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Abstract: Hydraulic systems are used in all kinds of industries. Mills, manufacturing, robotics, and
Ports require the use of Hydraulic Equipment. Many industries prefer to use hydraulic systems due to
their numerous advantages over electrical and mechanical systems. Hence, the growth in demand for
hydraulic systems has been increasing over time. Due to its vast variety of applications, the faults in
hydraulic systems can cause a breakdown. Using Artificial-Intelligence (AI)-based approaches, faults
can be classified and predicted to avoid downtime and ensure sustainable operations. This research
work proposes a novel approach for the classification of the cooling behavior of a hydraulic test rig.
Three fault conditions for the cooling system of the hydraulic test rig were used. The spectrograms
were generated using the time series data for three fault conditions. The CNN variant, the Residual
Network, was used for the classification of the fault conditions. Various features were extracted from
the data including the F-score, precision, accuracy, and recall using a Confusion Matrix. The data
contained 43,680 attributes and 2205 instances. After testing, validating, and training, the model
accuracy of the ResNet-18 architecture was found to be close to 95%.

Keywords: hydraulic systems; breakdown; Artificial Intelligence; sustainable; fault conditions;
spectrograms; hydraulic test rig; sensors; machine learning; deep learning

1. Introduction

According to a leading market company for global coverage, technavio, the global
Hydraulic Equipment Market will accelerate its growth at a Compound Annual Growth
Rate (CAGR) of 4.71% for the period of 2020–2025. It had 3.23% growth for the year 2021.
The growth contributed by the Asia-Pacific (APAC) Region is 47%. The incremental growth
during the period 2020–2025 is estimated to be around USD 15.50 billion [1]. Hydraulic
systems are used in almost every industrial sector, and their application is widely known
in major industries including manufacturing, construction, and robotics, to name a few.
They are notable in industries for a reason: cost-effectiveness, efficacy, and adaptability.
Many industries prefer to use hydraulic systems due to their numerous advantages over
mechanical, electrical, and pneumatic systems. Their capability of moving heavier loads
with sustained force and torque and providing significantly more power than electrical,
mechanical, and pneumatic systems are not surprising to anyone. The advantage of a fluid
power system is that it can easily get through a range of heavy loads without having to use
gears, levers, and pulleys.

The increasing demand for Hydraulic Equipment requires flawless operation, and
finding the source of the problem becomes a challenging task when the hydraulic system
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fails. This may include the motor, pump, valves, actuators, and hydraulic fluid. Human
error and faulty maintenance practices can be additional sources of failure. Some of
the common reasons for hydraulic failure include water and air pollution, temperature
problems, the levels of fluid, and quality and human errors. These failures give rise to
equipment breakdown and may cause some serious damage. According to an estimate, the
breakdown of machines can be up to 20% [2].

Numerous studies have already been conducted by researchers on the fault classifi-
cation of various systems including hydraulic systems. Adamsa et al. broke down the
conventional problem into several subproblems under a hierarchical classification scheme
to achieve maximum accuracy for Prognostic Health Monitoring (PHM). Furthermore, for
each subproblem, reinforcement learning was suggested for the classifiers. They tested three
reinforcement learning algorithms, i.e., Monte Carlo learning, Q-learning, and SARSAA.
The hydraulic actuator’s condition was evaluated using the suggested methods [3].

Helwig et al. evaluated the classification of component conditioning using LDA by
simulating fault situations such as valve changing deterioration, pump leaks, accumulator
gas leaks, and oil dispersion, with the help of an experimental hydraulic test bench [4].

To tackle the issue of defect diagnosis utilizing bearing data given by the Case Western
Reserve University (CWRU) data center, Yuan Y. et al. categorized the fault types using a
CNN [5].

Nikolai et al. used supervised classification based on LDA for the evaluation of
the statistical data acquired from the condition monitoring system. Automated feature
extraction was used, and fault scenarios were diagnosed by using correlation criteria [6].

Cloud and edge servers were used by Fawwaz et al. to propose real-time fault
recognition. Feature selection and offline learning were performed on the cloud, while
online recognition close to the data source was computed at the edge. GA-based feature
selection was used, and LSTM-AE was used as the fault detection model [7].

Keke Huang et al. discussed the problems faced in the acquisition of data in hydraulic
systems such as multi-rate sensor data. To overcome the problem, a deep learning approach
was proposed in their research work, which was able to automatically extract features
from the data samples having multiple rates of acquisition. A CNN-based algorithm was
designed to perform the classification of faults in hydraulic systems, which had a 10%
better classification accuracy compared with the multiclass SVM [8].

Mallak et al. and Fathi et al. worked on the diagnostics and classification of hydraulic
system faults. The proposed architecture was a combination of deep learning models,
supervised machine learning models, and LSTM autoencoders. The system was tested on
component faults, as well as sensor faults in a hydraulic system [9].

Silverstein et al. published research work on the comparison of different deep learning
and traditional machine algorithms in the prediction of faults in hydraulic systems. They
used the deep learning algorithms LSTM and TCN from, as well as machine learning
algorithms: Decision Trees, k-Nearest Neighbors, and Random Forest. It was observed that
TCN performed best, and enhanced feature engineering in traditional machine learning
models also gave satisfactory results [10].

Yoo et al. presented an algorithm in their paper for the detection of faults using
correlation-based clustering. The proposed approach was different from traditional cluster-
ing algorithms, as they decreased the size of the data to speed up the process of training
the algorithm. The proposed approach clustered datasets of high correlation in a straight
line; the distance of each dataset was calculated using the stochastic distance, and the
abnormality detection index was also calculated. The proposed algorithm was applied to a
dataset of a hydraulic system for verification [11].

Zhuo et al. and Z. Ge et al. published their research work in the field of industrial
processes. The goal of the work was to develop a list of potential faults, with the power
of existing data, that could occur in the future or have not been addressed before. The
Generative Adversarial Network (GAN) was utilized to deal with this any-shot learning
problem. The algorithm was tested on data acquired from a hydraulic system and TEP [12].
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Konig et al. and Helmi et al. published a research paper in which they proposed a
deep-learning-based model to provide data about the sensitivity and significance of the
sensors in condition monitoring. Another objective of the research was to observe the
contribution of each sensor to the overall result. Matthew’s Correlation Coefficient (MCC)
was used to determine the classifier’s accuracy [13].

The research paper published by Kim et al. and Jeong et al. proposed a novel approach
to fault classification in hydraulic systems. A setup was developed to track the condition of
the overall system in real-time. Features were extracted from the input data using a CNN
and a BiLSTM trained on the features; a sigmoid function was used as the classifier, and
the data learned by BiLSTM were fed to the classifier. To overcome the problem of data
scarcity, an augmentation technique was used to create new data. It was reported that the
projected system performed better than the conventional deep learning approaches [14].

Yantao Zhu proposed a hybrid approach for dam deformation prediction by combining
statistical regression, phase space reconstruction, and an improved LSTM neural network
with parameter optimization using the GWO algorithm. The experimental results on a
high-arch dam demonstrated effective noise elimination and high prediction accuracy,
offering a balance between model performance and interpretability [15].

Leong et al., Ooi et al., and Lim et al. proposed an adaptive Genetic Algorithm to
overcome problems faced in standard feature selection processes such as convergence
towards local optima, manual parameter tuning, premature convergence, lower feature
subset reduction rates, and the excessive cost of computation. The proposed STLA-GA was
able to outperform classic feature-selection methods due to its adaptive nature [16].

A study conducted Bo Jin applied deep transfer learning to detect the occurrence of
diseases using facial diagnosis. The top 1 accuracy was greater than 90%, which was a
better accuracy than the traditional machine learning method and clinical diagnosis [17].

Qinghe Zheng conducted a study for automatic modulation classification by imple-
menting spectrum interference based on a two-level data augmentation method. After
comparison with a variety of data augmentation techniques, it was concluded that the
proposed method showed much advancement [18].

Nantian Huang proposed using a label-noise-robust Auxiliary Classifier Generative
Adversarial Network (rAC-GAN) for fault diagnosis of rolling bearings for wind turbine
gearboxes. The model demonstrated higher accuracy than other models available for
multistate classification of rolling bearings [19].

Bin Cao studied how deploying sensor nodes and relay nodes in an industrial en-
vironment affected security, lifetime, and coverage issues. The author applied six serial
algorithms and two parallel algorithms. This configuration allowed the author to achieve
better performance in less time [20].

Hanxin Chen conducted a study in which the author proposed a diagnosis method to
detect faults in a centrifugal pump using a three-dimensional matrix having time, frequency,
and space as its dimensions. This study assisted in understanding the normal and faulty
states of the mechanical equipment using improved particle swarm algorithms [21].

The study conducted by Yantao Zhu proposed an automatic damage-detection method
for large-volume hydraulic concrete structures using drones and AI techniques. The ap-
proach combined computer vision with the Xception backbone network for crack feature
extraction and an adaptive attention mechanism based on Deeplab V3+ for precise identifi-
cation of cracks, achieving high-precision results with a 90.537% Intersection Over Union
(IOU), 91.227% precision, 91.301% recall, and 91.264% F1-score [22].

Data augmentation was applied to the time series data of a hydraulic system to obtain
a hefty amount of data for better classification because deep learning models do not work
well when the amount of data is tiny. A five-layer Convolutional-Neural-Network-based
Visual Geometry Group Network (VGGNet) was used for data augmentation [23].

Kortmann et al. presented a method for feature extraction; the approach utilized an
unsupervised autoencoder for the task. The state of the cooler was set as the target variable
from the dataset for classification purposes and regression, and the hydraulic accumulator
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pressure was set. It was reported that the prediction accuracy was not as good as other
approaches currently available for performing the same tasks [24].

To determine the condition of a hydraulic system, Y. Cheng et al. suggested a tech-
nique based on General multi-class Support Vector Machines (GenSVMs). The statistical
features from the raw data were extracted during preprocessing such as the skewness,
kurtosis, absolute mean value, and root mean square value. Four different GenSVMs were
developed for four dissimilar components of the hydraulic system: pump, accumulator,
cooler, and valve. The proposed model achieved a 100% classification accuracy for the
pump, cooler, and valve and 76% for the accumulator. The proposed GenSVMs showed a
better classification accuracy than the four other ML algorithms it was compared with [25].

ResNet-18 is a revolutionary deep convolutional neural network architecture intro-
duced by Microsoft Research. It is differentiated from other methods through the in-
corporation of residual connections, also known as skip connections, which enable the
learning of residual mappings and simplify the training of deeper networks. With 18 layers,
including convolutional, pooling, and fully connected layers, ResNet-18 overcomes the
vanishing gradient problem, making it easier for the network to learn effectively. The use
of shortcut connections ensures that the input and output dimensions of each residual
block remain the same, and additional 1 × 1 convolutional layers are introduced when
necessary to maintain consistency. Despite its depth, ResNet-18 is computationally efficient
with fewer parameters. Pre-trained models on large datasets, such as ImageNet, are often
utilized for transfer learning, making ResNet-18 a widely adopted and powerful model for
various image-recognition tasks, with a significant impact on subsequent deep learning
architectures. ResNet-18 is relatively deeper compared to earlier CNN architectures such
as AlexNet or VGG-16. It has 18 layers, including convolutional layers, pooling layers, and
fully connected layers, while traditional CNNs typically have fewer layers.

In this paper, the authors propose the prediction of the working behavior of cooling
circuits in a hydraulic system. XGBoost and ReliefF were compared for the feature ranking
technique. XGBoost is a library that implements machine learning algorithms under the
Gradient Boosting framework, while ReliefF is an algorithm that takes a filter-method
approach to feature selection to calculate feature scores to rank the top-scoring features. A
DNN and ANN were used for the prediction of the cooling circuit [26].

The study aims to investigate techniques used for the categorization of Hydraulic Sys-
tems; furthermore, it explains a new technique for the classification of the fault conditions
of hydraulic systems using an Artificial-Intelligence-based approach.

The dataset was prepared using the test rig. The rig comprised multiple sensors
including pressure sensors, volume flow sensors, temperature sensors, and various sensors
for monitoring motor power, cooling efficiency, vibration, cooling power, and system effi-
ciency. It included failure scenarios that depict the fault state of four primary components.
The data were analyzed using deep learning technology, comprising 43,680 attributes and
2205 instances. Thirty percent of the data were tested and validated, after which the data
were trained on for classification. A hydraulic test rig was used to experimentally gather the
dataset for this study. A primary working circuit and a secondary cooling–filtration circuit
made up the test rig, and they were connected by an oil tank. The system measured process
parameters such as pressures, volume flows, and temperatures, while cycling through
constant load cycles that lasted 60 s. Throughout the testing, the state of four hydraulic
components, i.e., the cooler, valve, pump, and accumulator, was quantitatively changed.

The primary working circuit was in charge of sending energy from the actuator to the
pump. It was made up of an actuator, a valve, and a pump. The hydraulic fluid was cooled
and filtered via the secondary cooling–filtration circuit. It was made up of a reservoir, a
filter, and a cooler. The hydraulic fluid was kept in the oil tank. The fluid was also cooled
and filtered as a result. Constant load cycles simulated the types of loading that a hydraulic
system would encounter in a practical application. The process values measured included
pressures, volume flows, and temperatures. These numbers were used to evaluate the
hydraulic system’s efficiency and the health of its parts.
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The dataset contains 43,680 attributes and 2205 instances. The attributes are the
features of the dataset, and they represent the values that were measured by the sensors
on the hydraulic test rig. The instances represent a single constant load cycle of 60 s in
various conditions.

The attributes in the dataset include the pressures, volume flows, temperatures, and
the condition of four hydraulic components: the cooler, valve, pump, and accumulator. The
faults in the dataset represent intentional changes that were made to the hydraulic system
to simulate the different types of faults that could occur in a real-world system. These
faults contributed to the process sensor measurements, which could be used to assess the
performance of the hydraulic system and the condition of the hydraulic components.

The dataset is a valuable resource for researchers who are interested in studying the
performance of hydraulic systems. The dataset can be used to train machine learning
models that can be used to predict the performance of hydraulic systems under different
operating conditions. The dataset can also be used to develop new fault detection and diag-
nosis methods for hydraulic systems. Other approaches have been applied by researchers to
evaluate prediction accuracy for their study. In this study, ResNet-18 was used to evaluate
the prediction accuracy. Hence, this study aimed to achieve higher prediction accuracy
than other techniques available for deep learning. In Table 1, the predication accuracies
for different models are analyzed. This was used as a reference for the comparison of the
prediction accuracy of ResNet-18.

Table 1. Different approaches applied on the hydraulic test rig data for fault classification and
its accuracy.

Approach Application Prediction
Accuracy Researchers

PCA and XGBoost Fault diagnosis for hydraulic
directional valves 88% Y. Lei et al. [9]

EGMSVM Health evaluation of complex
degradation systems 94.1% Jun Wu et al. [10]

kNN and SVM Fault diagnosis for hydraulic systems 96.7% X. Zhao et al. [22]

Gen-SVM Health estimation of hydraulic
systems 94% Y. Cheng et al. [27]

2. Materials and Methods

The hydraulic system dataset is open source and can be obtained from the University of
California Irvine (UCI) machine learning repository [28]. The data were prepared using the
test rig. The rig was comprised of multiple sensors including pressure sensors, volume flow
sensors, temperature sensors, and various sensors for monitoring motor power, cooling
efficiency, vibration, cooling power, and system efficiency. Constant load cycles of 60 s
were repeated cyclically for measuring the process values, i.e., pressures, temperatures,
and volume flows. Additionally, the dataset includes failure scenarios that depict the fault
state of four primary components: cooler, valve, internal pump leakage, and accumulator.

The information provided by the UCL repository is in several text files. As shown in
Figure 1, six distinct text files include the processed sensor readings and one file contains
the intended fault circumstances.

The data were combined into a single data frame after being translated to comma-
separated values. Using the filter option in Microsoft Excel, different files for the fault
conditions of the cooler system of the hydraulic test rig were developed by extracting the
data from the .csv file, as demonstrated in Figure 2.

A spectrogram is a visual representation of the signal strength over time at different
frequencies. A spectrogram is created using the Fast Fourier Transform by passing through
a digital process. The digitally sampled data are divided into blocks in the time domain,
which are overlapping, and Fourier Transformed to determine the size of the frequency
spectrum for each block. Then, for each block, a vertical line in the image is represented; it
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is the midpoint of the block, which corresponds to the magnitude versus frequency for a
specific moment. The time plots are then arranged side by side to create an image or three-
dimensional surface and can be windowed in a variety of ways with a small amount of
overlap. The computation of the signal’s Short-Time Fourier Transform and this operation
are related [29].
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A continuous signal can be subjected to sampling to transform it into a discrete time
signal by selecting values from the continuous time signal at evenly spaced points in
time [27]. Hence, sampling a continuous-time signal x with sampling period Ts provides
the discrete time signal xs, defined by:

xs(n) = x(nTs) (1)

Angular frequency sampling is given by:

ωs = 2π/Ts (2)

A total of 440 spectrograms were generated for the targeted fault conditions of the
cooler conditions: 146 spectrograms for Class Output 3 depicting the fault condition
“close to failure” behavior of the cooler condition, 146 spectrograms for Class Output 20
depicting the fault condition “reduced efficiency” behavior of the cooler condition, and
148 spectrograms for Class Output 100 depicting the condition “full efficiency” behavior of
the cooler condition.

AI by definition is the effort to automate intellectual tasks normally performed by
humans (DL-w-P). It is a field of study that has enabled mankind to ponder how to
integrate and utilize information, process and analyze data, and leverage the power of data
to enhance the decision-making abilities of machines. The power of AI is being utilized in
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a variety of sectors, such as finance, criminal justice, supply chains, automobiles, search
engines, robotics, etc. [30].

ML is a major field of AI, and according to Tom Mitchell, “Machine learning is the
study of computer algorithms that allow computer programs to automatically improve
through experience” [31].

ML algorithms are majorly applied for regression, classification, clustering, recom-
mender systems, and dimensionality reduction.

DL is regarded as an advancement of ML in which programmable NNs empower
machines to make a judgment in the absence of human involvement. DL models are created
such that they continually examine the data using a logical framework and behave similarly
to humans’ decision-making abilities. In this regard, DL applications work on a complex
structure of algorithms called Artificial Neural Networks (ANNs). The biological network
of neurons in the human brain has influenced the design of ANNs. The learning systems
of ANNs are considerably more competent than those of classical ML models. The DL
model cannot make erroneous conclusions. However, similar to most AI cases, it also needs
several trainings to ensure the learning process is true. However, when executed completely
and properly, deep learning is shown to be a scientific marvel, and it is considered the
backbone of true AI [32]. There are several DL algorithms used in DL models. Some of the
widely used algorithms are CNNs, LSTM, RNNs, MLPs, SOMs, and autoencoders.

Residual Network-18 (ResNet-18) is a Convolutional Neural Network that is
18 layers deep.

The convolutional layer carries out the largest portion of the network’s computational
burden. This layer receives the picture as the input and applies various convolutional
procedures to it. It has several filters, sometimes known as kernels, and all of the training
covers the parameters. In general, the filters are smaller than the original image. To create
an activation map, the filters are convolved with each picture. Every component of the filter
and image dot product is computed at every place as the filter advances over the picture’s
width and height. This process is repeated for every element of the input layer to generate
an activation map [33]. The main objective of the convolutional layer is the extraction
of information and patterns from an image. Filters or kernels are in charge of retrieving
low-level characteristics such as the color, gradient direction, etc., from the beginning of the
networks. On the other hand, higher-level characteristics such as image edges are extracted
by filters or kernels farther down the network.

The weighted sum of the input from a node or nodes is transformed into the output
in a layer of the NN by such a function. The performance and capability of the neural
network mainly depends on the choice of such a function. Different functions are needed
for various model components. In most cases, networks are built so that each node in a
layer uses the same function. However, such a function is used either following or during
the internal processing of each network node.

A network normally consists of layers: an input layer in which raw data are fed from
the domain, hidden layers that pass the output to an additional layer by taking the input
from another layer, and output layers responsible for the predictions. Typically, the same
activation function is used by all hidden layers. Different activation functions from the
hidden layers are used by the output layer, and this depends on the type of prediction
required by the model.

CNNs are specially designed for object detection or image processing. CNNs are
normally used to empower computer vision by teaching the machine about processing the
visual world. Facial Recognition Technology is one of the common uses of computer vision.
To make it simple, a binary representation of the data is given as the digital picture. It has a
collection of pixels that are organized in a grid-like pattern and carry data about each pixel,
including its color and brightness.

The pooling layer receives the corrected feature map as the input. A series of these
operations, max pooling to be precise, on an image is performed by the pooling layer. The
dimensions of the feature map are reduced by the operation of down-sampling via pooling.
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This reduces the amount of computation and weights needed in the network. The resultant
two-dimensional array from the pooled feature map is flattened into a single, continuous,
linear vector by the pooling layer [34]. To make the network more flexible, pooling merges
many pixel values into a single one. This helps to decrease the chances of over-fitting,
biasing networks towards particular pixels [35].

The Confusion Matrix technique is used to describe the summary of the performance
measurement of a machine learning categorization. It gives a better idea about the classifi-
cation model regarding whether making the right predictions and the measure of the errors
it made. The performance of two or more classes can be measured by the amount of correct
and faulty forecasts, a count value summary that is split into the classes.

It shows the confusion of the classification models while making predictions. It not
only presents insights into the errors, but also the types of errors made by the classifier:

TP = number of True Positives;
FP = number of False Positives;
TN = number of True Negatives;
FN = number of False Negatives.
Following are the performance measures that can be observed by the Confusion Matrix.
The percentage of accurate forecasts with respect to all other forecasts is known as the

accuracy. It is calculated using the formula:

Accuracy(%)=
(TP + TN)

(TP + TN + FN + FP)
× 100 (3)

It evaluates the binary classification system by classifying the example into “positive”
and “negative”. The F-score is a measure that combines the model’s recall and precision.
It can be regarded as the “Harmonic Mean” of the model. It can be calculated using
the formula:

F − Score(%)=

(
2 × (Recall × Precision)
(Recall + Precision)

)
× 100 (4)

The recall is the proportion of correctly predicted positive outcomes to all positive
outcomes. It can be calculated using the formula:

Recall(%) =
TP

(TP + FN)
× 100 (5)

The precision is the ratio of accurate positive forecasts to all positive predictions. It
can be calculated using the formula:

Precision(%) =
TP

(TP + FP)
× 100 (6)

Residual Networks (ResNets) are extremely successful due to their relative improve-
ment of around 28%, replacing the other architectures. They can be efficiently trained with
100 layers, as well as 1000 layers [36]. Stacking additional layers in Deep Neural Networks
works efficiently with improved accuracy and performance for solving complex problems.
The ResNet architecture was adopted for the fault classification of hydraulic systems.

The model was trained using MATLAB with 20 epochs for each iteration with the
pool size being 3,3. Table 2 describes the parameters from the hydraulic test rig that were
analyzed. Table 3 classifies the fault conditions of the hydraulic test rig depending on the
class output.

The performance of a machine learning model is assessed using evaluation metrics.
They are commonly employed for assessing a model’s performance over time or to compare
different models.

The following are some of the most-popular evaluation metrics:
Accuracy: This is the proportion of predictions that are valid. Although it is the easiest

metric to comprehend, it occasionally contains errors. For instance, even if a model is not



Sensors 2023, 23, 7152 9 of 16

particularly effective at forecasting the minority class, it will have a high accuracy if it
consistently forecasts the majority class.

Table 2. Parameters from the hydraulic test rig.

Pressure Sensor
Data

Temperature
Sensor Data

Volume Flow
Data

Pump Efficiency,
Cooling Efficiency,

Vibration, and Efficiency Factor

PS1 TS1 FS1 EPS1
PS2 TS2 FS2 CE
PS3 TS3 CP
PS4 TS4 VS1
PS5 SE
PS6

Table 3. Details of the fault condition of the hydraulic test rig depending on the class output.

Fault Type Unit No. of Classes Class Output Remark

Cooler condition % 3

3 Close to total failure

20 Reduced efficiency

100 Full efficiency

Valve condition % 4

73 Close to total failure

80 Severe lag

90 Small lag

100 Optimal switch behavior

Accumulator bar 4

90 Close to total failure

100 Severely reduced pressure

115 Slightly reduced pressure

130 Optimal pressure

Internal pump
leakage

- 3

0 No leakage

1 Weak leakage

2 Severe leakage

Precision: The percentage of accurate positive predictions is represented by this
number. A model might predict that 100 out of 1000 cases will be positive, and if 90 of
those predictions come true, then its precision is 90%.

Recall: This represents the percentage of real positives that were accurately anticipated.
For instance, if the dataset contains 100 actual positives and the model accurately predicts
90 of them, the recall is 90%.

F-score: This represents the weighted average of the recall and precision. It is fre-
quently used as a lone metric to sum up a model’s performance.

The Confusion Matrix is a table that displays the quantity of true positives, false
positives, false negatives, and true negatives in order to summarize the performance of a
model. It can be used to determine the F-score, accuracy, precision, and recall.

It is impossible to exaggerate the significance of evaluation metrics. They are crucial
for comprehending a machine learning model’s performance and for making defensible
choices regarding how to enhance the model.

Additional information on the significance of evaluation measures is provided below:
For various tasks, different metrics are appropriate. For activities where the cost of

false positives and false negatives is comparable, accuracy, for instance, is an appropriate
statistic. However, accuracy is a better indicator for activities when the cost of false positives
is significantly larger than the cost of false negatives.
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It is crucial to take into account not just the accuracy, but also the full Confusion Matrix.
The Confusion Matrix can shed light on the kinds of mistakes the model is making. For
instance, if a model has high accuracy, but low recall, it is probably underestimating the
number of positive examples.

It is crucial to analyze a model using a variety of metrics. There is no one metric that
can fully capture the performance of the model. One can have a better grasp of the model’s
advantages and disadvantages by using a variety of measurements.

3. Results

After all the spectrograms were generated, they were classified into three categories:
close to failure, reduced efficiency, and full efficiency. Close to failure was assigned a class
output of 3; similarly, reduced efficiency and full efficiency were assigned class outputs of
20 and 100, respectively. Among the spectrograms, 146 were Class Output 3, 148 were Class
Output 20, and 146 were Class Output 100 out of a total of 440 spectrograms. Figures 3–5
show the sample spectrograms with operational, close to failure, and failed hydraulic
cooling system.
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Figure 4. Sample spectrogram depicting the fault condition “reduced efficiency” of the cooling circuit
of the hydraulic test rig.

The color of each point on the spectrogram represents the power of the radiation
at that frequency and time. The spectrogram shows the power of the radiation from the
hydraulic test rig. The different frequencies in the radiation can be attributed to the different
components of the hydraulic system. The variation in the power of the radiation over time
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can be attributed to the different fault conditions of the cooling circuit of the hydraulic
system. Each figure has a slight difference from the others. In Figure 4, a sharp green
line can be observed in the third power radiation; however, all other power radiations are
identical. In Figure 5, the 3rd and 4th power radiations include green lines that are not as
sharp as those in Figure 4; however, the rest of the power radiations are identical, which
makes it different from the other figures.
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hydraulic Test rig.

The Confusion Matrices shown in Figures 6–8 were generated for the training, valida-
tion, and testing of the model of the cooling system for the hydraulic test rig, respectively.
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Figure 6. Confusion Matrix of the training of the model of the fault condition of the cooling system
of the hydraulic test rig.

In the training case, the overall accuracy of the model was found to be 98%. The model
could correctly distinguish 98% of the fault condition “reduced efficiency” and 99% of
both the “close to total failure” and “full efficiency” conditions of the cooling system of the
hydraulic system. The results showed the high accuracy of the training of the model.

The overall precision of the training model was calculated as 98%. The precision
for the fault condition “close to total failure” was 100%. The precision for the “reduced
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efficiency” fault condition was 97% and for the “full efficiency” condition of the cooling
system of the hydraulic system was 98%.
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Figure 8. Confusion Matrix of the testing of the model for the fault condition of the cooling system of
the hydraulic test rig.

The overall recall of the training model was calculated as 98%. The recall for the
condition “full efficiency” was 100%. The recall for the “reduced efficiency” fault condition
was 98% and for the “close to total failure” fault condition of the cooling system of the
hydraulic system was 97%.

The overall F-score of the training model was calculated as 98%. The F-score for the
condition “full efficiency” was 99%. The F-score for the “reduced efficiency” fault condition
was 97% and for the “close to total failure” fault condition of the cooling system of the
hydraulic system was 98%.

For the validation case, the accuracy, precision, recall, and F-score were determined
for different conditions of the cooling system of the hydraulic test rig.
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The overall accuracy obtained for the validation case was 96%. The model could
predict correctly 94% of the fault conditions for the close to total failure conditions. The
accuracy for reduced efficiency and full efficiency was 97% for the cooling system of the
hydraulic test rig.

The overall precision of the training model was calculated as 93%. The precision was
95%, 91%, and 95% for reduced efficiency, full efficiency, and close to failure, respectively.

The precision for the fault condition “full efficiency” was 91%. However, the precision
for the “reduced efficiency” fault condition was 95% and for the “close to total failure”
condition of the cooling system of the hydraulic system was 95%.

The overall recall of the training model was calculated as 94%. The recall was 95%,
87%, and 87% for the reduced efficiency, full efficiency, and close to failure, respectively.

The F-score of the training model was calculated as 93%. The F-score was 91%, 95%, and
95% for the conditions close to total failure, full efficiency, and reduced efficiency, respectively.

Similarly, in the case of testing, the accuracy, precision, recall, and F-score were
calculated with the help of the Confusion Matrix.

For the testing, the overall accuracy obtained was 96%. The accuracy obtained for
close to failure, reduced efficiency, and full efficiency was 95%, 100%, and 95%, respectively.

The overall precision obtained was 96%. The precision obtained for close to failure,
reduced efficiency, and full efficiency was 91%, 100%, and 95%, respectively.

The total percentage recall for the testing obtained was 95%. The precision obtained for
close to failure, reduced efficiency, and full efficiency was 91%, 100%, and 95%, respectively.

The overall F-score of the training model was calculated as 95%. The F-score obtained
for close to failure, reduced efficiency, and full efficiency was 93%, 100%, and 93%, respec-
tively. Figure 9 shows the distribution of the TP, TN, FP, and FN for each stage. Furthermore,
Figure 10 shows the Confusion Matrix according to the class output for the training, testing,
and validation.
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4. Discussion

After the literature review, different authors’ models’ accuracy were studied. Each au-
thor applied his/her technique for predicting fault conditions in the hydraulic test rig. How-
ever, in most cases, the model accuracy was not sufficient for predicting fault conditions.

The future aim of the research is to explore more suitable techniques and methods that
could give greater accuracy. The impacts and results can be drawn by applying different
techniques and comparisons of these results. The proposed technique can be applied for
the classification of other faults of the hydraulic system, and the results can be drawn and
compared. However, the classification of different sensors contributing to the condition
monitoring of the hydraulic test rig can be used to conclude on the most-suitable and
-reliable data of the sensors contributing to the result accuracy. ML techniques can be
applied to the real-time data values of various systems for analysis. Real-time data can be
processed, and more conclusions can be made. With time, more data can be extracted, and
more-powerful predictions of fault conditions based on these data can be made, which can
be a game changer in the Industrial Revolution.

5. Conclusions

The data used in the thesis work were acquired from the UCI machine learning
repository. The dataset includes failure scenarios that depict the fault state of four primary
components of the hydraulic test rig: cooler, valve, pump leakage, and accumulator. The
fault condition of the cooler was observed for classification in this thesis work. The data
are in raw text form in different files. They were preprocessed to merge them into a single
file. Spectrograms were then generated for each fault condition with the help of the data
provided. These spectrograms were used in the Resnet-18 architecture of Convolution
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Neural Networks for the classification. The results showed the high accuracy of the model,
resulting in 96%, whereas the precision, recall, and F-score resulted in being 95%.
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