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Abstract: Anomaly detection in sequences is a complex problem in security and surveillance. With the
exponential growth of surveillance cameras in urban roads, automating them to analyze the data and
automatically identify anomalous events efficiently is essential. This paper presents a methodology
to detect anomalous events in urban sequences using pre-trained convolutional neural networks
(CNN) and super-resolution (SR) models. The proposal is composed of two parts. In the offline stage,
the pre-trained CNN model evaluated a large dataset of urban sequences to detect and establish the
common locations of the elements of interest. Analyzing the offline sequences, a density matrix is
calculated to learn the spatial patterns and identify the most frequent locations of these elements.
Based on probabilities previously calculated from the offline analysis, the pre-trained CNN, now
in an online stage, assesses the probability of anomalies appearing in the real-time sequence using
the density matrix. Experimental results demonstrate the effectiveness of the presented approach
in detecting several anomalies, such as unusual pedestrian routes. This research contributes to
urban surveillance by providing a practical and reliable method to improve public safety in urban
environments. The proposed methodology can assist city management authorities in proactively
detecting anomalies, thus enabling timely reaction and improving urban safety.

Keywords: anomaly detection; convolutional neural network; super-resolution

1. Introduction

The recent decrease in the price of video surveillance systems has led to an exponential
increase in their installation on several roads and urban areas. Processing the information
collected by these systems is a critical task because it includes detecting anomalous events to
ensure security and improve reaction times by the relevant authorities. Anomaly detection
involves identifying events that do not constitute expected activities or behaviors. This is a
complex problem, since the captured sequences present several issues. First of all, obtaining
a dataset in which labeled anomalies are present requires great effort, and sometimes, it
may be possible that there are no anomalies in a particular area. On the other hand, it
is important to highlight the complexity of the anomaly to be detected. For example, a
pedestrian crossing a pedestrian area does not present any anomaly. However, that is not
the case if the pedestrian is walking on a road, for example. In addition, video surveillance
systems are placed in high places, which sometimes makes it difficult to detect where the
anomalous event exists. Detecting this type of event efficiently and autonomously is critical
for tasks such as security, recognition, and monitoring in urban roads or autonomous
systems applied to driving.

Anomaly prediction approaches were initially based on several classical techniques
and strategies used for anomaly identification. Among them are feature-based methods,
such as calculating the trajectory of the element to be analyzed to detect possible changes
in its behavior through its direction. Other techniques include clustering to identify pedes-
trians in common areas, extracting similar behavior patterns, and identifying those that
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deviate from this standard as a threat. Despite the existence of these techniques, there are
still shortcomings in this area that need to be improved. Several strategies have emerged
based on deep learning using object detection models. However, there are still shortcom-
ings when it comes to identifying anomalies based on the nature of the image, since in
cases where the element is small and difficult to locate, the anomaly will not be detected.
Another significant problem is the diversity related to the spatial location of the elements
to be analyzed and their appearance. Some of the object identification models that stand
out in this field are, for example, FASTER R-CNN [1], among others.

This paper presents a methodology applied to autonomously detecting anomalies in
sequences, using convolutional neural networks (CNN) and image quality enhancement
techniques, such as super-resolution, to improve safety on urban roads. The proposed
method aims to autonomously learn the behavior of the elements appearing in the sequence
to recognize and categorize the elements identified as anomalies. In this case, anomaly
detection is focused on vehicles and pedestrians captured by a video surveillance system.
The main contributions are the following:

1. The creation and collection of a synthetic dataset to test the proposed methodology.
This set consists of urban sequences where pedestrians and vehicles of variable
dimensions transit. The training set is composed of sequences to learn the typical
patterns of these elements, while sequences conform to the test set with multiple
anomalies to be identified.

2. Applying the described methodology using several pre-trained object detection and
super-resolution models to improve the elements’ mean average precision (mAP).

3. Testing and evaluation of the described technique using various metrics.

The rest of the article is organized as follows. Section 2 presents related works.
Section 3 presents the proposed methodology. Subsequently, Section 4 presents the selected
dataset and the metrics and results. Section 5 outlines the discussions. Finally, Section 6
presents the conclusions and future directions.

2. Related Work

For the proposed methodology, object detection models and super-resolution models
are considered to identify anomalies effectively. Several related works in these areas are
cited in this discussion. Finally, relevant works related to anomaly identification are also
presented in this discussion.

2.1. Convolutional Neural Network Models

Detecting elements is essential for identifying possible anomalies based on the pro-
posed methodology. Therefore, according to the domain where anomaly identification
using object detection is desired, selecting which type of convolutional neural network
should be applied is essential. Deep learning advancements have considerably enhanced
element detection compared to classical techniques. Currently, two main categories of
models are based on their approach to performing element identification.

The first approach involves identifying regions of interest through a region proposer
and identifying elements within these areas. This model type offers the advantage of
achieving a higher mean average precision (mAP) when identifying elements. However,
the time required to perform such inference increases considerably. Within this group,
standout several models obtain good results according to the application scope. These
models are precisely evaluated in the proposed methodology to identify anomalies. The
first approach, denoted as CenterNet [2], presents an efficient solution, as it first explores
the visual patterns within each region that composes the input image. Other models,
such as Faster R-CNN [1], introduce the concept of a Region Proposal Network (RPN),
a fully convolutional network that predicts object scores and boundaries, resulting in
reduced execution time during inference. Finally, it is important to highlight models such
as EfficientNet [3]. This family of models highlights mainly due to the focus on scalability
and computational efficiency since it uses scaling methods that balance the model’s depth,
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width, and resolution. This results in improved performance without significantly affecting
computational complexity. A base network architecture is developed to search for the
optimal model composition, and it is then scaled to create a family of models ranging from
the simplest (B0) to the most complex (B7).

In the second group, some models prioritize speed in inference times sacrificing
accuracy. Notably, one of the highlighted models in this category is SSD (Single-Shot
MultiBox Detector) [4]. SSD employs a unique convolutional neural network architecture
that directly performs detection and classification in a single pass, unlike region-based
approaches. It stands out as a model evaluated alongside the ones mentioned earlier.

In the proposed methodology for anomaly detection, pre-trained models from both
categories were used to enhance element detection for identifying elements in the synthetic
dataset of urban sequences.

2.2. Super-Resolution Models

Increasing the image input size is one of the most common techniques to improve
the performance given by the object detection models. Upscaling the input size of the
image also increases the number of pixels that compose each object. By increasing the
dimensions of the input image, the number of pixels representing each object is also
amplified, thereby facilitating their identification using object detection models. This
upscaling process is accomplished through super-resolution (SR) algorithms, which rely
on convolutional neural networks to generate enlarged images as output. The use of SR
techniques aids in preserving image quality while effectively improving object detection
capabilities, making it crucial to identify and choose the most appropriate model from the
ones listed in this context.

The combination of super-resolution and convolutional neural networks has shown
to be an effective approach for enhancing object detection accuracy. Iván García Aguilar
et al. [5], in their research, aimed at improving vehicle detection in road image sequences,
employing a 2× scale super-resolution technique around previously detected objects. The
objective is to enable new detections of small objects in a subsequent pass of the detection
model. The premise of its development is based on using the detections defined by
the model initially to be used as tentative areas on which to re-infer. As a result, this
approach yields favorable outcomes, significantly improving accuracy without re-training
or modifying the original detection model.

The Super-Resolution Generative Adversarial Network (SRGAN) has been a sig-
nificant advancement in generating realistic textures for single image super-resolution.
However, the generated details sometimes come with undesirable artifacts. Models such
as SRCNN can be highlighted in which a network is proposed to improve detection in
multispectral remote images. Jiang et al. [6] noted in their work that traditional super-
resolution models fail to generate enlarged images with edge detail in noise-contaminated
images, thereby complicating the detection of objects in satellite images. In an attempt to
solve this problem, they propose a new SR architecture based on GAN networks, called
EEGAN, which is invariant to noise. Another example of using super-resolution based
on GAN networks is stated in [7], where a new multi-scale augmentation method known
as Scale Adaptive Image Cropping (SAIC) is proposed, which consists of cropping the
input image in different ways to apply super-resolution to varying scales according to
the estimated object size to improve detections in low-resolution aerial imagery obtained
from UAVs.

To further enhance visual quality, Wang et al. propose a new model denoted as
Enhanced SRGAN (ESRGAN) as a result of improving network architecture, adversarial,
and perceptual loss. This model achieves better visual quality with more realistic and
natural textures compared to other models. These authors extend the powerful ESRGAN
to a practical restoration application, obtaining a model called Real-ESRGAN [8]. This
model is trained using synthetic data to simulate complex real-world degradations. It also
addresses common ringing and overshoot artifacts in these images. A U-Net discriminator
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with spectral normalization is employed to enhance discriminator capability and stabilize
training dynamics, resulting in superior visual performance compared to other models.

The methodology employs pre-trained super-resolution models, such as
Real-ESRGAN [8], to enhance object detection accuracy. This pre-trained model, which
has been fine-tuned on synthetic data to simulate real-world degradations, significantly
improved the visual quality of the input images, making it easier for the pre-trained object
detection models to identify and locate objects accurately in the urban sequences.

2.3. Anomaly Detection

Numerous works have addressed anomaly detection using classical techniques, pri-
marily relying on reconstructive or discriminative approaches [9–12]. These methods
aim to learn the normal behavior patterns within a specific application domain. How-
ever, they often encounter limitations in effectively capturing complex distributions in
video sequences.

Due to the increasing demand for security and safety, anomaly detection has gained sig-
nificant interest in intelligent video surveillance analysis. Ref. [13] proposed a novel method
for anomaly detection in pedestrian conduct. The approach utilizes motion-appearance
features and dynamic behavior changes over time, employing Locality Sensitive Hashing
(LSH) functions for detection. Key contributions include robust pedestrian segmentation,
the Dynamics of Pedestrian Behavior (DoPB) feature, and the Adaptive Anomaly Weight
(AAW) with block-based optical flow tracking, demonstrating effectiveness in detecting
and localizing anomalies. Irina et al. propose an automated deep learning-based anomaly
detection technique called DLADT-PW (Deep Learning based Anomaly Detection Tech-
nique in Pedestrian Walkways) [14] to enhance pedestrian safety. The traditional manual
examination of abnormal events in video surveillance systems is cumbersome, making
an automated surveillance system essential for computer vision researchers. DLADT-PW
uses preprocessing to remove noise and enhance image quality. The detection process
involves the use of the Mask Region Convolutional Neural Network (Mask-RCNN) [15]
with Densely Connected Networks (DenseNet). The DLADT-PW model aims to detect and
classify anomalies in pedestrian walkways, such as cars, skating, and jeeps.

The use of Convolutional Neural Networks applied to anomaly identification has led
to works such as the one proposed by Xing Hu et al. [16], in which a weakly supervised
framework is proposed for the detection and localization of abnormal behavior in scenes,
using object detection with Faster R-CNN, behavior description with a Large Scale Optical
Flow Histogram (HLSOF) descriptor and classification with a Multiple Instance Support
Vector Machine (MISVM). Ref. [17] presents a novel approach for unsupervised pedestrian
anomaly event detection by leveraging trajectory localization and prediction. Unlike
conventional reconstruction-based methods, the proposed framework utilizes prediction
errors of normal and abnormal pedestrian trajectories to detect spatial and temporal
anomalies. The experimental results on real-world benchmark datasets demonstrate the
effectiveness and efficiency of the trajectory-predictor-based anomaly detection pipeline
in identifying anomalous activities of pedestrians in videos across varying timescales. In
work such as [18], a proposed deep learning model for abnormal behavior detection uses
YOLOv3 object detection technology to detect pedestrians, followed by a hybrid Deep-SORT
algorithm to track pedestrians and obtain tracking trajectories. In addition, a convolutional
neural network (CNN) is used to extract the action features of each tracked trajectory, and a
short-term memory network (LSTM) is used to build an anomalous behavior identification
and prediction model. Ref. [19] presents an automatic anomaly detection model based on
hierarchical social hunting optimization and a deep convolutional neural network (HiS-
Deep CNN) for surveillance videos, including object detection and tracking. However, one
of the problems with some of these methodologies is that sufficient information must be
acquired for training these models. The methodology presented in this article, therefore,
makes use of synthetic information generated through the CARLA simulator [20]. B. Sophia
et al. [21] presents a novel Panoptic Feature Pyramid Network-based Anomaly Detection
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and Tracking (PFPN-ADT) model for pedestrian walkways in video surveillance. The
model’s primary objective is to recognize and classify anomalies in pedestrian walkways,
such as vehicles and skaters. The proposed approach utilizes the Panoptic Feature Pyramid
Network (PFPN) for object recognition and the Compact Bat Algorithm (CBA) with Stacked
Auto Encoder (SAE) for object classification, demonstrating the enhanced performance of
the PFPN-ADT technique in detecting anomalies effectively.

2.4. Differences with Other Proposals

The proposed approach focuses on anomaly detection at the agent behavior level,
specifically for detecting vehicles and pedestrians with anomalous behavior in traffic
videos. Anomaly detection at the raw pixel level is unsuitable for the application, as it
would not differentiate between individual objects and would only detect deviations from
the background image. A convolutional neural network detects the agents and obtains
their high-level object information, such as class labels and bounding boxes. Applying
multidimensional data analysis techniques to the image data would not yield the desired re-
sults, as it would only identify deviating pixels without providing object-level information.
Similarly, an autoencoder would detect individual pixels but fail to capture the necessary
high-level object behavior information.

Several systems designed for pixel-level anomaly detection in still images were un-
suitable for agent behavior analysis in traffic videos. While these systems could identify
moving pixels, they could not detect whole objects and their corresponding high-level
properties. Thus, to effectively detect anomalous agent behavior, the proposed approach
processes the incoming video using a convolutional neural network to detect agents and
then carries out anomaly detection in the space of possible high-level object behaviors,
providing a focused and accurate analysis of vehicles and pedestrians violating traffic rules.

The proposed methodology differs from the related works in its approach to anomaly
detection. While the other methods focus on utilizing motion-appearance features, tra-
jectory localization or specific deep learning models for pedestrian anomaly detection,
the methodology combines super-resolution techniques with convolutional neural net-
works for object detection. This novel approach aims to enhance object detections by
leveraging a training sequence and creating a matrix of common object locations (bounding
boxes). During the evaluation phase, the percentage of deviations from these common
regions is calculated to identify anomalies, specifically in cars and pedestrians. By in-
corporating super-resolution and convolutional neural networks, the methodology offers
a unique perspective on improving object detection and detecting anomalies in video
surveillance scenarios.

3. Models and Methods

In this section, the proposed methodology denoted as SR-DAI (Super-Resolution and
Detection with Anomaly Identification) is described in detail. The provided method is
shown in Figure 1. The methodology is designed to improve object detection in video
sequences by leveraging a two-step process. Initially, a training dataset is used. Super-
resolution enhances the quality of each frame to create an image tilling. These areas with
the upscaling factor are then used for re-inference, improving detection results from the
object detection model. Once the translation of the box to the real coordinates system is
performed, the clustering operation identifies simultaneous detections for the same object
to delete it. Subsequently, a density matrix is computed based on the detected bounding
boxes to identify the common locations of the elements. During the validation phase, each
frame undergoes super-resolution and is fed to the object detection model. By comparing
the bounding box positions with the previously calculated density matrix, the methodology
determines whether an element can be classified as an anomaly, enabling more accurate
and effective anomaly detection in video surveillance. Below, each of the components
comprising the proposed methodology is detailed.
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Figure 1. Workflow of the proposed technique denoted as SR-DAI. The bounding boxes in green
represent the elements identified by the object detection model.

3.1. Convolutional Neural Networks for Object Detection

The presented methodology includes using a pre-trained object detection model,
providing a solid basis for determining the improvement in anomaly detection. This section
will present a general description of how object detection models using Convolutional
Neural Networks (CNNs) work, followed by a detailed explanation of each evaluated
model, highlighting their features and capabilities.

Convolutional Neural Networks (CNNs) are a specialized class of deep learning
models widely used for computer vision tasks, particularly object detection. These models
are designed to automatically learn and extract meaningful features from images, enabling
them to identify and localize objects accurately. The basis of CNNs is the convolutional
layers, which perform a mathematical operation called convolution, which consists of
sliding small filters (also known as kernels) over the input image to detect local patterns,
such as edges, textures, and shapes. The convolution operation is represented as:

F(i, j) = ∑
m

∑
n

I(i + m, j + n)× K(m, n) (1)

where F(i, j) is the element in the resulting feature map, I is the input image and K is the
convolutional filter. The double summation ∑m ∑n indicates that all elements of the filter
K and the selected local region of the input image I at position (i, j) are summed. The
convolution operation results in a feature map highlighting relevant patterns and features
in the input image.

After the convolution operation, a non-linear activation function is applied element-
wise to the feature map. Multiple types of these non-linear operations exist, such as RELU,
which is applied element-wise to the feature map, allowing the model to capture complex
relationships between image features. Next, pooling layers are used to reduce the spatial
dimensions of the feature maps and retain essential information. Max-pooling is a common
pooling technique that selects the maximum value within a local region of the feature map.
This downsampling process reduces the computational complexity and makes the model
more robust to object position and scale variations.

The resulting feature maps are flattened into a one-dimensional vector following
several convolutional and pooling layers. This vector is then fed into fully connected layers
acting as classifiers. The output of the fully connected layer is obtained by:

y = Wfcx + bfc (2)
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where x represents the flattened feature vector, Wfc denotes the weights and bfc represents
the biases of the fully connected layer. The class scores are then processed through an acti-
vation function such as softmax to obtain the probabilities for each object class. Bounding
box regression is also employed to accurately predict the bounding box coordinates that
cover the detected objects. The general operation of convolutional neural networks (CNNs)
applied to object detection has already been described. Five models were evaluated to test
the effectiveness of the proposed methodology. The performance and unique characteristics
of each model considered for evaluation are presented below:

• CenterNet HourGlass104 Keypoints 1024× 1024: CenterNet Keypoints is a one-stage
object detection framework that efficiently predicts object centers and regresses the
bounding box size. The HourGlass104 backbone effectively captures multi-scale fea-
tures. In addition to detecting object bounding boxes, this variant predicts keypoints
associated with each object, making it suitable for tasks such as human pose estimation.
The HourGlass architecture uses repeated down-sampling and up-sampling stages,
allowing it to capture fine-grained details while maintaining a global context.

• CenterNet HourGlass104 1024× 1024: This CenterNet variant omits the keypoint
prediction branch, focusing only on object detection. Using the HourGlass104 back-
bone, it retains the advantages of multi-scale feature representation and precise object
localization. The absence of the keypoint prediction branch reduces the model’s
computational complexity, making it more efficient.

• Faster R-CNN Inception ResNet V2 1024× 1024 (RetinaNet152): Faster R-CNN is a
two-stage object detection model that separates region proposal generation and object
classification. The Inception ResNet V2 backbone provides good feature extraction
capabilities. The first stage generates region proposals using a Region Proposal
Network (RPN), which efficiently proposes candidate object bounding boxes. In
the second stage, these proposals are further refined and classified to produce the
final detections.

• EfficientDet D4: EfficientDet is a scalable and efficient object detection model that bal-
ances accuracy and computational efficiency. The EfficientDet D4 variant is optimized
to detect objects at different scales with high accuracy. It leverages a composite scaling
method that uniformly scales the model’s depth, width and resolution.

• SSD ResNet152 V1 FPN 1024× 1024 (RetinaNet152): SSD (Single-Shot Multibox De-
tector) is a one-stage object detection model that directly predicts object categories
and bounding boxes at multiple scales. The ResNet152 V1 FPN backbone incorporates
feature pyramid networks (FPN) for multi-scale feature extraction and improved
performance. The FPN helps the model handle objects of several sizes effectively.

The evaluated models are all pre-trained on the COCO (Common Objects in Context)
dataset [22]. This dataset is widely used for training and evaluating object detection models.
These models are available in Tensorflow 2 Model Zoo repository (https://github.com/
tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md,
accessed on 1 July 2023).

3.2. Convolutional Neural Networks for Super-Resolution

The Convolutional Neural Network (CNN) model used for super-resolution in this
study is Real-ESRGAN. This model is an advanced deep learning architecture explicitly
designed for single-image super-resolution to enhance image resolution and visual quality.

Real-ESRGAN employs a generator network that takes a low-resolution image as
input and outputs a high-resolution version of the same image. The generator network
is based on the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN)
architecture, which incorporates residual blocks to facilitate learning and capture intricate
image details effectively. The generator network in Real-ESRGAN can be represented
as follows:

G(ILR) = ISR (3)

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
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where ILR denotes the low-resolution input image and G represents the generator network.
The output ISR is the high-resolution version of the input image, which is expected to
exhibit enhanced visual quality and finer details. To achieve good results, Real-ESRGAN
leverages a pre-trained discriminator network. The discriminator network, denoted as D,
assesses the realism of the generated high-resolution images. The adversarial loss between
the generated images and the real high-resolution images is computed to train the generator
network effectively. The discriminator is a U-Net discriminator with spectral normalization
to increase discriminator capability and stabilize the training dynamics.

3.3. Methodology

Once the object detection and super-resolution models have been specified, the
methodology presented is detailed as follows.

Given a sequence S , the first step is to extract each of the frames that compose it:

S = {(Il) | l ∈ {1, . . . , N}} (4)

Consider an input image, denoted as Il , an object detection model denoted as D, and
a super-resolution model, set as Z , which allows improving the full resolution of the D
image with an upscaling factor of ×2. Initially, the image Il is processed by the object
detection model D ([Object detection] in Figure 1), thus obtaining the first list of initial
detections:

D(I) = Lini (5)

Lini = {(αi, βi, γi, δi, λi, ρi) | i ∈ {1, . . . , N}} (6)

where N stands for the number of detections, the coordinates of the top left corner of the
i-th detection within Y are noted (αi, βi) ∈ R2, the coordinates of the bottom right corner of
the i-th detection within Y are noted (γi, δi) ∈ R2, λi stands for the detected class label and
ρi ∈ R denotes the obtained class score. As ρi increases, the confidence in the existence of
an object of class λi at that detection also increases.

This initial detection is performed to detect the largest objects in the image, which
are more easily identifiable by the model D and more likely to be sliced into different
subimages. Then, the image Il is divided into several subimages S i

I ([Image Tiling] in
Figure 1). This transformation is done with the aim that, after applying super-resolution
to each subimage, the super-resolved image Z(S i

I ) will match as best as possible the
maximum allowed input size, noted as size (D), of the object detection model D. Please
note that the model D adjusts the image to its predefined input size by applying bicubic
interpolation. This interpolation results in worse image quality with a negative effect on
object detection performance. The previously described subimage size selection is given by:

size
(
S i
I

)
= arg min

size(W)
‖z · size(W)− size(D)‖ (7)

where z denotes the upscaling factor to be applied. At the same time, in this step, the relative
position of each subimage S i

I according to the original image I is saved for subsequently
undoing the transformation of the detections of each subimage. To avoid detecting the same
object several times across different subimages, each of them is extended by the inner sides to
obtain an overlapping of the bounding boxes between objects distributed among two or more
subimages, thus allowing to unify the detections in a later step. It is worth mentioning that
this technique can be extrapolated to any other magnification factor z.

For each of the generated subimages, super-resolution will be applied. The goal of this
step ([TTA] in Figure 1) is to present to the detection model the same image but in different
shapes to increase the number of detections in the image. Therefore, each of these new
augmented images is passed through the object detector D, which in turn generates a list
of detections, called LSR:
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LSR = [a1, a2, . . . , an] (8)

These contain the annotations ai that store the information related to the detection
performed by the D model. Let a be a tuple of the form:

a = (b, c, s) (9)

where s represents the score, given by the model to the performed detection, c the class
estimated by the model and whose value is predetermined by the COCO standard and b is
a list that contains four elements that correspond to the coordinates of the four vertices of
the rectangular bounding box that locates the object in the image [Object Detection on TTA]
in Figure 1:

b = [ymin, xmin, ymax, xmax] (10)

Based on b and the relative position of each tile or subimage S i
mathcal I within the

original image I , by undoing the applied transformation, it becomes possible to globally
locate each detected object in the image [Translate Coordinates] in Figure 1, which in the
case of super-resolution would be as follows:

b′ = (xi, yi) +
1
z

b (11)

where (xi, yi) are the coordinates of the upper left corner of the subimage (xi, yi) of the
original image and z is the applied upscaling factor, which in the case of the presented
proposal is 2. Having grouped them in the same coordinate system of the image I , they
are unified in a final list of annotations where, ideally, each annotation ai matches only one
object detected in the input image I . For this purpose, a clustering method ([Clustering]
in Figure 1) is employed. This consists of grouping the input list L into a list of clusters
LK = [k1, k2, . . . , kn], where each cluster contains the annotations that are similar to each
other in the sense that their feature vectors (b, c, s) are close enough to be considered the
repeated detection of the same object.

k =
{

ai, aj ∈ L
/

IoU(bi, bj) ≥ thresholdIoU ∧ ci = cj
}

(12)

Therefore, the clustering criterion between each pair of annotations ai, aj is based on
the closeness between their respective bounding boxes. If the IoU of both is greater than a
threshold value, called thresholdIoU , the objects are grouped into the same cluster. Finally,
a list of final annotations is returned, where the annotation of each cluster with the highest
score given by the detection model Lout is obtained.

The proposal works at the agent behavior level, not the raw data (pixel) sample level,
so it does not intend to identify anomalous pixel values concerning the rest of the pixel
values. This would not work for the application at hand, namely the detection of agents
(vehicles and pedestrians) with anomalous behavior. In other words, the goal is to detect
which vehicles and pedestrians cross areas of the scene that are forbidden for them, as
opposed to vehicles and pedestrians that move according to traffic rules. If anomaly
detection were applied at the data sample (pixel) level, it would detect deviations from
the background image, i.e., the background of the traffic scene. This would detect the
raw foreground pixels belonging to all vehicles and all pedestrians without detecting the
individual objects and irrespective of the anomaly of the high-level behavior of the agents
to which those pixels belong. Therefore, anomaly detection at the data sample (pixel) level
is inappropriate for this application. Anomaly detection must be done on the distribution of
agent behaviors and not on the raw data sample (pixel value) distribution to detect agents
of anomalous behavior. Therefore, the first step is to process the incoming video with an
object detection subsystem (a convolutional neural network) that detects the agents and
yields their behavior (the agent classes and their bounding boxes). Then, anomaly detection
is carried out on the space of those possible high-level object behaviors. It must be noted
that this space is not high dimensional, so dimensionality reduction is not necessary.
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Once the annotations have been obtained after applying the methodology, the next
step is estimating the probability density of elements identified at each point of the image
[Density Estimation Calculation] in Figure 1. For this purpose, a kernel-based probability
density estimator is used. A kernel function smooths the data and estimates the probability
density in a continuous space. Considering a set of points with coordinates (x, y), which
represent the location of the detected elements in the frame, the probability density at each
point is estimated as a function of its neighborhood.

Subsequently, the kernel-based probability density estimator is used to generate a
matrix representing the zones through which the elements of each class pass. The formula
of the kernel-based density estimator used to estimate the probability density f̂ (x, y) at
each location (x, y) of the image is as follows:

f̂ (x, y) =
1

nh2

n

∑
i=1

K
(
(x, y)− (xi, yi)

h

)
(13)

The formula considers the total number n of sample elements (xi, yi) in the class, the
bandwidth h that controls the smoothing of the estimate, and the kernel function K that
defines the shape and contribution of each neighboring element. By applying this formula
for each point in the image, a probability density matrix is obtained that reflects the class
distribution in the image. Subsequently, a threshold is set on the probability density to
identify areas where the presence of elements of the class is unusual, allowing anomalies to
be detected. The choice of the parameters of the density estimator, such as bandwidth and
kernel function, will depend on the characteristics of the data and the problem at hand.

Once the matrix with the most common zones for the various classes to be analyzed
in a training sequence has been obtained, the methodology mentioned above is applied
with the super-resolution approach to online sequences. Once the elements that compose
it have been identified, the distribution in the matrix previously calculated is checked to
determine whether or not it corresponds to an anomaly.

4. Experiments and Results

Below, the selected dataset is presented, along with the evaluation metrics estab-
lished to verify the robustness of the methodology proposed. Finally, the results obtained
are shown.

4.1. Dataset

Anomaly detection is a significant challenge in the development of multiple fields,
such as autonomous driving or safety in video surveillance systems, because it involves
the identification of unusual situations that may represent a safety risk—in this case, for
pedestrians or vehicles moving through a busy area. In real-world scenarios, anomalies
are unusual compared to typical situations. This can make it difficult to collect sufficient
anomaly data in a real dataset, thus limiting the ability to train and evaluate anomaly
detection models effectively.

Therefore, synthetic dataset such as the CARLA (Comprehensive Autonomous Driv-
ing Simulator) simulator play a crucial role. It is a powerful simulator designed for the
development and training applied to autonomous driving systems. This simulator facili-
tates the creation of synthetic scenarios, thus allowing the exhaustive control of anomalous
events that may arise in a particular sequence. This enables more extensive and balanced
dataset to be obtained in terms of anomaly detection.

It offers a variety of scenarios that allow one to simulate an environment realistically.
Within these scenarios, it is possible to modify weather, the time of day in which the
sequence has been taken, lighting conditions and pedestrian and vehicle traffic, among
others. Thus, it provides a versatile environment for evaluating the presented methodology.
Examples of scenarios are shown in Figures 2 and 3.
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Figure 2. An example of the first scenario created.

Figure 3. An example of the second scenario created.

In addition, it provides tools for the automatic generation of annotated sequences. The
simulator automatically labels objects and events of interest based on requirements previ-
ously established by the user based on the generated sequence. Within these annotations,
information related to the location of the identified elements is included, as well as the
class to which the elements belong, such as vehicles, pedestrians, etc. Thus, it facilitates the
creation of datasets with complex requirements, thus eliminating the problem of tedious
and erroneous manual labeling and allowing the generation of sequences appropriate for
the given application environment. Figure 4 shows an automatic annotated frame. Finally,
the advantage offered by this simulator is the ability to generate anomalous events, such
as collisions or pedestrian crossing in no-trespassing areas. These events are crucial for
evaluating the robustness of the presented methodology under several conditions.
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Figure 4. An example of an automatically annotated frame.

4.2. Metrics

An approach has been established that combines the generation of sequences with
many pedestrians and vehicles to determine the most transit areas for these classes and
evaluate the anomaly detection performance of the presented methodology. Subsequently,
the described methodology is applied to sequences where a series of anomalies exist, thus
allowing to evaluate the effectiveness of the presented proposal. To quantify it, two types
of quantitative metrics have been established.

First, the average accuracy of the detections obtained by the model is evaluated. This
metric is commonly used for the evaluation of object detection algorithms. It is mainly based
on the accuracy of the detections identified by the network. For this purpose, precision–
recall curves are generated for each class to be evaluated, subsequently calculating each
class’s area under the curve (AP). By averaging the various APs for the classes to be
evaluated, the mean accuracy (mAP) is obtained. A high mAP indicates that the model
can identify the elements appearing in the sequence accurately and effectively. Therefore,
it is of vital importance to improve this measure to detect possible threats that cannot be
identified by the model initially.

Secondly, the number of anomalies detected is evaluated. For this purpose, a manual
count of anomalies in a particular frame is performed. This metric provides us with
an additional measure that allows us to evaluate the performance of the methodology
presented and its ability to identify and locate the various anomalies that may be present in
the sequence. The greater the number of anomalies detected, the greater the capacity of the
system to find anomalous events and respond effectively to them.

4.3. Results

The results obtained from evaluating the robustness of the proposed approach using
established quantitative measures are detailed below. These measures include the mean
Average Precision (mAP) and the number of anomalies detected. Table 1 presents the
parameters that were used to conduct the tests. Specifically, the minimum confidence
required to consider an element as a positive detection is specified, along with the anomaly
threshold used to determine whether an element is anomalous based on density. Addition-
ally, the scaling factor employed for the super-resolution of the images is provided. These
values were thoughtfully selected to enhance the performance of the proposed approach
and ensure consistent and reliable results.
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Table 1. Selected values of the hyper-parameters.

Hyper-Parameter Value

Selected Model Efficientdet D4
IoU Threshold 0.25

Anomaly Threshold 0.5
Tiling Factor 2

The IoU (Intersection over Union) threshold value was set to 0.25, allowing for the
inclusion of possible detections by the neural network on objects with very small sizes.
Regarding the anomaly threshold, it was set to 0.5. A lower value might increase false positives,
while a higher value could result in overlooking some challenging-to-detect anomalies in the
scene. The scaling factor was chosen as 2, striking an appropriate balance between improving
image resolution and avoiding considerable size distortion of elements in the region. A much
higher magnification factor could lead to incorrect class inference by the neural network.

In Table 2, a comparison is made between the mean accuracy (mAP) obtained by the
original model (RAW) and the presented proposal (OURS). The comparison of different
object detection models reveals the superiority of the proposed approach in detecting
pedestrians and cars in various scenarios. Notably, using the EfficientDet D4 model stands
out as it consistently outperforms other models in terms of mean Average Precision (mAP)
across different evaluation metrics and sequences.

Table 2. Results obtained for the two synthetic sequences generated. RAW denoted the mAP obtained
by the base model and on OURS is the mAP obtained by the presented proposal (higher is better).
The best results are marked in bold. The evaluated classes are pedestrians and cars.

Pedestrian Class Car Class
Sequence 1 Sequence 2 Sequence 1 Sequence 2

Model Metric RAW OURS RAW OURS RAW OURS RAW OURS

CenterNet
HourGlass104

Keypoints
1024 × 1024

IoU = 0.50:0.95|area = all 0.087 0.119 0.038 0.056 0.197 0.237 0.109 0.158
IoU > 0.50|area = all 0.272 0.346 0.095 0.150 0.386 0.449 0.278 0.374
IoU > 0.75|area = all 0.028 0.045 0.018 0.024 0.120 0.180 0.030 0.051

IoU = 0.50:0.95|area = Small 0.081 0.101 0.033 0.051 0.190 0.494 0.020 0.058
IoU > 0.50|area = Medium 0.114 0.203 0.208 0.237 0.184 0.236 0.225 0.292

CenterNet
HourGlass104
1024 × 1024

IoU = 0.50:0.95|area = all 0.081 0.122 0.043 0.056 0.186 0.241 0.086 0.142
IoU > 0.50|area = all 0.259 0.351 0.106 0.149 0.389 0.457 0.256 0.365
IoU > 0.75|area = all 0.024 0.044 0.025 0.026 0.093 0.171 0.024 0.034

IoU = 0.50:0.95|area = Small 0.077 0.105 0.036 0.052 0.345 0.497 0.010 0.054
IoU > 0.50|area = Medium 0.105 0.203 0.208 0.231 0.180 0.235 0.194 0.268

Faster
R-CNN

Inception
ResNet V2

1024 × 1024

IoU = 0.50:0.95|area = all 0.033 0.071 0.097 0.130 0.015 0.033 0.055 0.068
IoU > 0.50|area = all 0.112 0.228 0.255 0.299 0.033 0.087 0.212 0.219
IoU > 0.75|area = all 0.008 0.017 0.045 0.097 0.010 0.017 0.016 0.018

IoU = 0.50:0.95|area = Small 0.024 0.055 0.150 0.157 0.008 0.027 0.010 0.020
IoU > 0.50|area = Medium 0.086 0.157 0.102 0.140 0.151 0.207 0.126 0.147

EfficientDet
D4

IoU = 0.50:0.95|area = all 0.018 0.128 0.010 0.052 0.133 0.226 0.062 0.124
IoU > 0.50|area = all 0.051 0.350 0.018 0.114 0.262 0.417 0.147 0.296
IoU > 0.75|area = all 0.007 0.047 0.010 0.034 0.092 0.211 0.014 0.040

IoU = 0.50:0.95|area = Small 0.010 0.104 0.006 0.042 0.258 0.346 0.013 0.040
IoU > 0.50|area = Medium 0.073 0.249 0.151 0.268 0.115 0.206 0.138 0.255

SSD
ResNet152

V1 FPN
1024 × 1024

(RetinaNet152)

IoU = 0.50:0.95|area = all 0.007 0.085 0.137 0.211 0.010 0.035 0.022 0.100
IoU > 0.50|area = all 0.020 0.260 0.301 0.446 0.017 0.083 0.067 0.253
IoU > 0.75|area = all 0.003 0.021 0.083 0.143 0.010 0.021 0.007 0.032

IoU = 0.50:0.95|area = Small 0.008 0.069 0.007 0.235 0.006 0.029 0.002 0.018
IoU > 0.50|area = Medium 0.023 0.175 0.157 0.220 0.079 0.196 0.041 0.208
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In the case of the pedestrian class, a substantial increase in the mAP is observed. While
the RAW model achieves an accuracy of 1.8% for the first sequence, the presented proposal
manages to increase this percentage to 12.8% without retraining or modifying the object
detection model. The results are not limited to this class, as a consistent improvement is
observed in the other evaluated category, corresponding to the car class. In this class, the
improvement is even more pronounced. In Sequence 2, the CenterNet HourGlass104 model
obtained an mAP of 14.2%, outperforming the base model’s mAP of 0.86% by 13.34%.

Thanks to the application of this technique, all evaluated models have achieved no-
table improvements in element identification, leading to a significant enhancement in mAP
scores. By incorporating the super-resolution approach using a pre-trained model, the reso-
lution of surveillance images captured from elevated points has been effectively increased,
surpassing the limitations associated with detecting small-sized objects. This enhanced res-
olution, combined with pre-trained object detection models, has resulted in more accurate
and reliable detection of pedestrians and vehicles in complex surveillance scenarios.

To correctly determine the density in the location of the elements in the scene according
to their class, improving the ability to detect them is vital. Applying the RAW model, many
elements went unnoticed, thus generating an underestimation of the densities. Given the im-
proved accuracy, the calculation is much more reliable, thus obtaining a better understanding
of the spatial distribution of the elements according to the class to which they belong.

The heat maps based on the calculated densities are presented in Figures 5 and 6.
For each figure, the heat map calculated with the RAW model is shown on the left side,
and the one obtained after applying the presented proposal is on the right side. Figure 5,
which corresponds to calculating the probability densities for the elements belonging to
the pedestrian class, shows how the original model fails to correctly detect the elements
located in the background. However, after applying the proposal, more accurate detection
is achieved, correctly identifying the location of these elements in the heat map. In Figure 6,
the heat maps of the second scene, focused on the car class, are shown. Again, it can
be seen how the calculation of probability densities is much more accurate and detailed
when applying the presented proposal since traffic areas that were not initially detected
are recognized. This improvement results in a more complete and reliable analysis of the
probability density of these elements in the scene.

Figure 5. Example of the heat maps calculated for the first sequence. On the left is the one obtained
using the RAW model, while on the right is the one calculated based on the presented proposal.
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Figure 6. Example of the heat maps calculated for the second sequence. On the left is the one obtained
using the RAW model, while on the right is the one calculated based on the presented proposal.

Table 3 presents the results related to the number of anomalies present in the evaluated
sequences and those detected by applying the RAW model versus the presented proposal.
The table highlights the number of anomalies contained in each scene and the number
of anomalies detected using both the RAW model and the proposed approach (OURS)
for each sequence and model. The results demonstrate that the proposed methodology
consistently outperforms the RAW model in detecting anomalies across all evaluated object
detection models. In Sequence 1, the proposed approach (OURS) significantly improves
the anomaly detection capabilities for all models, as indicated by the higher number of
anomalies detected compared to the RAW model.

Table 3. Number of anomalies contained in each scene, as well as those identified using the two
proposals evaluated for each of the sequences. The best results are marked in bold.

Model Sequence Methodology Number of
Anomalies

Number of Anomalies
Detected

CenterNet
HourGlass 104

Keypoints
1024 × 1024

Sequence 1 RAW 712 243
OURS 335

Sequence 2 RAW 370 4
OURS 84

CenterNet
HourGlass 104

1024 × 1024

Sequence 1 RAW 712 221
OURS 288

Sequence 2 RAW 370 60
OURS 123

Faster R-CNN
Inception
ResNet V2

1024 × 1024

Sequence 1 RAW 712 57
OURS 222

Sequence 2 RAW 370 4
OURS 60
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Table 3. Cont.

Model Sequence Methodology Number of
Anomalies

Number of Anomalies
Detected

EfficientDet
D4

Sequence 1 RAW 712 12
OURS 217

Sequence 2 RAW 370 0
OURS 81

SSD ResNet152
V1 FPN

1024 × 1024
(RetinaNet 152)

Sequence 1 RAW 712 4
OURS 208

Sequence 2 RAW 370 1
OURS 24

For example, with the CenterNet HourGlass104 Keypoints 1024× 1024 model in Se-
quence 1, the RAW model detected 243 anomalies. At the same time, the proposed approach
(OURS) managed to identify a more substantial number of anomalies, reaching 335. Sim-
ilarly, with the Faster R-CNN Inception ResNet V2 1024× 1024 model, the RAW model
detected only 57 anomalies, whereas the proposed approach detected 222. This remarkable
improvement in anomaly detection across different models showcases the effectiveness of
the proposed methodology in identifying potential anomalies with greater accuracy.

In Sequence 2, the trend continues, with the proposed approach (OURS) consistently
surpassing the RAW model in anomaly detection for all evaluated models. For instance,
with the EfficientDet D4 model, the proposed approach (OURS) identified 81 anomalies,
whereas the RAW model does not detect anything, thus demonstrating the effectiveness
and potential of the same in this situation where they could initially go unnoticed.

As a qualitative result, Figures 7 and 8 are presented, where the anomalies detected
by both the RAW model and the presented proposal are highlighted in red color, while
those not considered as such are shown in green color. The difference in anomaly detection
between the two approaches can be visualized by analyzing the figures. As previously
demonstrated by quantitative data, the proposal can identify a greater number of elements.
The elements identified as anomalies are fewer in number and, in some cases, could
go undetected. This difference in detection highlights the effectiveness of the presented
approach to provide a more complete and accurate view of the anomalies in the scene.

Figure 7. Cont.
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Figure 7. Visualization of the anomalies identified by the RAW model at the top and the proposal
presented at the bottom for one frame to the first sequence. Anomalies are represented in red, while
non-anomalous objects are represented in green.

Figure 8. Visualization of the anomalies identified by the RAW model at the top and the proposal
presented at the bottom for one frame to the second sequence. Anomalies are represented in red,
while non-anomalous objects are represented in green.
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5. Discussion

The proposed methodology for anomaly detection in surveillance scenarios has been
thoroughly evaluated, and this section discusses the key findings. The investigation focused
on the effectiveness of various object detection models in conjunction with a pre-trained
super-resolution model to enhance anomaly identification. The results presented in the
earlier sections demonstrate significant improvements in anomaly detection compared to
the base models.

Using pre-trained object detection models, including CenterNet, Faster R-CNN, Effi-
cientDet D4 and SSD, has proven to be a critical factor in achieving better results. These
models exhibited superior generalization and resistance to input distribution shifts by
leveraging the pre-trained weights obtained from the COCO dataset.

Combined with the pre-trained object detection models, incorporating a super-resolution
technique further enhanced the proposed methodology’s performance. The number of
pixels constituting objects increased by applying super-resolution to the input images
before feeding them into the object detection model. This process significantly facilitated
the identification of small or partially occluded objects, resulting in improved accuracy
and recall. Consequently, the proposed methodology demonstrated a remarkable ability to
detect anomalies that the base object detection models would have missed.

Quantitative evaluation of the proposed methodology using mean average precision
(mAP) and the number of anomalies detected revealed compelling results. For example,
in Sequence 2, the RAW model using EfficientDet D4 does not detect anything, while the
presented proposal identified a remarkable 81 anomalies. This represents an astound-
ing improvement in anomaly detection, showcasing the methodology’s robustness and
effectiveness. Moreover, comparing mAP values between RAW and OURS for differ-
ent object classes and sequences consistently indicated the superior performance of the
proposed methodology.

However, despite these promising results, the methodology has limitations that war-
rant discussion. One limitation lies in the reliance on pre-trained models. While these
models offer strong generalization capabilities, domain-specific factors may influence
their effectiveness. In scenarios with adverse lighting conditions or unique object classes
not adequately represented in the pre-training dataset, the performance of the proposed
methodology may be impacted. Further research is needed to assess the robustness of the
methodology in diverse real-world surveillance environments.

The proposed methodology’s computational complexity should also be considered,
especially when deploying the system in real-time surveillance applications. Integrating
super-resolution with object detection may demand substantial computational resources,
potentially limiting its real-time applicability on resource-constrained devices. Therefore,
efforts should be made to optimize the methodology without compromising its accuracy
and effectiveness.

Furthermore, the proposed methodology was evaluated on synthetic video sequences
generated using the CARLA simulator. Although these sequences mimic real-world sce-
narios to some extent, the model’s performance in actual surveillance footage needs to be
validated. Real-world data often introduce more complexities, such as variations in lighting,
weather conditions and object appearances, which can impact the methodology’s performance.

6. Conclusions and Future Work

The proposed methodology, which involves inferring on super-resolved areas of the
image to identify more elements and calculate more accurately the density estimation,
has demonstrated its efficacy in increasing the number of pixels that constitute objects,
leading to improved identification by the object detection model. The results obtained from
applying this methodology on two synthetic video sequences generated using the CARLA
simulator have shown a significant advancement in anomaly detection within the scenes.
Applying the proposed approach enables the accurate identification of anomalies that the
base model would have missed or misclassified.
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The results obtained from evaluating the proposed methodology against the base
object detection models have consistently shown notable improvements in element iden-
tification and a significant enhancement of mAP scores. For example, the proposed ap-
proach (OURS) using the EfficientDet D4 model achieved a remarkable improvement
in mAP scores for the pedestrian class in Sequence 1, with a value of 12.8% compared
to the base model’s score of 1.8%. These compelling results underscore the practical
utility and robustness of the proposed methodology in enhancing surveillance and se-
curity systems. The system achieves more reliable and precise anomaly detection by
effectively combining super-resolution and object detection techniques. When using the
CenterNet HourGlass104 Keypoints 1024× 1024 model on Sequence 2, the proposed ap-
proach (OURS) successfully detected 84 anomalies, while the RAW model only identified
4 anomalies.

However, further research and development are warranted to explore the applicability
of the proposed methodology in scenarios with adverse lighting conditions. Incorporating
techniques such as LUT (Look Up Table) to enhance image illumination could benefit
complex environments with challenging lighting situations. This would improve the
methodology’s performance in diverse real-world scenarios and extend its usability in vari-
ous surveillance applications. Moreover, the proposed methodology’s versatility warrants
investigation into its effectiveness when applied to different domains and types of objects.
Exploring its adaptability to diverse object classes and real-world surveillance environ-
ments would provide valuable insights into the system’s generalizability and broaden its
potential applications.
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