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Abstract: Cross-lingual entity alignment in knowledge graphs is a crucial task in knowledge fusion.
This task involves learning low-dimensional embeddings for nodes in different knowledge graphs and
identifying equivalent entities across them by measuring the distances between their representation
vectors. Existing alignment models use neural network modules and the nearest neighbors algorithm
to find suitable entity pairs. However, these models often ignore the importance of local structural
features of entities during the alignment stage, which may lead to reduced matching accuracy.
Specifically, nodes that are poorly represented may not benefit from their surrounding context. In
this article, we propose a novel alignment model called SSR, which leverages the node embedding
algorithm in graphs to select candidate entities and then rearranges them by local structural similarity
in the source and target knowledge graphs. Our approach improves the performance of existing
approaches and is compatible with them. We demonstrate the effectiveness of our approach on the
DBP15k dataset, showing that it outperforms existing methods while requiring less time.

Keywords: knowledge graph; cross-lingual entity alignment; structural similarity rearrangement

1. Introduction

Recently, knowledge graphs (KGs) have gained widespread adoption in AI-related
fields, such as decision systems, knowledge reasoning, and recommendation systems, due
to their excellent performance in storing structured data [1]. Knowledge graphs commonly
consist of knowledge represented in the form of a triple, denoted by (h, r, t), in which h
and t are entities, and there is a relation r between them. Although effective in representing
structured data, problems caused by the underlying symbolic nature of such triples such as
a lack of explicit semantics, absence of complex operations, and expressivity limitations
usually make KGs hard to manipulate. To address these issues, research efforts have
focused on the distributed representation of KGs, also known as KG embedding. KG
embedding models embed a KG into a low-dimensional vector space by representing
its entities and relations as semantic information vectors. The earliest work based on
translation, TransE [2], considers a relation as the translation from its head entity to its tail
entity. TransE can learn embeddings for all the elements of a ground truth triple (h, r, t)
by assuming h + r ≈ t, where h, r, and t are the embeddings of h, r, and t, respectively.
Subsequent works have focused on enhancing TransE, such as TransD [3], TransH [4],
and PTransE [5].

However, constructing KGs usually involves independent organizations or individ-
uals, resulting in incomplete KGs that may not meet the needs of some applications.
The above methods mainly model a single KG, but to obtain more comprehensive knowl-
edge, it is necessary to integrate different knowledge graphs. Entity alignment [6] plays
a critical role in knowledge fusion tasks. Entity alignment models fuse KGs by aligning
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pairs of entities representing the same concept in the real world from different KGs, which
may be in different languages. Cross-lingual entity alignment [7] integrates two or more
KGs from other languages via pre-aligned seeds. Traditional entity alignment techniques
focus on two perspectives: one is based on the equivalence reasoning specified by OWL
semantics [8], and the other is based on similarity computation, which compares the sym-
bolic features of entities [9,10]. Some studies have also focused on improving the accuracy
of entity alignment through machine learning [11,12] and crowdsourcing [13].

Recent works devote a lot of effort to machine learning and deep learning approaches
for knowledge graph entity alignment. MTransE [14] embeds KGs from different languages
into different vector space, and learns a matrix for spatial transformation between monolin-
gual vector spaces. JAPE [15] jointly embeds both the structural and attribute information
of knowledge graphs into a unified vector space. BootEA [16] proposes a bootstrapping ap-
proach to iteratively generate new aligned entities as training data. In particular, deep learn-
ing methods have shown promising results in this area. GCN-Align [17] trains GCNs with
pre-aligned seeds to embed entities of each language into a unified vector space. HGCN-
JE [6] jointly learns entity and relation representations. RDGCN [18] incorporates relation
information via attentive interactions between the knowledge graph and its dual relation
counterpart to capture neighboring structures and learn better entity representations.

We find that all the methods mentioned above suffer from a limitation in that they
only consider the globally closest entity in the vector space as an equivalent entity, which
can be seen as a global optimum. However, when considering a specific node, the entity
selected based on distance alone may not be the optimal cross-lingual counterpart, as it
does not take into account the structural similarity between nodes. We can draw inspiration
from SEU [19], which transformed cross-lingual knowledge graph entity alignment into
an assignment task, as the original knowledge graph and the target knowledge graph
share a similar graph structure, i.e., their adjacency matrices are similar. In this paper, we
propose a cross-lingual entity alignment method based on local structural rearrangement.
Our method calculates a k-nearest neighbor candidate set for each entity of the original
knowledge graph during the alignment phase of the model. Subsequently, we rearrange
each of the obtained candidate sets based on local structure, consisting of the surrounding
nodes, to enhance the matching accuracy of equivalent entities.

As illustrated in Figure 1, the source knowledge graph (Chinese) contains relations be-
tween entities such as “Ping Guo”(Ns1 ) and “Qiao Bu Si”(Ns2 ), “Jia Zhou”(Ns3 ) and “Wei
Ruan”(Ns5). For instance, “Qiao Bu Si" founded "Ping Guo" and "Ping Guo" is located
in “Jia Zhou”. When searching for the cross-lingual correspondence of entity “Ping Guo”
in the target knowledge graph (English), there are two possible results: “Apple”(Nta ) and
“Apple”(Ntb ). In this case, the local structure of entities must be taken into consideration.
As the cross-lingual equivalent entities include “Steven Jobs’’(Nt2) in the target KG and
“Qiao Bu Si” in the source KG, “California”(Nt3) in the target KG and “Jia Zhou” in the
source KG, and “Microsoft”(Nt5 ) in the target KG and “Wei Ruan” in the source KG, entity
“Apple”(Nta ) has a similar structure to entity “Ping Guo”. Therefore, entity “Apple”(Nta )
is more likely to be the cross-lingual counterpart of “Ping Guo” than the other entity
“Apple”(Ntb ). In summary, we summarize the three significant contributions as follows:

• We introduce an approach called structure similarity rearrangement (SSR) to improve
the precision of cross-lingual knowledge graph entity alignment, which centers around
the formulation of a joint evaluation function that incorporates the local structural
similarity of entities.

• We perform extensive experiments on the publicly available datasets DBP15k ZH_EN,
JA_EN, and FR_EN, and demonstrate that our proposed model outperforms other
state-of-the-art methods in the evaluation metrics of Hits@1.

• By conducting comparative experiments, we have discovered that our proposed
method exhibits a seamless integration capability with other alignment models, lead-
ing to a substantial improvement over techniques (such as GCNs) that solely focus on
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node-level features. Moreover, our model demonstrates considerable accuracy gains
when compared to approaches (e.g., RDGCN) that consider the surrounding context.

𝐍𝐬𝟒

𝐍𝐬𝟓

𝐍𝐬𝟏

𝐍𝐬𝟐

𝐍𝐬𝟑

Structure of Source

KG

𝐍𝐭𝐚

𝐍𝐭𝟐

𝐍𝐭𝟑

𝐍𝐭𝟓

𝐍𝐭𝟔

𝐍𝐭𝐛

𝐍𝐭𝟕

𝐍𝐭𝟖

𝐍𝐭𝟗

Node Level Similarity Structure Level Similarity

𝐍𝐭𝐚

𝐍𝐭𝟐

𝐍𝐭𝟑

𝐍𝐭𝟓

𝐍𝐭𝟔

𝐍𝐭𝐛

𝐍𝐭𝟕

𝐍𝐭𝟖

𝐍𝐭𝟗

Structure of

Target KG

𝐍𝐭𝐚

𝐍𝐬𝟐
乔布斯

Qiao Bu Si

𝐍𝐬𝟐 𝐍𝐭𝟐

𝐍𝐬𝟑
𝐍𝐭𝟑

𝐍𝐬𝟓 𝐍𝐭𝟓

Seeds

𝑫

𝓢

𝐍𝐬𝟏
苹果

Ping Guo

𝐍𝐬𝟑
加州

Jia Zhou

𝐍𝐬𝟒
联想

Lian Xiang

𝐍𝐬𝟓
微软

Wei Ruan 𝐍𝐭𝐚
Apple

𝐍𝐭𝟕 Banana

𝐍𝐭𝟑 California

𝐍𝐭𝟐
Steven Jobs 𝐍𝐭𝟓 Microsoft

𝐍𝐭𝟔 Iphone

𝐍𝐭𝐛 Apple

𝐍𝐭𝟖 Apple Tree

𝐍𝐭𝟗 Orange

Figure 1. An example of cross-lingual KG entity alignment.

2. Related Work

The task of knowledge graph entity alignment can be broken down into two primary
stages: (i) knowledge graph representation, and (ii) entity alignment based on the entity-
level representation. In recent years, knowledge graph embedding techniques have been
widely employed for distributed representation of the structural information in knowl-
edge graphs.

2.1. Knowledge Graph Embedding

Knowledge graph (KG) is a technique that uses graph models to describe knowledge
and model the association relationships between things [20–22]. KGs are composed of
triples, 〈entity, relation, entity〉 , and entities that have attribute–value pairs, which are
connected by relationships to form a web-like structure [23,24]. However, manipulating
KGs can be challenging due to the symbolic nature of triples. To address this issue,
knowledge graph embedding (KGE) [25] has emerged as a promising research direction.
KGE aims to map KG components into a continuous low-dimensional vector space that
preserves the original structure of the KG and simplifies operations. Various embedding
methods have been proposed, including TransE [2], which interprets a relation as the
translation vector from the head entity to the tail entity in embedding space; TransH [4],
which models a relation as a vector on a specific relationship hyperplane and learns
different representations for an entity; and TransD [3], which uses two vectors to represent
the semantics of an entity (relation) and construct a mapping matrix dynamically. Recently,
a GCN-based approach called CompGCN [26] has been proposed, which leverages a range
of entity–relation composition operations from KG embedding techniques to jointly embed
both nodes and relations in a multi-relational graph.

2.2. Entity Alignment

Entity alignment is a crucial task in knowledge graph (KG) research which aims to
identify entities that correspond to the same real-world object across different KGs. In the
past, manual feature extraction or crowdsourcing [10,27–29] were often used to accomplish
this task, which required substantial manual involvement. Recently, KG embedding
techniques have been widely employed to facilitate entity alignment. JE [30] proposed
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to jointly learn embeddings of multiple KGs in a uniform vector space to align entities
in different KGs. MTransE [14] embeds two KGs into different vector spaces and aligns
them by learning two transforming matrices. GCN-Align [31] is the first to employ graph
convolutional networks (GCNs) to encode entities and attributes into a unified space for
entity alignment.

3. Problem Formulation
3.1. Knowledge Graph

A knowledge graph KG is composed of sets of entities E, relations R, and triples T,
where T ⊆ E× R× E and KG = (E, R, T).

3.2. Knowledge Graph Entity Alignment

An entity alignment model aims to automatically identify all of the corresponding
entities of two given KGs. Without loss of generality, we choose one KG as the source
knowledge graph and the other as the target knowledge graph, and denote them as
KGs = (Es, Rs, Ts) and KGt = (Et, Rt, Tt).

Candidate set and ranking indicator. In the process of entity alignment, the model
endeavors to discover a fixed number of cross-lingual counterparts in KGt for each entity
node ei originating from KGs. Subsequently, these counterparts are sorted in ascending or-
der based on vector distance, yielding the candidate set CAND(ei) specific to the respective
entity node. For any node ej in the candidate set of ei from KGt, its ranking indicator based
on vector distance can be defined as the difference between the length of the candidate set
(cand) and its position in the candidate set (index(CAND(ei), ej)).

Similarity of local structures. Let G represent a graph, which can be denoted as
G = 〈V, E〉, where V and E correspond to the sets of nodes and edges in the graph,
respectively. We refer to the graph structure of KGs as Gs, and similarly, the graph structure
of KGt as Gt. The local structure of a vertex is defined by the edges directly adjacent to it
and the vertices connected to it via those edges. Thus, for a given node vs from Gs and a
node vt from Gt, we employ the symbol S to represent the degree of similarity between
their respective local structures.

Problem Statement Given two knowledge graphs KGs and KGt, the crux of the prob-
lem is to compute and rearrange the candidate set associated with each entity originating
from KGs.

The symbols used in our method are summarized in Table 1.

Table 1. Important notation.

Symbol Definition

KG = (E, R, T) A KG consisting of sets of entities E, relations R, and triples T.
Es, Et The sets of entities from KG1 and KG2.

ei An entity from KG.
vec The entity embeddings.

CAND(ei) The candidate set of entity ei.
CAND(Es) The candidate sets of Es.

CANDnew(ei) The rearranged candidate set of entity ei.
CANDnew The rearranged candidate sets of Es.

cand The size of candidate set.
rank(ei) The ranking of entity ei.

G = 〈V, E〉 A graph G consisting of set of nodes V and set of edges E.
S The similarity of local structures.

index(list, e) The index of e in list.

4. The Proposed Approach

Most of the existing models for entity alignment in knowledge graphs are composed
of two main modules: an embedding module and an alignment module. The former is
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responsible for generating distributed representations of the input knowledge graphs,
whereas the latter aims to identify similar cross-lingual counterparts in the vector space.
However, the aforementioned methodologies primarily focus on devising intricate network
models to acquire a highly precise distributed representation of the knowledge graph.
Nevertheless, the alignment phase still adheres to the conventional approach of employing
a simple greedy search. Taking inspiration from SEU [19], we acknowledge that when
it comes to two knowledge graphs that pertain to the same domain, their overall graph
structure exhibits similarities, and the structure surrounding equivalent entities is also
comparable. In this work, we propose a structure-based approach for rearranging the
candidate sets obtained by the alignment module. Specifically, given two knowledge
graphs KGs and KGt in different languages, our model first generates their distributed
representations via the embedding module. Next, the alignment module employs the KNN
algorithm to search for cross-lingual counterparts in the target knowledge graph for each
entity in the source knowledge graph, and generates the corresponding candidate sets.
We assume that the graph structures around the alignment nodes in the source and target
knowledge graphs are similar, such that entities with similar graph structures in the source
knowledge graph are likely to have similar counterparts in the target knowledge graph.

In order to enhance the precision of cross-lingual entity alignment, we propose a novel
approach to rearrange the candidate sets of nodes in consideration of the similarity between
the graph structures of the nodes in the source KG and their candidate set in the target KG.
This structure-based rearrangement aims to modify the distribution of the candidate sets,
and, therefore, improve the overall accuracy of the alignment task.

4.1. Overall Architecture

As illustrated in Figure 2, we propose a straightforward approach to enhance the
precision of cross-lingual entity alignment. Firstly, the embedding representation of the
knowledge graph is generated by leveraging an embedding module, such as JAPE, GCNs,
HGCN, or RDGCN. Subsequently, a KNN algorithm is typically employed as the alignment
module to obtain the cross-lingual corresponding candidate set for each node in the source
knowledge graph. To optimize this candidate set, a rearrangement algorithm is utilized.
The detailed process of our proposed approach is elaborated in Algorithm 1.
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Figure 2. Overall architecture of the proposed approach.
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Algorithm 1: Structural Enhancement Rearrangement Algorithm.

Input: Entity Embeddings vec, Test Data (Es, Et), Size of candidate set cand,
Gs = 〈Vs, Es〉, Gt = 〈Vt, Et〉

Output: Rearranged Candidate Sets CANDnew, Hits@1.
1 calculate candidate sets CAND(Es);
2 for ei in KGs do
3 Vei ← {ej|ej ∈ Vs ∧ (ei, ej) ∈ Es};
4 Eei ← {(x, y)|x ∈ (Vei ∪ {ei}) ∧ y ∈ (Vei ∪ {ei}) ∧ (x, y) ∈ Es};
5 LS(ei)← G〈Vei , Eei 〉;
6 for vj in CAND(ei) do
7 rank(vj)← cand− index(CAND(ei), vj);
8 Vvj ← {vi|vi ∈ Vt ∧ (vi, vj) ∈ Et};
9 Evj ← {(x, y)|x ∈ (Vvj ∪ {vj}) ∧ y ∈ (Vvj ∪ {vj}) ∧ (x, y) ∈ Et};

10 LS(vj)← G〈Vvj , Evj〉;
11 if LS(ei) ∼ LS(vj) then
12 rank(vj)← rank(vj) + S ;

13 CANDnew(ei)← rearrange CAND(ei) by the updated rank of each candidate
node;

14 CANDnew ← CANDnew ∪ CANDnew(ei);
15 calculate Hits@1;

4.2. Embedding Module

The proposed approach primarily focuses on the structure-based rearrangement of
candidate sets, and, thus, the choice of embedding module is flexible. For the purpose of
illustration, we adopt the GCN alignment model as the embedding module. GCNs [17]
are neural networks that can directly process graph-structured data of arbitrary shape and
size. Specifically, a GCN layer receives both the node feature vector and the structural
information of a graph. The structural information of the graph can be learned, and the fea-
ture vectors of all nodes can be updated through a GCN layer. By aggregating information
from the neighboring nodes, GCNs update the feature vectors of nodes and are commonly
employed in graph classification and regression tasks.

The input to a GCN model layer is the vertex feature matrix of the graph and the
output is a new feature matrix obtained using the following equation:

H(l+1) = σ
(

D̂−
1
2 ÂD̂−

1
2 H(l)W(l)). (1)

where H(l) ∈ Rn×d(l) is a matrix of d(l)-dimensional feature vectors of n nodes in the
l-th layer; σ is an activation function; A ∈ Rn×n is the connectivity matrix of the graph;
Â = A + I, and I ∈ Rn×n is the identity matrix; D̂ ∈ Rn×n is the diagonal node degree
matrix of Â; and W(l) ∈ Rd(l)×d(l+1)

is the weight matrix of the l-th layer of the GCN model;
the new vertex features have d(l+1) dimensions.

The GCN-Align model integrates the structural and attribute information of nodes
to generate node embeddings, and since our method rearranges nodes in a candidate set
based on structural similarity, the attribute information of nodes is not considered and only
structural information is utilized for training.



Sensors 2023, 23, 7096 7 of 22

4.3. Calculate Candidate Sets

A cross-lingual entity counterpart is predicted by computing the distance between the
entity embeddings of two KGs in the vector space. For each pair of nodes, ei in KG1 and vj
in KG2, the distance between them is computed using the following equation:

D(ei, vj) = ||ei − vj||1. (2)

where ei and vj denote the embeddings of ei and vj, respectively.
For an entity ei in KG1, our model computes the distance between ei and all entities

in KG2 and returns a list as the candidate set in which the entities are sorted by distance
from smallest to largest, because two entities with smaller distance are more likely to be
equivalent. As a result, for n entity nodes in KG1, a candidate sets matrix Mc ∈ Rn×lc can
be obtained, where lc denotes the length of each candidate set.

4.4. Local Structural Similarity

In the graph theory domain, the local structural analysis [32] of a node ei in a graph
G = 〈V, E〉 has been widely studied. Herein, V and E correspond to the sets of nodes and
edges in the graph, respectively. Specifically, the local structure LS of the node ei is formally
defined as follows:

LS(ei) = G〈Vei , Eei 〉. (3)

where Vei = {ej|ej ∈ V ∧ (ei, ej) ∈ E} and Eei = {(x, y)|x ∈ (Vei ∪ {ei}) ∧ y ∈ (Vei ∪
{ei}) ∧ (x, y) ∈ E}. The local structure of each node is a subgraph of the whole knowledge
graph and there are a lot of methods [33] to determine whether two graphs are similar. We
propose a simple but novel equation for computing graph similarity in this article, which is
outlined as follows:

Snode(ei, vj) = ∑
x∈Vei

[ε− min
y∈Vvj

D(x, y)]+ (4)

Sedge(ei, vj) = ∑
(xi,yi)∈Eei

|{(xj, yj)|cond}|. (5)

S(LS(ei), LS(vj)) = λ× Snode(ei, vj) + δ× Sedge(ei, vj). (6)

where cond in Equation (5) denotes (xj, yj) ∈ Evj ∧ xj ∈ CAND(xi) ∧ yj ∈ CAND(yi);
Snode(ei, vj) in Equation (4) and Sedge(ei, vj) in Equation (5) are similarities of neighboring
nodes and edges, respectively, and λ and δ in Equation (6) are their weight coefficients.

In Equation (4), [a]+ denotes the positive part of a, while ε > 0 signifies the maxi-
mum admissible distance among equivalent entities, and its value can be specified as the
maximum embedding distance observed within the training set for equivalent entities.
D(x, y) denotes the embedding distance between entities x and y. The computation of
Snode(ei, vj) is based on the concept that the similarity between ei and vj increases as the
number of equivalent entities in Vei and Vvj grows. To satisfy this condition, our approach
involves identifying the node y in Vvj with the closest embedding distance miny∈Vvj

D

to x. If the distance miny∈Vvj
D(x, y) is smaller than the threshold ε, we consider y as a

potential equivalent node of x. In such cases, we accumulate the difference between ε
and miny∈Vvj

D(x, y) into Snode(ei, vj). Conversely, if the embedding distance exceeds ε,
we discard y as a potential equivalent node. In essence, the higher the count of potential
equivalent nodes in Vei and Vvj , and the smaller the embedding distance among these
potential equivalents, the greater the theoretical validity of equivalent entities, resulting in
a larger value of Snode(ei, vj).

In Equation (5), edge (xj, yj) satisfying the specified condition cond is regarded as
analogous to (xi, yi). The term ∑(xi,yi)∈Eei

|{(xj, yj)|cond}| computes the count of edges
in Evj that meet the condition cond, and thereby quantifies their similarity to edges in
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Eei . As the number of such similar edges in Eei and Evj increases, so does the value of
Snode(ei, vj).

Equation (6) considers both node and edge similarities in the graph and can be utilized
to obtain the similarity between two local structures. A higher value of S(LS(ei), LS(vj))
indicates greater similarity between the two local structures.

4.5. Rearrangement Stage

This part is the most crucial component of our proposed approach. In this step, we
rearrange the nodes in the candidate set matrix obtained in the previous step. The re-
arrangement process is depicted in Algorithm 1 and Figure 3, which takes as input the
entity embedding matrix vec generated by the embedding module, the testing data (Es, Et),
the candidate set size cand, and the adjacency matrix adj that encodes the structural infor-
mation of the KGs. The algorithm outputs the rearranged candidate sets CANDnew and
the corresponding values of Hits@1.

In extant methodologies, the alignment module predominantly relies on the distance
metric as the criterion for exploring cross-lingual correspondences. In this study, we present
a novel metric called Joint Similarity as delineated below:

D(ei, vj) = |D(ei, vj)− S(LS(ei), LS(vj))|. (7)

which stipulates that the proximity between two nodes ought to decrease concomitantly
with the enhancement in the similarity of their corresponding local structures.
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Local Structure of e12:
𝑽𝒆𝟏𝟐 = {𝐞𝟐𝟏

′ , 𝐞𝟐𝟐
′ }

𝑬𝒆𝟏𝟐 = 𝐞𝟏𝟐, 𝐞𝟐𝟏
′ , (𝐞𝟏𝟐, 𝐞𝟐𝟐

′ )

𝐋𝐒 𝐞𝟏𝟐 = 𝑮⟨𝑽𝒆𝟏𝟐 , 𝑬𝒆𝟏𝟐⟩

𝑒13

𝑒34
′ 𝑒33

′

𝑒31
′

𝑒32
′

Local Structure of e13:
𝑽𝒆𝟏𝟑 = {𝐞𝟑𝟏

′ , 𝐞𝟑𝟐
′ , 𝐞𝟑𝟑

′ , 𝐞𝟑𝟒
′ }

𝑬𝒆𝟏𝟑 =

𝐞𝟏𝟑, 𝐞𝟑𝟏
′ , 𝐞𝟏𝟑, 𝐞𝟑𝟐

′ ,

𝐞𝟏𝟑, 𝐞𝟑𝟑
′ , 𝐞𝟏𝟑, 𝐞𝟑𝟒

′ ,

𝐞′𝟑𝟒, 𝐞𝟑𝟑
′ , (𝐞′𝟑𝟐, 𝐞𝟑𝟑

′ )

𝐋𝐒 𝐞𝟏𝟑 = 𝑮⟨𝑽𝒆𝟏𝟑 , 𝑬𝒆𝟏𝟑⟩

Candidate nodes’ local structure in target KG

Get local structures

Rearrange nodes in candidate set

𝓢 𝒂, 𝒃 ← 𝓢(𝑳𝑺 𝒂 , 𝑳𝑺(𝒃))

𝓢 𝒆𝟏, 𝒆𝟏𝟏 < 𝓢 𝒆𝟏, 𝒆𝟏𝟐 < 𝓢 𝒆𝟏, 𝒆𝟏𝟑

If 𝓓 𝒆𝟏, 𝒆𝟏𝟏 < 𝓓 𝒆𝟏, 𝒆𝟏𝟐 < 𝓓 𝒆𝟏, 𝒆𝟏𝟑

Then do rearrangement:

𝐞𝟏 𝑒13 𝑒12 𝑒11

𝐞𝟏 𝑒11 𝑒12 𝑒13

Return rearranged candidate set

Figure 3. Entity rearrangement process. Firstly, we calculate the local structure of all nodes within
the candidate set of e1 via Equation (3). Secondly, we compute the local structural similarity between
e1 and the nodes within the candidate set using Equation (6). Following this, the joint similarities
are determined through Equation (7). Lastly, to complete the rearrangement, the nodes within the
candidate set are rearranged based on their respective values of joint similarity.

The details of the implementation of the algorithm are described as follows. Firstly,
for each node ei in the testing data from the source KG, we construct a map with the entity
node’s id of ei as the key and its sum of ranking as the value and save its local structure
into a sparse matrix. When traversing each node ej in the candidate set of ei, we record the
ranking of ej at first, and then add it with local structural similarity. Here, the ranking is
defined as the size of the candidate set minus the subscript of the node in the candidate
set. Then, we can obtain a map of the candidate set for ei. By rearranging this map by
value from largest to smallest, we obtain a new candidate set while considering local
structural similarity. In theory, the ground truth cross-lingual correspondence in the new
candidate set is ranked higher than in the original candidate set. Since not all nodes in the
original candidate set satisfy local structural similarity, the length of the new candidate set
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is reduced, making it difficult to compute values other than Hits@1. Our approach focuses
on improving Hits@1, i.e., alignment accuracy improvement.

4.6. Complexity Analysis

Algorithm 1 presents the key methodology of our proposed algorithm. It consists of
two nested loops and a conditional structure for judgment. The outer loop traverses every
node ei in the source knowledge graph KG1, with a time complexity of O(nes), where nes

denotes the total number of entities in KG1. Meanwhile, the inner loop iterates through
each candidate node vj in the candidate set of ei, with a time complexity of O(cand).
Within this loop, the algorithm acquires the local structure and computes the similarity of
local structures with a time complexity of O(nrt), where nrt represents the total number
of edges in the target graph. Furthermore, if the local structure of ei is similar to that
of vj, the algorithm proceeds to compute their similarity. In summary, the overall time
complexity of the algorithm is O(cand× nes × nrt).

The adoption of a fixed value for cand, limited to the range of [1, 100], serves to signif-
icantly reduce the time complexity of our proposed approach. Moreover, the alignment
process exclusively utilizes nodes present in the testing data rather than traversing the
entire knowledge graph. This selective strategy substantially reduces the overall count of
nodes and edges, resulting in a significant decrease in the algorithm’s time complexity.

5. Experiment

The proposed method is evaluated on the DBP15k datasets, aiming to address the
following research questions:

• RQ1: To what extent can the integration of SSR with the baseline model’s embedding
module enhance the prediction accuracy of the entity alignment task?

• RQ2: What is the impact of varying the rearranging ranges on the overall performance
of the model?

• RQ3: How do the parameters λ and δ in Equation (6) affect the performance of
the model?

5.1. Datasets

In our experiments, we utilized the DBP15k datasets proposed by Sun et al. [15], (Cross-
lingual Entity Alignment via Joint Attribute-Preserving Embedding in International Seman-
tic Web Conference, Springer, Cham, 2017) This dataset comprises four language-specific
KGs extracted from DBpedia for English (En), Chinese (Zh), French (Fr), and Japanese
(Ja), with each KG containing approximately 65 k–106 k entities. Additionally, the dataset
provides aligned entity sets for English and three other languages, with each set containing
more than 15 k cross-lingual entity pairs. Statistical information about the datasets is shown
in Table 2.

Table 2. Statistical information of DBP15k.

Dataset Languages Entities Relations Attributes Rel.
Triples

Attr.
Triples

ZH_EN Chinese 66,469 2830 8113 153,929 379,684
English 98,125 2317 7173 237,674 567,755

JA_EN Japanese 65,744 2043 5882 164,373 354,619
English 95,680 2096 6066 233,319 497,230

FR_EN French 66,857 1379 4547 192,191 528,665
English 105,889 2209 6422 278,590 576,543

Structure Statistic

The degree of nodes is one of the most notable metrics that can provide insight into
graph structure. Therefore, we conducted an analysis of the degree-related information
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across the three language versions of the DBP15k dataset, which we present in Figure 4
and Table 3.

(a) (b) (c)

Figure 4. Degree distribution of local structure in DBP15k. (a) DBP15kZH_EN ; (b) DBP15kJA_EN ;
(c) DBP15kFR_EN .

Table 3. Cardinality of local structure diversity.

Dataset DBP15kZH_EN DBP15k JA_EN DBP15kFR_EN

Number 81 80 108

The node degree distribution across the three language versions of the DBP15k dataset
is presented in Figure 3. The horizontal axis indicates various degree of nodes, while the
vertical axis represents the number of nodes with the corresponding degree. Our analysis
reveals that the distribution trends of node degrees in the knowledge graphs of the three
language versions are relatively consistent. The number of nodes tends to increase and then
decrease with the rise in node degrees, and the majority of nodes exhibit degrees between 2
and 5.

In Table 3, we present the statistics of node degree types across the DBP15k training set
in three distinct language versions. The dataset DBP15kZH_EN contains 81 distinct types of
node degrees, and DBP15k JA_EN features 80 distinct types of node degrees, exhibiting only
marginal variation from the former. However, DBP15kFR_EN displays 108 different types
of node degrees, which is likely due to the greater linguistic similarity between French and
English compared to Chinese or Japanese. This linguistic proximity results in a higher count
of cross-lingual entity links between French and English in DBpedia. The discrepancies in
the number of node degree types across the three datasets are likely to have a significant
impact on the outcome of the subsequent experiments.

5.2. Experiment Settings

In light of the current state of entity alignment research, we observe that GCN-based
methods have exhibited the highest performance on the DBP15k dataset and do not neces-
sitate the incorporation of extra training data (https://paperswithcode.com/sota/entity-
alignment-on-dbp15k-zh-en (accessed on 5 July 2023)). While PSR [34] and EMGCN [35]
exhibit superior performance, they necessitate supplementary training data, which is un-
suitable in our case. Therefore, we have chosen several representative GCN-based methods
(without extra training data) as baseline techniques for our comparative evaluation. Addi-
tionally, we have included JAPE, a translation-based model that has achieved the highest
performance among non-GCN-based methods, as a baseline for comparison.

During the experiments, we conducted a control test by selecting only the SE variants
of each baseline approach since our rearrangement method does not require the use of
attribute information in the knowledge graph.

The inter-language links in each dataset are divided according to the gold standard.
In all control experimental groups, we use 70% of the inter-language links as the test data

https://paperswithcode.com/sota/entity-alignment-on-dbp15k-zh-en
https://paperswithcode.com/sota/entity-alignment-on-dbp15k-zh-en
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and 30% of them as the train data. The main focus of the experiments is on the enhancement
in Hits@1, i.e., the prediction accuracy of the corresponding entities across languages.

Apart from the hyperparameters that are included in our approach for the prior-order
model, such as the division ratio between the training and validation sets and the learning
rate, the length of the candidate set to be rearranged and the weight of neighbor are crucial
hyperparameters. In our experiments, we test three candidate set lengths: 5, 10, and 50 to
determine the optimal value, meanwhile we set the weights as λ = 0.25, δ = 0.5.

5.3. Baselines Information

In our controlled experiments, we chose four primary baseline approaches, including
a representative translation-based model, JAPE, and for GCN-based models, GCN-Align,
HGCN-JE, RDGCN, and AliNet. As our approach is focused on local structural similarity
and does not require the utilization of attribute-related information, we only compared our
method with the SE variants of each baseline approach in our comparative experiments.

JAPE [15] is a joint attribute-preserving embedding model for cross-lingual entity
alignment, which jointly embeds the structures of two KGs into a unified vector space and
further refines it by leveraging attribute correlations in the KGs. In our experiment, we
set its hyperparameters to the best-performing values: d = 75, α = 0.1, β = 0.05, δ = 0.05.
The learning rate of SE is set to 0.01 based on empirical evaluation.

GCN-Align [31] is a graph convolutional network-based approach that leverages
entity relations to construct the network structure of GCNs, enabling it to generate embed-
dings for each entity in the source and target KGs. For our experiments, we selected the
hyperparameters that have shown the most promising results, including setting ds = 1000
and da = 100 for the source and target entity embeddings, respectively. Additionally, we set
the margin γs = γa = 3 in the loss function and empirically set β in the distance measure
to 0.9.

HGCN-JE [6] is a joint entity–relation learning framework for entity alignment that
minimizes human involvement and associated costs in seed alignment construction. For the
experiment, we set the hyperparameters to γ = 1, β = 20, and the learning rate of 0.01. We
also sample K = 125 negative pairs every epoch.

RDGCN [18] is a novel relation-aware dual-graph convolutional network to incor-
porate relation information via attentive interactions between the knowledge graph and
its dual relation counterpart, and further capture neighboring structures to learn better
entity representations. In our experiments, we set β1 = 0.1, β2 = 0.3, and γ = 1.0 as the
hyperparameters. The hidden representations in the dual and primal attention layers have
dimensions of d = 300, d′ = 600, and d̃ = 300. The dimension of hidden representations in
GCN layers is 300. The learning rate is set to 0.001, and we sample K = 125 negative pairs
every 10 epochs.

AliNet [36] introduces distant neighbors to expand the overlap between their neigh-
borhood structures, which employs an attention mechanism to highlight helpful distant
neighbors and reduce noise. Subsequently, it controls the aggregation of both direct and
distant neighborhood information using a gating mechanism. In our experiments, we set
the number of layers of AliNet to 2, the activation function for neighborhood aggregation
to tanh(), the one for the gating mechanism is RelU(), and the dimensions of the three
layers (including the input layer) to 500, 400, and 300, respectively. For each pre-aligned
entity pair, we sample 10 negative samples.

5.4. Results

Tables 4–6 show the results of all experiments on the DBP15k dataset.
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Table 4. Experiment results on DBP15kZH_EN .

Type Model Hits@1 Hits@5 Hits@10

NEM 1 JAPE 39.39 62.86 71.02
JAPE–SSR–5 44.00 - -

JAPE–SSR–10 43.91 - -
JAPE–SSR–50 40.65 - -

NEM GCN-Align 39.16 63.16 69.93
GCNs–SSR–5 44.26 - -

GCNs–SSR–10 43.99 - -
GCNs–SSR–50 41.32 - -

SEM 2 AliNet 51.71 72.13 85.07
AlN–SSR–5 53.98 - -
AlN–SSR–10 53.39 - -
AlN–SSR–50 49.76 - -

SEM HGCN-JE 69.31 80.92 84.70
HJ–SSR–5 71.02 - -
HJ–SSR–10 68.30 - -
HJ–SSR–50 59.98 - -

SEM RDGCN 72.02 82.70 85.58
RG–SSR–5 72.66 * - -

RG–SSR–10 67.26 - -
RG–SSR–50 62.90 - -

1 Abbreviation of node-embedding model. 2 Abbreviation of structure-embedding model.

Table 5. Experiment Results on DBP15kJA_EN .

Type Model Hits@1 Hits@5 Hits@10

NEM JAPE 33.84 57.39 67.03
JAPE–SSR–5 38.20 - -

JAPE–SSR–10 38.15 - -
JAPE–SSR–50 35.53 - -

NEM GCN-Align 40.40 65.50 73.44
GCNs–SSR–5 44.90 - -

GCNs–SSR–10 44.09 - -
GCNs–SSR–50 40.73 - -

SEM AliNet 51.70 72.88 79.62
AlN–SSR–5 53.19 - -
AlN–SSR–10 52.30 - -
AlN–SSR–50 48.78 - -

SEM HGCN-JE 76.09 84.26 87.99
HJ–SSR–5 78.18 - -
HJ–SSR–10 70.50 - -
HJ–SSR–50 61.93 - -

SEM RDGCN 77.84 88.30 90.79
RG–SSR–5 78.84 * - -

RG–SSR–10 71.40 - -
RG–SSR–50 62.93 - -
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Table 6. Experiment Results on DBP15kFR_EN .

Type Model Hits@1 Hits@5 Hits@10

NEM JAPE 28.75 54.88 64.43
JAPE–SSR–5 33.56 - -

JAPE–SSR–10 33.45 - -
JAPE–SSR–50 31.19 - -

NEM GCN-Align 40.11 66.51 75.98
GCNs–SSR–5 43.76 - -

GCNs–SSR–10 42.83 - -
GCNs–SSR–50 38.60 - -

SEM AliNet 52.35 75.69 82.40
AlN–SSR–5 54.57 - -
AlN–SSR–10 53.36 - -
AlN–SSR–50 48.71 - -

SEM HGCN-JE 88.95 93.12 94.75
HJ–SSR–5 89.67 * - -
HJ–SSR–10 77.54 - -
HJ–SSR–50 64.29 - -

SEM RDGCN 88.79 94.57 95.91
RG–SSR–5 89.06 - -

RG–SSR–10 76.25 - -
RG–SSR–50 64.40 - -

The baseline methods exhibit distinct model characteristics, and can be categorized
into two types: node-embedding models and structure-embedding models. Specifically,
node-embedding models such as JAPE and GCN-Align solely consider node-level features,
while structure-embedding models such as AliNet, HGCN-JE, and RDGCN learn not only
node features, but also consider the surrounding environment information of the nodes.

In this study, we conducted a controlled experiment to evaluate the structural embed-
ding variants (SEs) of all of the baseline methods. We computed their Hits@k values with
k set to 1, 5, and 10. Subsequently, we employed the proposed SSR method to rearrange
the corresponding candidate sets of cross-lingual entities obtained for each model with the
corresponding model SSR variants. Here, XXX–SSR–c denotes the model utilizing an em-
bedding module named XXX in combination with SSR, with the candidate set rearranging
range set to cand = c.

As the SSR method only requires Hits@1 evaluation metrics, we report only the
results for the Hits@1 column for the SSR variants. For the controlled experiments of each
SSR variant with the original model, we emphasize the optimal Hits@1 results in bold,
the suboptimal Hits@1 results underlined, and annotate the optimal results on the entire
data set with ∗ in the upper right corner of the values.

5.4.1. Rearranging Range

As mentioned earlier, an important parameter of the algorithm proposed in this paper
is the length of the rearrangement range of the candidate set, and this parameter has an
impact on the performance of the model, which is reflected in the experimental results of
different SSR variants. From the experimental results, we can tentatively conclude that the
prediction accuracy Hits@1 of the variant model decreases as the value of cand increases
when the value of cand is taken in the range of three numbers 5, 10, 50.

We apply the SSR method to the JAPE and GCN-Align models, and the experimental
results show that the SSR variants of Hits@1 have a higher improvement relative to the
original model when cand is taken as 5 and 10. Even when cand is taken to be 50, the SSR
variants achieve a boost. This is due to the fact that both the JAPE and GCN-Align models
are simpler node-embedding models, and the quality of the learned entity embeddings is



Sensors 2023, 23, 7096 14 of 22

average. The local structure-based rearrangement is able to adjust the distribution of nodes
in the candidate set, thus achieving higher prediction accuracy.

For the AliNet method, Hits@1 improves to different degrees when the cand of the
variant is taken as 5 and 10, but the variant with cand = 50 does not perform as well
as the original model. Furthermore, when we apply SSR to the HGCN-JE and RDGCN
embedding modules, Hits@1 improves slightly only when cand takes 5. This is because the
neural network designs of AliNet, HGCN-JE, and RDGCN are more complex. Among them,
HGCN-JE introduces highway GCN, while RDGCN introduces relation-aware dual-graph.
Although the training dataset of these two methods is limited to DBP15k, they can generate
more data based on DBP15k due to the characteristics of the network structure, which
is essentially equivalent to using exogenous data. AliNet introduces “distant neighbors”
and an attention mechanism to consider the environmental information around the nodes,
which also helps to improve the quality of the entity embedding vectors.

Through experimental observation, we have discovered a significant correlation be-
tween the lift rate of Hits@5 of the original model relative to Hits@1 of the original model,
and the lift rate of Hits@1 of the SSR variant with cand = 5 relative to Hits@1 of the original
model. We conducted an in-depth analysis and comparison of these relationships. The re-
sults are presented in Figure 5. The horizontal axis of each figure indicates the original lift
rate, which is the lift rate of Hits@5 of the original model relative to Hits@1 of the original
model. The vertical axis represents the model lift rate, which is the lift rate of Hits@1 of the
SSR variant with cand = 5 relative to Hits@1 of the original model. Our analysis reveals
a clear positive correlation between the two, where an increase in the original lift rate
corresponds to an increase in the model lift rate.
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Figure 5. Models’ performance on DBP15k. (a) DBP15kZH_EN ; (b) DBP15kJA_EN ; (c) DBP15kFR_EN .

5.4.2. SSR vs. JAPE

In our comparative experiments, we investigate the effectiveness of the structure-
enhanced rearrangement method by applying it to JAPE and evaluating its impact on
entity alignment accuracy across three different cross-lingual KG datasets: DBP15kZH_EN ,
DBP15k JA_EN , and DBP15kFR_EN . Our results indicate that the performance improve-
ment of JAPE varies across different datasets, with the largest improvement achieved on
DBP15kZH_EN , followed by DBP15k JA_EN , and the smallest improvement on DBP15kFR_EN .
Specifically, the accuracy rate of Hits@1 can be increased by around 5% when cand is set to
5, and still improved by about 1% even when cand is increased to 50. Such improvements
are statistically significant and demonstrate the effectiveness of our approach.

The structure embedding part of JAPE uses a traditional translation-based model,
i.e., given a relational triple (h, r, t), we expect h + r ≈ t. Such a simple model neglects the
impact of the local structural information on the embeddings of entities, thereby presenting
an opportunity to enhance JAPE’s performance through our proposed structure-enhanced
rearrangement approach.

5.4.3. SSR vs. GCNs

In the comparison experiments with GCNs, we observed that the original GCNs approach
yielded almost identical Hits@1 results across three distinct datasets. On the other hand, our
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proposed method showed improvements on all three datasets, with a 5% improvement on
DBP15kZH_EN , 4.5% improvement on DBP15k JA_EN , and 3.6% on the DBP15kFR_EN dataset.

The GCNs method trains by optimizing the loss function globally for all nodes in
the graph. Our method applies a structure-enhanced rearrangement to the candidate set,
which takes into account the local structural similarity of the graph. Unlike the GCN model,
which only considers the distance similarity between single nodes in the alignment module,
our approach also considers the similarity of nodes and their surrounding structures when
evaluating equivalent entities, resulting in higher final values of Hits@1.

5.4.4. SSR vs. AliNet

We conducted experiments on the DBP15k dataset using the AliNet model. Notably,
our findings indicate that AliNet achieved comparable results across all three versions,
without exhibiting the significant performance gains observed in the HGCN and RDGCN
models on DBP15kFR_EN . Moreover, a careful examination of the experimental results
reveals that the integration of our proposed approach into the AliNet model led to a
noteworthy improvement of 2% to 3% on each of the three datasets.

5.4.5. SSR vs. HGCN

The performance of HGCN on the DBP15k benchmark dataset exhibits significant
improvement compared to JAPE and GCNs. In particular, HGCN achieves the highest
accuracy on the DBP15kFR_EN dataset, where JAPE and GCNs show inferior performance.

As previously noted, there are more structural variations present in the DBP15kFR_EN
dataset compared to DBP15kZH_EN and DBP15k JA_EN . This may explain why HGCN
achieves a higher accuracy rate on the DBP15kFR_EN dataset.

Upon applying our proposed approach to the HGCN model, we observed an improve-
ment of over 1% on both the DBP15kZH_EN and DBP15k JA_EN datasets, but only a 0.7%
improvement on DBP15kFR_EN .

5.4.6. SSR vs. RDGCN

In alignment with HGCN, the performance of RDGCN was evaluated across three
distinct versions of the dataset. Notably, on the DBP15kFR_EN , RDGCN exhibited superior
performance relative to the other datasets and achieved higher values of the Hits@1 metric
when compared with HGCN. This discernible advantage may be attributed to the incor-
poration of a dual-relation knowledge graph by RDGCN, which effectively harnesses the
relational intelligence embedded within the knowledge graph.

By employing the RDGCN embedding module in conjunction with our proposed
methodology, our approach has yielded an increase of approximately 1% in the DBP15kZH_EN
and DBP15k JA_EN datasets. However, in the DBP15kFR_EN dataset, the improvement is
only 0.27%.

5.4.7. Case Study

Figure 6 showcase the results of the experiments of both the baseline models and
their respective SSR variants on the DBP15kZH_EN dataset. Each figure presents a hori-
zontal axis denoting different types of node degrees and a vertical axis representing the
number of entities. The blue squares depict the number of nodes that exhibit an increase
in ranking for the actual cross-lingual equivalent entity within the candidate set upon
rearrangement, denoted as “hit”. On the other hand, the orange circles represent the total
number of declines, referred to as “miss”. Essentially, the blue squares indicate a positive
impact of rearrangement, while the orange circles signify a negative effect. Consequently,
the disparity between these two lines highlights the improvement effect of the SSR variant
concerning the original model at different node degrees, where a larger difference denotes
a more favorable improvement effect.
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(a) (b)

(c) (d)

Figure 6. Influence via SSR. (a) SSR vs. GCNs; (b) SSR vs. JAPE; (c) SSR vs. HGCN; (d) SSR
vs. RDGCN.

Upon careful examination of Figure 6, it becomes evident that the distribution of node
degrees adheres to the statistical information of the dataset, as demonstrated in Figure 4.

Initially, we conducted a thorough analysis of graphs Figure 6. These graphs revealed
that regardless of the degree of the node, ranging from 0 to 19, the total number of genuine
cross-lingual equivalent entities in the candidate set that are ranked up after rearrangement
consistently exceeded the total number of entities ranked down. Additionally, the difference
between the number of hits and misses was always maintained at a higher value, with a
minimum difference of 40. This phenomenon is the key factor responsible for the significant
enhancement in the performance our method in comparison to the JAPE and GCN-Align
embedding models.

Upon examining Figure 6, we observed that the disparity between the number of “hits”
and “misses” was not substantial (the highest difference did not surpass 40) even in regions
with the most densely distributed nodes. Notably, for the SSR variant of HGCN, there was
only a significant difference in nodes with degrees of 2 and 3. Furthermore, as the node
degree increased, the “miss” lines tended to exceed the “hit” lines.

To sum up, our proposed method has effectively enhanced the prediction outcomes for
nodes with low degrees. However, the performance of the variant model shows a gradual
deterioration for nodes with higher degrees.

5.4.8. Ablation Experiments and Sensitivity Analysis

In this paper, we propose a novel approach for computing the local structural similarity
of nodes in a graph. Our method takes into account both the neighboring node information
and the neighboring edge information present in the node’s surrounding environment,
which are denoted by the node information weight λ and the edge information weight δ in
Equation (6), respectively. To demonstrate the significance of these two factors, we conduct
ablation experiments and a sensitivity analysis in this section.

We present two sets of experiments to investigate the significance of neighboring node
and edge information in our proposed approach. Specifically, we conducted the first set of
experiments by maintaining δ = 0, while varying the value of node weights λ to determine
the effect of neighboring node information. The second set of experiments involved fixing
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the node weights at λ = 0 and modifying the value of edge weights δ to examine the impact
of neighboring edge information.

First, we investigate the significance of neighboring node information in the local struc-
ture of candidate set nodes. To this end, we perform experiments on several embedding
modules, including JAPE, GCN-Align, AliNet, HGCN-JE, and RDGCN, by fixing the edge
weight coefficient at δ = 0 and adjusting the value of λ in the SSR variants. Each model is
trained for 200 iterations, and the Hits@1 results are recorded and presented in Tables 7–11.

Table 7. Node weight for JAPE–SSR–5.

λ DBP15kZH_EN * DBP15kJA_EN DBP15kFR_EN

0 39.39 33.84 28.75
0.5 43.72 36.10 32.44
1.0 44.24 36.22 32.11
1.5 43.54 35.54 31.47
2.0 43.42 35.23 31.34
2.5 42.90 34.77 30.95
3.0 42.90 34.77 30.95
3.5 42.59 34.44 30.84
4.0 42.59 34.44 30.84
4.5 42.27 34.30 30.68
5.0 42.27 34.30 30.38

* Hits@1 on DBP15kZH_EN .

The values of λ in the SSR variant of JAPE have been fine-tuned and the experimental
outcomes are presented in Table 7. In the course of progressively augmenting the node
weight λ from 0 to 5.0, the corresponding values of Hits@1 of the variant model exhibit
a predominantly declining trend across all datasets. Optimal performance, as measured
by Hits@1, is achieved when λ is set to 1 on the DBP15kZH_EN and DBP15k JA_EN datasets.
This finding indicates that in the local structure of nodes, the information emanating from
neighboring nodes plays an equally crucial role as the embedding distance.

Table 8. Node weight for GCNs–SSR–5.

λ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 39.16 40.40 40.11
0.5 43.63 43.63 42.41
1.0 43.56 44.15 42.26
1.5 42.76 43.44 41.41
2.0 42.53 43.23 41.33
2.5 42.15 42.71 40.74
3.0 42.15 42.71 40.74
3.5 41.83 42.40 40.56
4.0 41.83 42.40 40.56
4.5 41.63 42.20 40.19
5.0 41.63 42.20 40.19

The experimental results of applying SSR on top of the GCN-Align embedding module
are shown in Table 8. Similar to JAPE, the values of Hits@1 of the variant model on each
dataset generally exhibit a decreasing trend as the node information weight λ is increased
from 0 to 5.0, with the highest value achieved at λ = 1.0 only on the DBP15k JA_EN
dataset. These findings suggest that neighboring node information, in addition to the
distance between node embeddings, plays a crucial role in the local structure of nodes
when rearranging the nodes in the candidate set obtained from the original GCN-Align
model, and such information significantly affects the performance of the final model.
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Table 9. Node weight for AlN–SSR–5.

λ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 51.71 51.70 52.35
0.5 53.86 53.19 54.57
1.0 53.75 52.96 53.81
1.5 53.05 52.23 52.47
2.0 52.85 51.88 52.20
2.5 52.27 51.36 51.79
3.0 52.27 51.36 51.79
3.5 51.70 51.04 51.30
4.0 51.70 51.04 51.30
4.5 51.46 50.72 51.05
5.0 51.46 50.72 51.05

The experimental outcomes of applying SSR on top of AliNet are presented in Table 9.
As the node information weight λ is gradually increased from 0 to 5.0, the variant model
exhibits a consistent decreasing trend in the Hits@1 performance metric across all datasets.
The best performance is achieved at λ = 1.0 for all datasets. This finding underscores the
importance of incorporating neighboring node information in the local structure of nodes
for the rearrangement of nodes in the candidate set generated by the original AliNet model.

The three sets of control experiments described above involved a uniform selection
of λ values ranging from 0 to 5.0. Node embedding models such as JAPE and GCN-
Align generate subpar embeddings for cross-lingual entity alignment and exhibit poor
performance in this task. However, with the addition of SSR, the variant models are able
to leverage both vector distance and node local structure similarity when searching for
cross-lingual counterpart entities. Notably, the information of neighboring nodes in the
node local structure plays an equally important role as the embedding vector distance.
In contrast, AliNet, a structure-embedding model, considers the information of neighbors
at a greater distance from the nodes. As such, the information of neighboring nodes in
the local structure surrounding nodes can substantially improve the performance of the
variant model when combined with SSR.

Table 10. Node weight for HJ–SSR–5.

λ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 69.31 76.09 88.95
0.05 69.68 76.52 89.35
0.10 70.30 77.03 89.67
0.15 70.76 77.74 89.39
0.20 70.82 77.84 89.35
0.25 71.02 78.18 88.79
0.30 70.52 77.69 88.17
0.35 70.08 77.35 87.54
0.40 70.05 77.30 87.44
0.45 69.89 77.10 86.97
0.50 69.89 77.10 86.97

The experimental results of combining SSR with the embedding module of HGCN-JE
are presented in Table 10. As the node information weight coefficient λ is progressively
increased from 0 to 0.50, the performance of the variant model exhibits an initial increase
followed by a decrease, and the best performance is obtained when λ is set to 0.25, 0.25,
and 0.10 on each dataset. These findings suggest that, although the original HGCN-JE
model performs well, incorporating neighboring node information in the local structure of
the nodes can further enhance the predictive accuracy of the variant model.
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Table 11. Node weight for RG–SSR–5.

λ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 70.77 77.33 88.81
0.05 71.04 77.47 88.90
0.10 71.76 78.09 89.06
0.15 72.08 78.26 88.63
0.20 72.27 78.41 88.29
0.25 72.53 78.54 87.50
0.30 71.97 77.65 86.31
0.35 71.70 77.17 85.35
0.40 71.62 77.19 85.25
0.45 71.71 77.10 84.67
0.50 71.71 77.10 84.67

When applying our method to the original RDGCN model, as shown in Table 11,
the node information weight coefficient λ is gradually increased from 0 to 0.50, resulting
in a similar trend to HJ–SSR–5, where the variant model performance first increases and
then decreases. The best results are achieved at λ = 0.25, λ = 0.25, and λ = 0.10 on each
language version dataset, respectively. These experimental results demonstrate the critical
role that neighboring node information in the local structure plays in positively influencing
the prediction results and improving the overall performance of the model.

In comparison to the three control experiments mentioned earlier, the traversal interval
of λ in our study is narrower. This is attributed to the competence of the two models which
excel in learning high-quality knowledge graph embeddings. The prediction accuracy
of cross-lingual corresponding entities, solely reliant on distance similarity, is already
remarkably high. Consequently, the impact of neighboring nodes’ information weights
diminishes in comparison to the first three node-level models. Nonetheless, our proposed
SSR variant manages to achieve discernible improvements over the original model.

The aforementioned experiments lead to the conclusion that the node information
plays a crucial role in the model, significantly impacting its performance sensitivity to
variations in λ.

After verifying the significance of the local structure node information, we proceeded
to investigate the role of edge information. In this set of experiments, we set the node
weight coefficient λ to 0 and uniformly sampled edge weight coefficients in the range
[0, 1.0]. The experimental results of the variant model are presented in Tables 12–16. Since
the Hits@1 results of the model on each dataset remain almost constant when varying the
value of δ, we combine the results of different δ values.

The empirical findings indicate that the incorporation of neighboring edge information
within the local structure makes a negligible contribution to the models’ performance,
with this parameter δ demonstrating low sensitivity.

Table 12. Edge weight for GCNs–SSR–5.

δ DBP15kZH_EN * DBP15kJA_EN DBP15kFR_EN

0 39.16 40.40 40.11
[0.1, 1.0] 39.16 40.40 40.11

* Hits@1 on DBP15kZH_EN .

Table 13. Edge weight for AlN–SSR–5.

δ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 51.71 51.70 52.35
[0.1, 1.0] 51.57 51.70 52.35
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Table 14. Edge weight for JAPE–SSR–5.

δ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 39.39 33.84 28.75
[0.1, 1.0] 39.39 33.84 28.75

Table 15. Edge weight for RDGCN–SSR–5.

δ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 72.02 77.84 88.79
[0.1, 1.0] 72.02 77.84 88.79

Table 16. Edge weight for HJ–SSR–5.

δ DBP15kZH_EN DBP15kJA_EN DBP15kFR_EN

0 69.31 76.09 88.95
[0.1, 1.0] 69.31 76.09 88.95

6. Conclusions

In this paper, we propose a novel local structure-based rearrangement method that
exploits the structural similarity between the source and target knowledge graphs and
considers not only the distance between entity embeddings in the alignment phase, but also
incorporates the feature of the local structure constituted by the entities and their surround-
ing nodes into the evaluation metric of entity similarity in order to improve the alignment
accuracy, which is reflected in the rearrangement of the candidate set nodes. Experiments
on three cross-lingual datasets of DBP15k demonstrate that the proposed approach can
achieve promising performance. Through a comprehensive case study, ablation experi-
ments, and a sensitivity analysis, we reveal that the information derived from neighboring
nodes within the entity’s local structure exerts a more substantial influence on the model
and exhibits heightened sensitivity. Notably, our method demonstrates superior capabili-
ties in handling nodes with smaller degrees. However, for nodes characterized by larger
degrees and intricate structures, the improvement effect after rearrangement becomes less
pronounced. This aspect poses a pivotal challenge, impeding the further enhancement in
our method’s performance.
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