of 98.06%, ������  of 97.91%, and ��������   of 98.80%. 

Furthermore, in the DoS class, the BHPO-MLPAD method a�ains ����� of 99.06%, ����� 

of 97.37%, ����� of 96.28%, ������ of 96.82%, and �������� of 97.91%. Lastly, in the Ge-

neric class, the BHPO-MLPAD approach a�ains an ����� of 99%, ����� of 97.65%, ����� 

of 96.36%, ������ of 97%, and �������� of 97.95%.  

Figure 6 inspects the accuracy of the BHPO-MLPAD method in the training and val-

idation of the test database. The result specifies that the BHPO-MLPAD method reaches 

greater accuracy values over higher epochs. As well, the greater validation accuracy over 

training accuracy displays that the BHPO-MLPAD method learns productively on the test 

database. 

Figure 4. Detection outcome of the BHPO-MLPAD approach on 70% of TRP.

The overall performance of the BHPO-MLPAD technique is revealed in Table 3.

Table 3. Detection outcome of the BHPO-MLPAD approach on 70:30 of TRP/TSP.

Class Accuy Precn Recal Fscore AUCscore

Training Phase (70%)

Normal 99.38 98.30 98.02 98.16 98.84

Fuzzers 99.33 97.69 98.26 97.98 98.90

DoS 99.02 97.00 97.40 97.20 98.38

Analysis 99.19 98.80 96.20 97.48 97.99

Exploits 98.81 95.20 97.68 96.42 98.36

Generic 98.93 97.11 96.42 96.76 97.92

Average 99.11 97.35 97.33 97.33 98.40

Testing Phase (30%)

Normal 99.61 98.31 99.32 98.81 99.49

Fuzzers 99.28 97.75 98.06 97.91 98.80

DoS 99.06 97.37 96.28 96.82 97.91

Analysis 98.78 97.12 95.89 96.50 97.64

Exploits 98.83 95.58 97.74 96.65 98.40

Generic 99.00 97.65 96.36 97.00 97.95

Average 99.09 97.30 97.28 97.28 98.36
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In Figure 5, the detection outcomes of the BHPO-MLPAD method are clearly stated
under 30% of TSP. The outcomes emphasized that the BHPO-MLPAD algorithm recognized
six types of classes. In the normal class, the BHPO-MLPAD method reaches an accuy of 99.61%,
precn of 98.31%, recal of 99.32%, Fscore of 98.81%, and AUCscore of 99.49%. Similarly, in the
Fuzzers class, the BHPO-MLPAD method attains accuy of 99.28%, precn of 97.75%, recal of
98.06%, Fscore of 97.91%, and AUCscore of 98.80%. Furthermore, in the DoS class, the BHPO-
MLPAD method attains accuy of 99.06%, precn of 97.37%, recal of 96.28%, Fscore of 96.82%, and
AUCscore of 97.91%. Lastly, in the Generic class, the BHPO-MLPAD approach attains an accuy
of 99%, precn of 97.65%, recal of 96.36%, Fscore of 97%, and AUCscore of 97.95%.
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Figure 6 inspects the accuracy of the BHPO-MLPAD method in the training and validation
of the test database. The result specifies that the BHPO-MLPAD method reaches greater
accuracy values over higher epochs. As well, the greater validation accuracy over training
accuracy displays that the BHPO-MLPAD method learns productively on the test database.

The loss analysis of the BHPO-MLPAD method in training and validation is shown
on the test database in Figure 7. The result indicates that the BHPO-MLPAD algorithm
reaches adjacent training and validation loss values. The BHPO-MLPAD method learns
productively on the test database.

A detailed comparative result of the BHPO-MLPAD technique is reported in Table 4
and Figure 8. The results stated that the GA-LR and TS-RF models have revealed worse
results over other models.



Sensors 2023, 23, 7207 13 of 17

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 5. Detection outcome of BHPO-MLPAD approach on 30% of TSP. 

 

Figure 6. Accuracy curve of the BHPO-MLPAD approach. Figure 6. Accuracy curve of the BHPO-MLPAD approach.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 17 
 

 

The loss analysis of the BHPO-MLPAD method in training and validation is shown 

on the test database in Figure 7. The result indicates that the BHPO-MLPAD algorithm 

reaches adjacent training and validation loss values. The BHPO-MLPAD method learns 

productively on the test database. 

 

Figure 7. Loss curve of the BHPO-MLPAD approach. 

A detailed comparative result of the BHPO-MLPAD technique is reported in Table 4 

and Figure 8. The results stated that the GA-LR and TS-RF models have revealed worse 

results over other models. 

Table 4. Comparative outcome of the BHPO-MLPAD approach with other methodologies. 

Technology ����� ����� ����� ������ 

GA-LR 81.42 83.03 85.93 85.95 

TS-RF 83.12 83.28 83.63 85.06 

LSO-FNN 95.42 94.03 94 95.98 

SCM3-RF 95.87 94.08 94.22 93.89 

RHF-ANN 97.60 95.62 95.98 96.71 

EAFS-RF 98.36 94.08 95.41 97.01 

BHPO-MLPAD 99.11 97.35 97.33 97.33 

Figure 7. Loss curve of the BHPO-MLPAD approach.



Sensors 2023, 23, 7207 14 of 17

Table 4. Comparative outcome of the BHPO-MLPAD approach with other methodologies.

Technology Accuy Precn Recal Fscore

GA-LR 81.42 83.03 85.93 85.95
TS-RF 83.12 83.28 83.63 85.06

LSO-FNN 95.42 94.03 94 95.98
SCM3-RF 95.87 94.08 94.22 93.89

RHF-ANN 97.60 95.62 95.98 96.71
EAFS-RF 98.36 94.08 95.41 97.01

BHPO-MLPAD 99.11 97.35 97.33 97.33
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Along with the aforementioned, the LSO-FNN and SCM3-RF models have obtained
poor performance. On the contrary, the RHF-ANN and EAFS-RF models attained slightly
improved results. However, the BHPO-MLPAD technique stated the maximum perfor-
mance of the BHPO-MLPAD technique over other models with accuy of 99.11%, precn of
97.35%, recal of 97.33%, and Fscore of 97.33%.

Finally, the brief computation time (CT) results of the BHPO-MLPAD method are
compared with other models in Table 5 and Figure 9. The results showed that the BHPO-
MLPAD technique accomplished the least CT of 0.17 s. On the contrary, the existing
models such as GA-LR, TS-RF, LSO-FNN, SCM3-RF, RHF-ANN, and EAFS-RF models have
obtained increased CT values of 0.30 s, 0.28 s, 0.25 s, 0.30 s, 0.27 s, and 0.28 s, respectively.
These results highlighted that the BHPO-MLPAD technique achieved better performance
over other models in the IoT environment.



Sensors 2023, 23, 7207 15 of 17

Table 5. CT outcome of the BHPO-MLPAD approach with other methodologies.

Technology Computational Time (s)

GA-LR 0.30
TS-RF 0.28

LSO-FNN 0.25
SCM3-RF 0.30

RHF-ANN 0.27
EAFS-RF 0.28

BHPO-MLPAD 0.17
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5. Conclusions

In this paper, an automated phishing attack detection technique, named BHPO-
MLPAD technique, has been used in the IoT environment. The BHPO-MLPAD technique is
able to detect phishing attacks through feature selection and classification. In the presented
BHPO-MLPAD technique, a series of subprocesses are followed: BHPO-based feature
subset selection, CFNN-based attack detection, and VFFO-based parameter tuning. Here,
the BHPO algorithm primarily chooses an optimal subset of features and reduces the
computation complexity. Next, the phishing attack detection process is performed by the
CFNN method. Finally, the VFFO algorithm is utilized to adjust the parameter values of
the CFNN method. The performance assessment of the BHPO-MLPAD method takes place
on the benchmark dataset. The outcomes inferred the betterment of the BHPO-MLPAD
method over compared approaches in terms of various evaluation measures.
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