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Abstract: The colorimetric conversion of wide-color-gamut cameras plays an important role in the
field of wide-color-gamut displays. However, it is rather difficult for us to establish the conversion
models with desired approximation accuracy in the case of wide color gamut. In this paper, we
propose using an optimal method to establish the color conversion models that change the RGB space
of cameras to the XYZ space of a CIEXYZ system. The method makes use of the Pearson correlation
coefficient to evaluate the linear correlation between the RGB values and the XYZ values in a training
group so that a training group with optimal linear correlation can be obtained. By using the training
group with optimal linear correlation, the color conversion models can be established, and the
desired color conversion accuracy can be obtained in the whole color space. In the experiments, the
wide-color-gamut sample groups were designed and then divided into different groups according to
their hue angles and chromas in the CIE1976L*a*b* space, with the Pearson correlation coefficient
being used to evaluate the linearity between RGB and XYZ space. Particularly, two kinds of color
conversion models employing polynomial formulas with different terms and a BP artificial neural
network (BP-ANN) were trained and tested with the same sample groups. The experimental results
show that the color conversion errors (CIE1976L*a*b* color difference) of the polynomial transforms
with the training groups divided by hue angles can be decreased efficiently.

Keywords: colorimetric characterization; color conversion; digital camera; polynomial transform

1. Introduction

The colorimetric conversion of digital cameras plays an important role not only in the
field of color display but also in many other fields such as color measurement, machine
vision, and so on. Today, with the rapid development of wide-color-gamut display tech-
nology, a series of color display standards with wide color gamut have been put forward,
such as Adobe-RGB, DCI-P3, and Rec.2020. Meanwhile, many kinds of multi-primary
display systems with wide color gamut have been demonstrated [1–9]. Figure 1a shows
the wide-color-gamut blocks displayed on a six-primary LED array display developed
by our laboratory. It can be seen from Figure 1b that the color gamut of the six-primary
LED array display is much wider than that of the sRGB standard. To meet the needs
of wide-color-gamut display technology, it is necessary for us to develop a colorimetric
characterization method for digital cameras in the case of wide color gamut.

Until now, different kinds of colorimetric characterization methods have been devel-
oped, including polynomial transforms [10–16], artificial neural networks (ANN) [17–23],
and look-up tables [24]. In 2016, Gong et al. [12] demonstrated a color calibration method
between different digital cameras with ColorChecker SG cards and the polynomial trans-
form method and achieved an average color difference of 1.12 (CIEDE2000). In 2022,
Xie et al. [18] proposed a colorimetric characterization method for color imaging systems
with ColorChecker SG cards based on a multi-input PSO-BP neural network and achieved
average color differences of 1.53 (CIEDE2000) and 2.06 (CIE1976L*a*b*). However, the
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methods mentioned above were mainly used for cameras with standard color space such as
an sRGB system. In 2023, Li et al. [17] employed multi-layer BP artificial neural networks
(ML-BP-ANN) to realize colorimetric characterization for wide-color-gamut cameras, but
the color conversion differences of some high-chroma samples were undesirable.
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In addition to conventional multi-layer BP artificial neural networks, the prevailing
deep learning neural networks have also been used for the color conversion of color imagers.
For example, in 2022, Yeh et al. [19] proposed using a lightweight deep neural network
model for the image color conversion of underwater object detection. However, the aim of
the model proposed by Yeh et al. was to transform color images to corresponding grayscale
images to solve the problem of underwater color absorption; therefore, it had nothing to do
with colorimetric characterization. For another example, in 2023, Wang et al. [21] proposed
a five-stage convolutional neural network (CNN) to model the colorimetric characterization
of a color image sensor and achieved an average color difference of 0.48 (CIE1976L*a*b*) for
1300 color samples from IT8.7/4 cards. It should be noted that the color difference accuracy
achieved by Wang et al.’s CNN is roughly equal to that achieved by the ML-BP-ANN of
Li et al. [17] for samples from ColorChecker SG cards. However, in the architectures of the
CNN proposed by Wang et al., a BP neural network (BPNN) with a single hidden layer and
2048 neurons in the hidden layer was employed to perform color conversion from the RGB
space of the imager to the L*a*b* space of the CIELAB system. This indicates that the CNN
proposed by Wang et al. cannot yet replace the BP neural network. Moreover, another
interesting neural network model named the radial basis function neural network (RBFNN)
was demonstrated for the colorimetric characterization of digital cameras by Ma et al. [19]
in 2020. The architecture of the RBFNN used by Ma et al. was made up of an input
layer, a hidden layer, and an output layer, and the error back-propagation (BP) algorithm
was also used for the training of the RBFNN. In summary, until now, different kinds of
artificial neural networks used for color conversion have been put forward; however, neural
networks employing the BP algorithm continue to prevail.

In this paper, to improve the colorimetric characterization accuracy of wide-color-
gamut cameras, an optimization method for training samples was proposed and studied.
In the method, the training and testing samples were grouped according to hue angles
and chromas, and by using the Pearson correlation coefficient as the evaluation standard,
the linear correlation between the RGB and XYZ of the sample groups could be evaluated.
Meanwhile, two colorimetric characterization methods—polynomial formulas with dif-
ferent terms and the multi-layer BP artificial neural network (ML-BP-ANN)—were used,
respectively, to verify the efficiency of the proposed method.
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2. The Problems of Wide Color Gamut

Practically, the RGB values of a digital camera can be calculated with Formula (1),
where r(λi), g(λi), and b(λi) denote the spectral sensitivities of the RGB channels, respec-
tively, ρ(λi) denotes the spectral reflectance of the object, S(λi) denotes the spectrum of the
light source, and kr, kg, and kb and are the normalized constants.

R = kr∑
i

S(λi)ρ(λi)r(λi)

G = kg∑
i

S(λi)ρ(λi)g(λi)

B = kb∑
i

S(λi)ρ(λi)b(λi)

 (1)

Meanwhile, the tristimulus of the object can be calculated with Formula (2), where
x(λi), y(λi), and z(λi) denote the color matching functions of a CIE1931XYZ system, and k
is a normalized constant.

X = k∑
i

S(λi)ρ(λi)x(λi)∆λ

Y = k∑
i

S(λi)ρ(λi)y(λi)∆λ

Z = k∑
i

S(λi)ρ(λi)z(λi)∆λ

 (2)

It can be seen from Formulas (1) and (2) that there exists a nonlinear conversion
between the (R, G, B) and the (X, Y, Z). In fact, different methods have been used to model
the conversion from the RGB space to the XYZ space [10–24]. Among them, polynomial
transforms and the BP artificial neural network (BP-ANN) are the most popular.

2.1. Polynomial Transforms

When the color sample sets (Ri, Gi, Bi) and (Xi, Yi, Zi) of digital cameras are given,
where i = 1 to N, and N is the total number of samples, a polynomial transformation model
can be established for converting the [R, G, B] space to the [X, Y, Z] space for the cameras.

The simplest method is a linear model, as follows:

[X, Y, Z]T = A [R, G, B]T (3)

where A is a matrix:

A =

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 (4)

Usually, by using the color sample sets (Ri, Gi, Bi) and (Xi, Yi, Zi) of the cameras, and
the least squares method, the elements of matrix A can be estimated, and then the linear
transformation model Formula (3) can be established.

However, for digital cameras, the conversion between the (R, G, B) space and the (X,
Y, Z) space is nonlinear, so it is necessary to adopt the nonlinear models as follows.

The square model:

[X, Y, Z]T = A[1, R, G, B, RG, RB, BG, R2, G2, B2]
T

(5)

The cubic model:

[X, Y, Z]T = A[1, R, G, B, RG, RB, BG, R2, G2, B2, R3, G3, B3, RGB · · · ]T (6)

The quartic model:

[X, Y, Z]T = A[1, R, G, B, RG, RB, BG, R2, G2, B2, R3, G3, B3, RGB · · · , R4, G4, B4 · · · ]T (7)
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In summary, polynomial transforms can be expressed with Formulas (8) and (9),
where A is a constant matrix of three lines by n rows, and n is the number of terms in a
polynomial formula.

[X, Y, Z]T = A[1, R, G, B, RG, RB, BG, R2, G2, B2, R3, G3, B3, RGB, . . . R4, G4, B4 . . .]
T

(8)

A =

 a1 a2 · · · an
b1 b2 · · · bn
c1 c2 · · · cn

 (9)

To conclude, the elements of matrix A can be decided by means of the least square
method, Wiener estimation method, principal component analysis, and so on. In the paper,
the least squares method was used to estimate the elements of matrix A.

2.2. Artificial Neural Network ML-BP-ANN

The multi-layer BP artificial neural network (ML-BP-ANN) can also be used to perform
the conversion from the [R, G, B] space to the [X, Y, Z] space in the case of wide color
gamut [17]. The architecture of an ML-BP-ANN is shown in Figure 2, where W(0), W(1),
and W(q) denote the link weights, and θ denotes the threshold of the neurons, and ai, bj,
dp denote the output values of the neurons in each layer, respectively. It should be noted
that the number of hidden layers and the neurons in each hidden layer can be decided
based on the training and testing experiments [17], and the values of the link weights and
the values of the thresholds can be decided through training. More importantly, the color
sample sets (Ri, Gi, Bi) and (Xi, Yi, Zi) for the training should be uniformly distributed in
the whole color space of the cameras.
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In order to obtain desired conversion accuracy for all color samples, the training
samples should be uniformly distributed in the whole color space. For instance, when the
chromaticity coordinates of the color samples are distributed within a color gamut area such
as the sRGB gamut triangle, the desired conversion accuracy can be easily obtained using
the polynomial formulas with the terms of the cubic, the quartic, or the quantic [11–13,16].

However, in the case of wide color gamut, the chromaticity coordinates of the samples
are distributed in the whole color space such as in a CIE1931XYZ system, and the chromas
of the samples are usually bigger than those of conventional samples such as the IT8
chart, the Munsell or NCS system, the Professional Colour Communicator (PCC), X-rite
ColorChecker SG, and so on. Therefore, in the case of wide color gamut, it is difficult for us
to establish the color conversions with desired conversion accuracy.

To solve the problem above, we propose using an optimal method to facilitate
color conversions for wide-color-gamut cameras. The method makes use of the Pearson
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correlation coefficient to evaluate the linear correlation between the RGB values and the
XYZ values in a training group, so that a training group with optimal linear correlation
can be obtained and color conversion models with desired approximation accuracy can
be established.

3. Evaluating the Samples Using Linear Correlation

Theoretically, the Pearson correlation coefficient can be used to describe the linear
correlation between two random variables. Similarly, we can use the Pearson correlation
coefficient to evaluate the linear correlation between the RGB space of a digital camera and
the XYZ space of a CIE1931XYZ system. Therefore, in a sample group, the (Ri, Gi, Bi) and
the (Xi, Yi, Zi) are supposed as two random variables, respectively, the vectors

→
u i,
→
v i are

used to describe the coordinates (Ri, Gi, Bi) and (Xi, Yi, Zi), respectively, and ui, vi are used
to express the module of

→
u i and

→
v i, respectively, as shown in Formula (10).

→
u i = (Ri, Gi, Bi)
→
v i = (Xi, Yi, Zi)

ui =
∣∣∣→u i

∣∣∣ = √Ri
2 + Gi

2 + Bi
2

vi =
∣∣∣→v i

∣∣∣ = √Xi
2 + Yi

2 + Zi
2


(10)

Hence, the Pearson correlation coefficient (PCC) between (Ri, Gi, Bi) and (Xi, Yi, Zi)
can be calculated using Formula (11).

PCC =

n
∑

i=1
(ui − ui)(vi − vi)√

n
∑

i=1
(ui − ui)

2

√
n
∑

i=1
(vi − vi)

2
(11)

where n is the number of the samples in a sample group.
Beside the Pearson correlation coefficient mentioned above, there are many other

statistical methods to analyze the relationship between (Ri, Gi, Bi) and (Xi, Yi, Zi). For
example, the standard deviations σu and σv as shown in Formula (12) can be used to
estimate the similarity between the vectors

→
u i and

→
v i. However, the values of σu and σv

here are variable along with the values of (Ri, Gi, Bi) and (Xi, Yi, Zi), so it is not a suitable
method to solve our problem.σu =

√√√√√ n
∑

i=1
(ui − ui)

2

n
, σv =

√√√√√ n
∑

i=1
(vi − vi)

2

n
(12)

Beside Formula (12), many other methods can be used to calculate the similarity be-
tween (Ri, Gi, Bi) and (Xi, Yi, Zi). For example, both wavelet analysis and the gray symbiotic
matrix can be used to evaluate the similarity between the chromaticity coordinate patterns
of (Ri, Gi, Bi) and (Xi, Yi, Zi). Obviously, such methods are much more complicated than
the Pearson correlation coefficient method.

4. Experiment
4.1. The Spectral Sensitivity of the Camrea

In order to calculate the RGB values with Formula (1), it is necessary to obtain the
spectral sensitivity curves of the camera. Figure 3 shows the spectral sensitivity curves of
a Canon1000D camera (Canon Inc., Tokyo, Japan) from 400 nm to 700 nm at an interval
of 10 nm. The experimental setups for measuring the spectral sensitivity functions r(λ),
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g(λ), and b(λ) consisted of a monochrometor (SOFN 71SW151, SOFN Instruments Co.,
Ltd., Beijing, China), a xenon lamp (SOFN 71LX150A, SOFN Instruments Co., Ltd., Beijing,
China), an integrating sphere light equalizer, and a set of reference detectors (Thorlabs
PDA100A, Thorlabs Inc., Newton, NJ, USA), wherein spectral sensitivity was characterized
by the National Institute of Metrology China. Note that, in the experiment, the white point
of the camera was set to D65.
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Figure 3. The relative spectral sensitivity curves of the RGB channels of Canon1000D.

4.2. Preparing the Sample Groups
4.2.1. The Basic Samples

In order to calculate the RGB values with Formula (1) and the XYZ values with
Formula (2), respectively, the spectral reflectance function ρ(λ) of the samples should be
prepared. In our experiment, the real color blocks of ColorChecker-SG were selected as a
basic sample group. Figure 4a shows the spectral reflectance curves of the 96 ColorChecker-
SG blocks measured using the spectrometer X-rite 7000A with 8◦ degree (X-rite Inc., Grand
Rapids, MI, USA), and Figure 4b shows the CIE1931xy chromaticity coordinates of them,
where the illuminant is D65. It can be seen from Figure 4b that the chromaticity coordinates
of the 96 ColorChecker-SG blocks were almost distributed within the sRGB gamut triangle,
therefore it is not suitable for the colorimetric characterization of the digital cameras in the
case of wide color gamut.

4.2.2. Extending the Samples

In order to obtain samples with wide color gamut, the spectral reflectance curves of
ColorChecker-SG F3 and F4, as shown in Figure 4a, were used, respectively, to generate
samples distributed on the whole CIE1931XYZ space. The method for the generation of
wide-color-gamut samples can be found in the reference [17]. Figure 5a,d show examples
of hue extension obtained by shifting the main wavelength of the spectrum, Figure 5b,e
show examples of Chroma extension obtained by sharpening or passivating the spectrum,
and Figure 5c,f show examples of lightness extension obtained by scaling the peak value
of the spectrum. Therefore, 5529 spectral reflectance curves were generated. By adding
the 5529 curves with 96 real curves of ColorChecker-SG, we had 5625 spectral reflectance
curves in total. Then, the 2813 spectral reflectance curves for the training groups were
uniformly drawn from the 5625 curves, and the remanining 2812 curves were used for
the testing groups.
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Figure 5. Illustrations of the spectral reflectance curves extended from ColorChecker-SG 4F and 3F,
respectively: (a) Hue extension of F4. (b) Chroma extension of F4. (c) Lightness extension of F4.
(d) Hue extension of F3. (e) Chroma extension of F3. (f) Lightness extension of F3.

By using Formulas (1) and (2), the (R, G, B) and the (X, Y, Z) of the 2813 training
groups and the 2812 testing groups were calculated, respectively. As results, the (X, Y,
Z) distributions of the samples extended from F3 and F4 in the standard CIEXYZ color
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space are shown in Figure 6a,b, respectively, the (x, y) coordinates (CIE1931xy) of the
2813 training groups and the 2812 testing groups are shown in Figure 7a,b, respectively,
and the (a*, b*) (CIELAB) coordinates of them are shown in Figure 8a,b, respectively. It can
be seen from Figures 6 and 7 that the generated samples were distributed in most of the
CIE1931XYZ color space.
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Figure 7. The (x, y) coordinates (CIE1931xy) of total training and testing samples as shown in blue
dots: (a) 2813 training samples; (b) 2812 testing samples.

It should be noted that, in the experiment, the CIE illuminant D65 was used as the light
source S(λi) in Formulas (1) and (2), respectively, and the R, G and B values were normal-
ized to 255 according to the white point. However, it can be seen from Formulas (1) and (2)
that the relationship between the (R, G, B) and the (X, Y, Z) was influenced by the spectrum
of the light source S(λi), and if the light source S(λi) was changed, the (R, G, B) and the
(X, Y, Z) of the samples should be recalculated.
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4.2.3. Dividing the Samples

In order to find the optimal training groups and testing groups, different division
methods have been tried. For the first method, according to the hue angles, the samples
were divided into groups of 0–90, 90–180, 180–270, and 270–360, totaling 4 parts in CIELAB
color space, and the calculation formula is shown in Equation (13). As results, the 2813 train-
ing samples were divided into 4 training groups according to their hue angles (hab) as
shown in Figure 9a–d and Table 1, and accordingly, the 2812 testing samples were divided
into 4 testing groups according to their hue angles (hab) as described in Table 2.

hab = arc tan(b∗/a∗) (13)

C∗ab =

√
(b∗)2 + (a∗)2 (14)

For the second method, according to the chromas (C∗ab), the samples were divided
into the groups of 0–60, 0–70, and greater than 70, totaling 3 parts, and the calculation
formula is shown in Equation (14). As results, the 2813 training samples were divided into
3 training groups according to their chromas (C∗ab) as shown in Figure 10a–c and Table 3,
and accordingly, the 2812 testing samples were divided into 3 testing groups according to
their chromas (C∗ab) as described in Table 4.

4.3. The Correlation Coefficients

By using Formulas (10) and (11), the Pearson correlation coefficients between the
(R, G, B) and the (X, Y, Z) of different sample groups were calculated, respectively, and
the calculation results are listed in Tables 1–4, respectively. It can be seen from Table 1
that all the Pearson correlation coefficients of the training groups Q1, Q2, Q3, and Q4,
which were divided by the hue angles (hab), are bigger than that of the 2813 training
group. Similarly, it can be seen from Table 2 that all the Pearson correlation coefficients
of the testing groups Q1, Q2, Q3, and Q4 are bigger than that of the 2812 testing group. It
indicates that sample groups with better linear correlation can be obtained using the hue
angles (hab). However, it can be seen from Table 3 that the Pearson correlation coefficients
of the training groups C1, C2, and C3, which were divided by the chromas (C∗ab), get
smaller with the increase in the chromas. It indicates that their linear correlation will get
worse with the increase in the chromas.
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Figure 9. The (a*, b*) (CIELAB) coordinates of the training groups as shown in blue dots divided by
the hue angles (hab) from 2813 training samples: (a) The division Q1 with the hue angles from 0 to 90.
(b) The division Q2 with the hue angles from 90 to 180. (c) The division Q3 with the hue angles from
180 to 270. (d) The division Q4 with the hue angles from 270 to 360.

Table 1. Pearson correlation coefficients (PCC) of different training groups divided by hue angles.

Division Q1train Q2train Q3train Q4train Q2813train Q96train

Number of samples 1089 801 279 644 2813 96
Range of hue angle hab 0 to 90 90 to 180 180 to 270 270 to 360 0 to 360 0 to 360

PCC 0.942 0.964 0.938 0.966 0.924 0.994

Table 2. Pearson correlation coefficients (PCC) of different testing groups divided by hue angles.

Division Q1test Q2test Q3test Q4test Q2812test

Number of samples 1099 802 275 636 2812
Range of hue angle hab 0 to 90 90 to 180 180 to 270 270 to 360 0 to 360

PCC 0.940 0.966 0.937 0.963 0.922
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Figure 10. The (a*, b*) coordinates (CIELAB) of the training groups divided by the chromas (C*ab)
from 2813 training samples: (a) The division C1 with the chromas from 0 to 60. (b) The division C2
with the chromas from 0 to 70. (c) The division C3 with the chromas above 70.

Table 3. Pearson correlation coefficients (PCC) of different training groups divided by chromas.

Division C1train C2train C3train

Number of samples 1037 1488 1325
Range of chroma C*

ab 0 to 60 0 to 70 above 70
PCC 0.990 0.983 0.844

Table 4. Pearson correlation coefficients (PCC) of different testing groups divided by chromas.

Division C1test C2test C3test

Number of samples 1027 1491 1321
Range of chroma C*

ab 0 to 60 0 to 70 above 70
PCC 0.989 0.981 0.842

4.4. Training and Testing

Using the training groups and the testing groups above, the multi-layer BP artificial
neural network (ML-BP-ANN) with the architecture of 20 (neurons) × 4 (layers) and
20 (neurons) × 8 (layers), and the polynomial formulas with different numbers of terms,
including the quadratic, the cubic, the quartic, and the quantic, which were described in
Section 2, were trained and tested, respectively. In the training, the least square method was
used to decide the elements of matrix A in Formula (9). As results, the training errors and
the testing errors expressed with CIE1976 L*a*b* color difference are listed in Tables 5–8,
respectively. The distribution of the (x, y) coordinates (CIE1931xy) of the training and
testing samples converted using the quantic polynomial formula, and marked with different
color difference (CIE1976 L*a*b*) levels, are shown in Figures 11–13, respectively.

It can be seen from Tables 5–8 that the color approximation accuracy of the polynomial
formulas depends on the number of terms in the polynomial formulas, and desirable color
conversion performance was achieved using the ML-BP-ANN with the architecture of
20 × 8 and the quintic polynomial formula.



Sensors 2023, 23, 7186 12 of 16

Table 5. The CIE1976L*a*b* color differences in the training groups corresponding to Table 1.

Polynomial
Formulas and
BP-Ann

CIE1976L*a*b* Color Difference ∆Eab

Q1train Q2train Q3train Q4train Q2813train Q96train

EV. Max. EV. Max. EV. Max. EV. Max. EV. Max. EV. Max.

Quadratic 4.29 28.25 6.56 43.56 4.63 31.83 3.45 19.57 10.90 85.82 1.40 5.79
Cubic 3.52 27.93 3.09 29.79 3.92 28.56 2.86 17.87 6.50 48.76 1.08 4.76
Quartic 3.05 33.30 2.98 27.31 3.82 27.19 2.59 17.47 5.53 46.59 1.01 4.19
Quintic 2.74 29.50 2.79 27.27 3.27 25.39 1.98 21.82 4.53 79.97 0.78 3.40
Ann 20 × 4 3.04 28.76 2.87 27.35 3.25 26.12 2.01 21.16 4.66 48.77 0.82 3.52
Ann 20 × 8 2.98 27.05 2.70 26.16 3.11 24.88 1.86 20.58 4.32 45.32 0.65 3.12

Table 6. The CIE1976L*a*b* color differences in the testing groups corresponding to Table 2.

Polynomial
Formulas and
BP-Ann

CIE1976L*a*b* Color Difference ∆Eab

Q1test Q2test Q3test Q4test Q2812test

EV. Max. EV. Max. EV. Max. EV. Max. EV. Max.

Quadratic 4.31 27.56 6.56 63.25 4.89 30.83 3.44 21.03 10.99 88.26
Cubic 3.53 28.01 3.22 43.81 4.13 26.26 2.90 17.32 6.52 55.85
Quartic 3.09 36.48 3.08 43.79 4.10 26.49 2.62 14.38 5.52 48.17
Quintic 2.80 34.26 2.92 43.27 3.74 23.59 2.10 29.68 4.57 147.08
Ann 20 × 4 2.88 34.69 3.05 43.83 3.80 23.92 2.11 29.97 4.62 47.71
Ann 20 × 8 2.72 32.91 2.83 41.65 3.62 22.19 2.02 28.68 4.15 46.61

Table 7. The CIE1976L*a*b* color differences in the training groups corresponding to Table 3.

Polynomial
Formulas and BP-Ann

CIE1976L*a*b* Color Difference ∆Eab

C1train C2train C3train

EV. Max. EV. Max. EV. Max.

Quadratic 3.23 29.30 5.75 54.51 16.43 52.78
Cubic 2.25 23.06 3.13 34.75 8.67 45.57
Quartic 2.10 21.88 2.92 29.19 7.46 44.29
Quintic 1.92 19.37 2.68 24.80 5.92 43.27
Ann 20 × 4 1.98 19.96 2.79 25.12 5.96 43.33
Ann 20 × 8 1.85 17.98 2.17 23.63 5.86 42.18

Table 8. The CIE1976L*a*b* color differences in the testing groups corresponding to Table 4.

Polynomial
Formulas and BP-Ann

CIE1976L*a*b* Color Difference ∆Eab

C1test C2test C3test

EV. Max. EV. Max. EV. Max.

Quadratic 3.21 33.12 5.83 53.37 16.69 57.22
Cubic 2.20 26.08 3.11 32.24 8.81 48.29
Quartic 2.09 43.12 2.87 27.49 7.53 46.28
Quintic 1.92 19.49 2.77 46.03 5.99 47.75
Ann 20 × 4 1.94 19.06 2.79 25.77 6.04 46.73
Ann 20 × 8 1.82 17.95 2.05 23.38 5.67 45.96
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formula, and marked with different color difference levels: (a) the 2813 training samples nongrouped;
(b) the 2812 testing samples nongrouped.
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Figure 12. The (x, y) coordinates (CIE1931xy) of the samples converted using the quantic polynomial
formula, and marked with different color difference levels: (a) the 2813 training samples grouped by
hue angle (h*ab); (b) the 2812 testing samples grouped by hue angle (h*ab).
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or Q2812. It indicates that the training groups using chromas ( *

abC ) are not a correct choice 
to set up the color conversion models for the whole color space. 

(5) By comparing Figure 11 with Figures 12 and 13, we can see that in the low-chroma 
area of the CIE1931xy chromaticity diagram, the color difference levels of the samples in 
Figures 12a,b and 13a,b are correspondingly similar to those in Figure 11a,b. This indicates 
that for the samples with ordinary chromas such as the group Q96, it is unnecessary to 
divide them into sub-groups for training. 

(6) By comparing Figure 11 with Figure 12 correspondingly, we can see that, in the 
high-chroma area of the CIE1931xy chromaticity diagram, the color difference levels in 
the samples in Figure 12a,b are obviously smaller than those in Figure 11a,b. It indicates 
again that the sample groups using hue angles ( abh ) can be used to improve the color 
conversion accuracy in the whole color space. 

Figure 13. The (x, y) coordinates (CIE1931xy) of the samples converted using the quantic polynomial
formula, and marked with different color difference levels: (a) the 2813 training samples grouped by
chromas (C*ab). (b) the 2812 testing samples grouped by chromas (C*ab).
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4.5. Discussion

(1) By comparing Table 1 with Table 5, Table 2 with Table 6, Table 3 with Table 7,
and Table 4 with Table 8, respectively, we can see that for each training group or testing
group, the average and the maximum color differences (CIE1976L*a*b*) are in proportion
to the Pearson correlation coefficient of the samples group itself. It indicates that the color
approximation accuracy of both the polynomial formulas and the ML-BP-ANN can be
improved by selecting the training groups with optimal linear correlation.

(2) It can be seen from Tables 1 and 5 that the average and maximum color differences
of the group Q96 is much smaller than that of other groups because the Pearson correlation
coefficient of the group Q96 is much bigger than that of other groups. It indicates that when
the chromaticity coordinates of the color samples were limited within the ordinary color-
gamut area, such as the sRGB gamut triangle, the desired color approximation accuracy
can be easily obtained.

(3) It can be seen from Tables 5 and 6 that the average and maximum color differences
of the groups Q1, Q2, Q3, and Q4 are obviously smaller than those of the groups Q2813
or Q2812. It indicates that sample divisions by hue angles (hab) is an efficient method to
improve color conversion accuracy in the whole color space.

(4) It can be seen from Tables 5–8 that the average and maximum color differences of
the groups C1 and C2 are much smaller than those of the groups Q2813 or Q2812, whereas
the average color differences of the group C3 are bigger than those of the groups Q2813 or
Q2812. It indicates that the training groups using chromas (C∗ab) are not a correct choice to
set up the color conversion models for the whole color space.

(5) By comparing Figure 11 with Figures 12 and 13, we can see that in the low-chroma
area of the CIE1931xy chromaticity diagram, the color difference levels of the samples
in Figure 12a,b and Figure 13a,b are correspondingly similar to those in Figure 11a,b.
This indicates that for the samples with ordinary chromas such as the group Q96, it is
unnecessary to divide them into sub-groups for training.

(6) By comparing Figure 11 with Figure 12 correspondingly, we can see that, in the
high-chroma area of the CIE1931xy chromaticity diagram, the color difference levels in the
samples in Figure 12a,b are obviously smaller than those in Figure 11a,b. It indicates again
that the sample groups using hue angles (hab) can be used to improve the color conversion
accuracy in the whole color space.

(7) By comparing Figure 11 with Figure 13, we can see that in the high-chroma
area of the CIE1931xy chromaticity diagram, the color difference levels in the samples
in Figure 13a,b are correspondingly similar to those in Figure 11a,b. This indicates that the
sample groups using chromas (C*ab) are unable to improve the color conversion accuracy
in the high-chroma area of the color space.

5. Conclusions

In this paper, we demonstrate that the Pearson correlation coefficient (PCC) can be
used for evaluating the linear correlation between the RGB space of digital cameras and
the XYZ space of a CIE1931XYZ system, and can be used for selecting training groups with
better linear correlation. The experimental results show that for polynomial transforms
with a certain number of terms, the color approximation accuracy will be in proportion
to the Pearson correlation coefficients of the training groups. The experimental results
also show that using training groups divided by hue angles (hab) is an efficient method to
improve color conversion accuracy in the whole color space. Therefore, it can be expected
that better color approximation accuracy could be achieved if training samples are divided
into more groups according to their hue angles.
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