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Abstract: A reconfiguration error correction model for an FBG shape sensor (FSS) is proposed. The
model includes curvature, bending direction error correction, and the self-correction of the FBG
placement angle and calibration error based on an improved sparrow search algorithm (SSA). SSA
could automatically correct the placement angle and calibration direction of the FBG, and then use
the corrected placement angle and calibration direction to correct the curvature and bending direction
of the FSS, thereby improving the accuracy of shape reconfiguration. After error correction, the tail
point reconfiguration errors of different shapes were reduced from 2.56% and 4.96% to 1.12% and
2.45%, respectively. This paper provides a new reconfiguration error correction method for FSS that
does not require a complicated experimental calibration process, is simpler, more efficient, and more
operable than traditional methods, and has great potential in FSS application scenarios.

Keywords: shape sensor; FBG; error correction; curvature; optimization algorithm

1. Introduction

In recent years, the fiber Bragg grating (FBG) shape sensor (FSS) has been extensively
researched in the field of optical fiber sensing. This technology has several advantages,
such as compact structure, high flexibility, resistance to harsh environments and corrosion,
and reusability, compared with other shape reconfiguration technologies. The FSS has
immense application potential in civil, mechanical, aerospace, biological, medical, and
other fields [1–6].

An FSS constructed from multiple single-mode optical fibers is one of the most com-
mon fiber optic shape sensors. The Frenet–Serret spatial differential geometry reconfigu-
ration algorithm, based on curvature measurement, is the most widely applicable shape
reconfiguration method. The basic principle is as follows: the curvature and bending
direction at different positions are calculated by measuring central wavelength shifts in
different cores at specific cross-sectional positions, and the shape is reconstructed through
numerical integration combined with specific algorithms [7]. There is usually some error
in the measurement of curvature and bending direction, and improving measurement
accuracy for FBG curvature and bending direction is an important part of the FBG shape
sensing field.

In order to improve the accuracy of FBG curvature measurement, researchers have
conducted extensive research on the sensitivity of FBG curvature measurement [8,9]. For an
FBG multi-core shape sensor, the placement angle deviation and calibration direction error
of the FBG are the main factors that lead to the measurement error of curvature and bending
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direction [10–12]. The superposition of the two seriously affects curvature and bending
direction measurement accuracy and may even cause incorrect shape reconfiguration
results. Therefore, it is an important matter in the field of FBG shape sensing to study
correction methods for curvature and bending direction errors in an FSS.

Various error correction methods have been widely investigated to overcome the in-
fluence of FBG placement angle error and calibration error on FSS reconfiguration accuracy.
Kim et al. used a calibration matrix to correct the curvature error in an FBG flexible shape
sensor by repeatedly calibrating the same curvature and taking the average value [13]. This
method has a large randomness level and does not consider the effect of FBG placement
angle error; moreover, the compensation effect is not obvious. Lou et al. quantitatively
analyzed the manufacturing and calibration process of FBG shape sensors and determined
the influence of the placement angle and calibration error for each FBG on the curvature
measurement error [11]. This error correction process is cumbersome and complex, and
the error accuracy of the experimental equipment is mainly analyzed through manual
methods, resulting in greater subjectivity and limitations. Lv et al. reduced curvature
measurement error by substituting the curvature correction coefficient into the curvature
calibration relationship equation and using shape reconfiguration error as an evaluation
index to correct the equation. This method ignores the influence of the FBG placement
angle on the measured curvature [14]. Tan et al. proposed a self-calibration method based
on a genetic algorithm to correct the placement angle in FSS, which automatically calibrates
the placement angle of the sensor according to the measured strain and angle, resulting
in an improved measurement accuracy of the curvature and bending direction [12]. The
influence of the calibration direction deviation is ignored, and the need for accurate strain
data increases the complexity of the experiment. The measurement error correction of FSS
curvature and bending direction is a complex and difficult process. Existing methods have
problems such as high experimental complexity, poor experimental repeatability, a small
range of applications, and lack of strict theoretical model support.

In this study, we established an FSS reconfiguration error delivery model based on
the Frenet–Serret framework and error delivery theory; a simulation experiment was
conducted to verify the method. In addition, in view of the problem that FBG placement
angle deviation and calibration error are difficult to determine, this paper uses an improved
SSA to automatically correct the placement angle deviation and calibration error, and
establishes an FSS reconfiguration error correction model based on the optimization of the
improved SSA. The experiment verified the feasibility and practicability of the model. The
results show that the reconfiguration error correction model can improve measurement
accuracy of curvature and bending direction, and effectively enhance the reconfiguration
accuracy in FSS. The proposed method is simple, innovative, and convenient to use, with
wide applicability. Owing to its significantly superior performance over existing methods,
it has immense potential for use in practical scenarios requiring FSS.

2. FBG Shape Sensing Error Model

Curvature measurement is the basis of FBG shape measurement. Obviously, a small-er
spatial resolution and higher curvature measurement accuracy can result in a more accurate
shape reconfiguration. The interpolation method is applied to eliminate the influence of
spatial resolution on reconfiguration accuracy [15]. The interpolation process is based on the
measured curvature of the detection points. FBG calibration deviation and placement angle
deviation directly affect the measurement accuracy of the curvature, thereby affecting the
accuracy of the interpolation results; they may also lead to incorrect shape reconfiguration
results. Presently, few studies have proposed reconfiguration error models for the FBG
shape sensor. It is of great significance to establish a three-dimensional shape perception
error model addressing the shape reconfiguration error, FBG calibration direction, and
placement angle.

Shape reconfiguration algorithms based on the Frenet–Serret framework constitute
the most widely applied method. The flow scheme and error delivery process of the shape
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reconfiguration algorithm are shown in Figure 1. The spatial coordinates x(s), y(s), and
z(s) of the curve are obtained by solving the Frenet equation between the tangent vector
−→
T(s), normal vector, and subnormal vector of the curvature point [16].
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Figure 2. (a) Illustration of cross-section at the detection point. (b) Placement angle deviation dia-
gram. 
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Figure 1. FSS error delivery model. The bending curvature k and bending direction β at the detection
point can be obtained according to the curvature in each core ki, and the discrete local k and β are
converted into the curvature and torsion functions k(s) and τ(s) through interpolation.

The error delivery process of the shape reconfiguration algorithm based on the Frenet–
Serret framework is as follows: the calibration direction deviation and placement angle
deviation of the FBG cause the measurement curvature error ∆k and bending direction
error ∆β, resulting in the calculation errors of the torsion, ∆τ, and tangent vector, ∆T. ∆T is
accumulated during the integration process, eventually resulting in reconfiguration errors.

2.1. Curvature Error and Bending Direction Error Correction Model

For a three-core fiber-optic shape sensor with a symmetrical distribution of the
FBGs and a mutual angle of 120◦, the shape sensor cross-section at the detection points
is schematically shown in Figure 2. In Figure 2a, FBGa, FBGb, and FBGc represent the
three FBGs of the detection point, and d represents the cross-sectional radius of the
shape sensor.
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The angle of the line connecting each FBG at the detection point to the neutral axis of
the sensor relative to the x-axis is set to θi, the sensing curvature of each FBG is ki, and is
orthogonally decomposed, the curvature and bending direction at the detection point can
be expressed as Equations (1)–(3).

−→
k(s) =

3

∑
i=1

ki cos θi
→
x−

3

∑
i=1

ki sin θi
→
y (1)
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k =

2

∣∣∣∣∣−→k(s)

∣∣∣∣∣
3

=

2

√(
3
∑

i=1
ki cos θi

)2

+

(
3
∑

i=1
ki sin θi

)2

3
(2)

β = arctan
(

ky

kx

)
= arctan


3
∑

i=1
ki sin θi

3
∑

i=1
ki cos θi

 (3)

where
→
x and

→
y are unit vectors along the x-axis and y-axis, respectively, and

−→
k(s) is the

sum of the curvature vectors at point s, which is used to solve the curvature function.
In this paper, when the FBG is uniformly distributed as θ1 = 90◦, θ2 = 210◦, and

θ3 = 330◦, the expressions of the curvature and bending direction can be simplified
as follows:

k =
1
3

√
(2k1 − k2 − k3)

2 + 3(k2 − k3)
2 (4)

β = arctan

(
2k1 − k2 − k3√

3(k2 − k3)

)
(5)

It is difficult to ensure that the FBG is evenly distributed on the surface of the substrate
at equal angles during the manufacturing of the shape sensors; there is usually a certain
placement angle deviation in the placement position of the FBG. As shown in Figure 2b, a,
b, and c represent the ideal placement positions for FBGs. Assuming that the placement of
the angle errors of FBGs is ∆θi, the actual placement positions of the FBG is a′, b′, and c′.
The FBGs no longer satisfy the uniform placement condition, and solving for the curvature
and bending direction in Equations (4) and (5) would introduce placement angle deviations,
leading to curvature and bending direction measurement errors.

In this paper, a compensation model for curvature errors and bending direction
errors is proposed to solve the above problems. When there is a deviation in the lay-
ing angle of the FBG, the curvature and bending direction can still be calculated using
Equations (2) and (3). Substitute the laying angle deviation of FBG into Equations (2) and (3)
to obtain Equations (6) and (7).

k =

2

∣∣∣∣∣−→k(s)

∣∣∣∣∣
3

=

2

√(
3
∑

i=1
ki cos(θi + ∆θi)

)2

+

(
3
∑

i=1
ki sin(θi + ∆θi)

)2

3
(6)

β = arctan
(

ky

kx

)
= arctan


3
∑

i=1
ki sin(θi + ∆θi)

3
∑

i=1
ki cos(θi + ∆θi)

 (7)

After the shape sensor is manufactured, the scale factor H between the measured
curvature k and the central wavelength shift ∆λ for each FBG should be calibrated. The
relationship between k and ∆λ can be expressed as Equation (8). where η is the strain
transfer coefficient, Pe is the elastic coefficient, λB is the FBG central wavelength, and d is
the cross-sectional radius of the shape sensor.

k =
2η∆λ

λBd(1− Pe)
= H × ∆λ (8)
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During the calibration process, the FBG should be placed in the direction where the
curvature of bending is maximal, that is the calibration direction α, but an angular deviation
usually occurs during the actual calibration. Assuming that the FBG calibration direction
deviation is ∆α, this is illustrated in Figure 3.
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Figure 3. Schematic diagram of calibration direction deviation.

According to the geometric relationship of the points on the cross-section, the curvature
relationship under the calibration error is shown in Equation (9):

k =
2η∆λ

λBd(1− Pe)· cos ∆α
=

H·∆λ

cos ∆α
(9)

By substituting Equation (9) into Equations (6) and (7), the error correction model for
the curvature and bending direction measurement at the shape sensor detection point is
obtained, as shown in Equations (10) and (11):

k =

2

∣∣∣∣∣−→k(s)

∣∣∣∣∣
3

=

2

√(
3
∑

i=1
(ki/cos ∆αi)· cos(θi + ∆θi)

)2

+

(
3
∑

i=1
(ki/cos ∆αi)· sin(θi + ∆θi)

)2

3
(10)

β = arctan
(

ky

kx

)
= arctan


3
∑

i=1
(ki/cos ∆αi)· sin(θi + ∆θi)

3
∑

i=1
(ki/cos ∆αi)· cos(θi + ∆θi)

 (11)

Given the placement error angle of each FBG, calibration direction error, and FBG
measurement curvature, by substituting these into Equations (10) and (11), the curvature
error and bending direction error at the detection point can be corrected.

2.2. Error Correction Model Verification and Analysis

To verify the feasibility and validity of the error correction models in Equations (10)
and (11) for the curvature and bending direction, a finite element simulation model of
the FBG multicore fiber-optic shape sensor was developed in this paper using ANSYS
Workbench software. As shown in Figure 3, the sensor has a cross-sectional radius r of
0.5 mm, length of 50 mm, and spatial resolution of 0.25 mm. The dynamic finite element
model of the FBG was established at nine different positions on the sensor surface to
simulate the actual placement of the FBG. Figure 4b shows the cross-section at one of the
sensor’s detection points, and Figure 4c shows the specific placement angles of the FBG at
the detection points.
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Figure 4. (a) Shape sensor simulation model. (b) Simulation model cross-section. (c) FBG place-
ment diagram.

The shape of the simulated model was changed by applying a mechanical load to it to
obtain a specific curvature at each point of the cross-section, where the sensor bends in the
direction. The detection data at each point were divided into three groups; the data at the
points a0, b0, and c0 are Data1, the data at points a1, b1, and c1 are Data2, and the data at
points a2, b2, and c2 are Data3. a0, b0, and c0 are set to be uniformly distributed at 120◦ in
the cross-section and are considered the ideal placement angle for the FBG. With a0 as the
reference point, as shown in Figure 3b, b1, b2, c1, and c2 indicate the placement of FBGb
and FBGc under different placement angle deviations. a0 is in the direction of the greatest
bending force and can be used as the ideal calibration direction; hence, a1 and a2 represent
the detection data of FBGa under different calibration direction errors.

Different calibration direction errors and placement angle errors are introduced into
Data2 and Data3, which are, respectively, substituted into Equations (4) and (5) as well as
our error correction model to solve the curvature and bending direction of the model. The
experimental results are shown in Figure 5.
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Figure 5. Calculation of curvature and bending direction obtained by different methods. (a) Bending
direction calculation results. (b) Bending curvature calculation results.

It can be seen from Figure 5 that the curvature and bending direction of Data2 and
Data3 calculated using Equations (4) and (5) have obvious errors, which are determined by
the magnitude of the FBG placement angle deviation and calibration direction deviation.
After correcting the curvature and bending direction errors using our error correction model,



Sensors 2023, 23, 7052 7 of 14

the measured curvature and bending direction at each detection point of the simulation
model becomes consistent with the actual situation, which establishes the feasibility and
effectiveness of the error correction model proposed in this paper.

Three sets of data were used to reconstruct the shape of the model. The reconstructed
shape with Data1 was used as the actual shape of the model. The results of the model shape
reconfiguration under different data groups are shown in Figure 6. According to the shape
reconfiguration algorithm, the shape reconfiguration error reaches the maximum at the tail
points. The reconfiguration error of the optical fiber shape sensor is usually expressed by
the Euclidean distance error ∆E, as shown in Equation (12) [17–22].

∆E =

√
(x− x0)

2 + (y− y0)
2 + (z− z0)

2 (12)

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 5. Calculation of curvature and bending direction obtained by different methods. (a) Bending 

direction calculation results. (b) Bending curvature calculation results. 

It can be seen from Figure 5 that the curvature and bending direction of Data2 and 

Data3 calculated using Equations (4) and (5) have obvious errors, which are determined 

by the magnitude of the FBG placement angle deviation and calibration direction devia-

tion. After correcting the curvature and bending direction errors using our error correc-

tion model, the measured curvature and bending direction at each detection point of the 

simulation model becomes consistent with the actual situation, which establishes the fea-

sibility and effectiveness of the error correction model proposed in this paper. 

Three sets of data were used to reconstruct the shape of the model. The reconstructed 

shape with Data1 was used as the actual shape of the model. The results of the model 

shape reconfiguration under different data groups are shown in Figure 6. According to 

the shape reconfiguration algorithm, the shape reconfiguration error reaches the maxi-

mum at the tail points. The reconfiguration error of the optical fiber shape sensor is usu-

ally expressed by the Euclidean distance error ∆E, as shown in Equation (12) [17–22]. 

( ) ( ) ( )
2 2 2

0 0 0E x x y y z z = − + − + −  (12) 

In Equation (12), x, y, and z are the reconstructed coordinates of the detection point, 

and x0, y0, and z0 are the actual coordinates of the detection point. In this study, we used 

the tail point reconfiguration error φmax and maximum relative error Rmax (ratio of φmax to 

the model length) as the evaluation indicators to compare the shape reconfiguration re-

sults. 

 

Figure 6. Shape reconfiguration results of different data groups. 

According to the experimental results in Figure 6, the shape reconfiguration errors 

φmax of the method in Equations (4) and (5) were 1.40 mm and 1.42 mm, for which the Rmax 

values were 2.8% and 2.84%, respectively. The shape reconfiguration errors of the errors 

φmax of the correction model were 0.39 mm and 0.27 mm, for which the Rmax values were 

0.78% and 0.54%, respectively. 

Next, the bending direction of the sensor model was changed, and the datasets for 

Data2 and Data3, collected under different bending directions, were used to reconstruct 

the shape. The reconfiguration results before and after the error correction were compared 

and analyzed, and the results are shown in Table 1. 

Table 1. Shape reconfiguration results under different bending directions. 

Data Group Data2 Data3 

Figure 6. Shape reconfiguration results of different data groups.

In Equation (12), x, y, and z are the reconstructed coordinates of the detection point,
and x0, y0, and z0 are the actual coordinates of the detection point. In this study, we used
the tail point reconfiguration error ϕmax and maximum relative error Rmax (ratio of ϕmax to
the model length) as the evaluation indicators to compare the shape reconfiguration results.

According to the experimental results in Figure 6, the shape reconfiguration errors
ϕmax of the method in Equations (4) and (5) were 1.40 mm and 1.42 mm, for which the Rmax
values were 2.8% and 2.84%, respectively. The shape reconfiguration errors of the errors
ϕmax of the correction model were 0.39 mm and 0.27 mm, for which the Rmax values were
0.78% and 0.54%, respectively.

Next, the bending direction of the sensor model was changed, and the datasets for
Data2 and Data3, collected under different bending directions, were used to reconstruct the
shape. The reconfiguration results before and after the error correction were compared and
analyzed, and the results are shown in Table 1.

Table 1. Shape reconfiguration results under different bending directions.

Data Group Data2 Data3

Bending direction/◦ 80 90 200 210 330 80 90 200 210 330

Rmax/%
Uncorrected 2.2 2.7 2.6 1.9 0.8 2.8 2.8 1.3 0.7 2.0

Corrected 0.4 0.6 0.1 0.06 0.4 0.2 0.1 0.3 0.2 0.5

The relative errors of Data2 and Data3 calculated using Equations (4) and (5) were
2.082% and 1.894%, respectively, which were reduced to 0.315% and 0.308%, respectively,
after the model correction. It was verified that the error correction model proposed in
this paper could correct the measured curvature and bending direction under different
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calibration direction deviations and placement angle deviations and improve the shape
reconfiguration accuracy of the sensor.

3. Experiment
3.1. Experimental System and Sensor Calibration

We constructed an FBG shape sensing system as shown in Figure 7. The whole system
consists of an FBG shape sensor, a demodulator (resolution of 0.1 pm), and a computer.
The main components of the demodulator include a broadband light source, an isolator,
a Fabry–Perot (FP) filter, optical coupler, circulator, an FP etalon, a photodetector, and a
data acquisition card. When demodulating the spectrum, the optical coupler divides the
narrow-band adjustable light into two branches; the upper branch is transmitted to the FBG
sensor through the circulator, the reflected light is detected by the photodetector 1 (PD1),
and the lower branch is detected by the photodetector 2 (PD2). PD1 detects the maximum
light intensity when the transmitted wavelength of the FP filter coincides with the reflected
wavelength of the FBG. The detected light signal was converted by PD1 and PD2 into an
electrical signal, which was transmitted via a data acquisition card to a personal computer
for subsequent signal processing.
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Figure 7. Experimental sensing system.

In order to verify the practicability of the error correction model, this paper fabri-
cated the FSS through the custom-made FBG. The FSS consisted of three FBG arrays with
placement on the surface of the nickel–titanium alloy wire. The epoxy resin is used as
the adhesive to fix the FBG array on the surface of the nickel–titanium alloy wire. The
nickel–titanium alloy wire has an effective length of 465 mm and a diameter of 1 mm. Each
FBG array is inscribed with 5 FBGs at equal intervals, the diameter of the optical fiber
is 375.2 µm, the length of the FBG is 13 mm, and the spacing of the adjacent gratings is
100 mm. As shown in Figure 8a, a calibration plate was produced by 3D printing, and
multiple arcs with fixed curvature were inscribed on the surface of the calibration plate, and
the FSS was embedded in the groove for curvature calibration. FBG fixtures and calibration
tools were designed using 3D printing to fix the placement angle and calibration direction
of FBG, as shown in Figure 8b,c.

Rotate the calibration tools so that the FBG is in the direction of maximum force
to obtain the FBG central wavelength shift data under different curvatures, and per-
form least-square fitting on the discrete data to obtain the scale factor H. The cali-
bration results are shown in Figure 9, and the fitted linear relationship expression is
k = 1.26∆λ + 0.21(nm/m−1).
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3.2. Optimization Model

According to the error correction process, we know that to correct the reconfiguration
error of the shape sensor, we need to obtain the FBG placement angle deviation ∆θi and
the calibration direction deviation ∆αi at each detection point of the sensor. This paper
proposes a method based on an improved SSA to determine ∆θi and ∆αi. SSA is a new
swarm intelligence optimization algorithm proposed by Xue et al. [23]. Compared with
other swarm intelligence optimization algorithms, it has the characteristics of a high search
accuracy, fast convergence speed, good stability, and strong robustness [24].

The foraging process of sparrows can be abstracted as a discoverer–joiner model,
and a reconnaissance and early warning mechanism is added. The discoverer guides
the population to search and forage, which has the advantages of high adaptability and
a wide search range. The joiner follows the finder to forage for better fitness. At the
same time, some joiners will monitor the finders to increase their own predation rate.
However, SSA, like other swarm intelligence optimization algorithms, has the problem
that it is easy to fall into the local optimum [25]. We introduce the Chebyshev chaos map
into the SSA algorithm to initialize the population distribution and improve the uniform
distribution of the population space. Chebyshev map is a typical representative of chaotic
maps. Compared with other chaotic maps, it has better chaotic characteristics, a wider
value range, and a faster convergence speed [26]. Its expression is as follows:

xt+1 = cos[t·arccos(xt)], −1 ≤ xt ≤ 1

yt = xt+1, t = 0, 1, 2, . . . , n

yt+1 = (2/π)× arctan[cos(yt)] + M, −1 ≤ xt ≤ 1

(13)
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In Equation (13), yt + 1 is the sparrow individual after the t + 1th mapping iteration, and
M is an arbitrary constant. The shape sensor bending curvature was set to ktrue during the
calibration, and ∆θi and ∆αi of each detection-point FBG are substituted into Equation (10)
as the optimization parameters to obtain the calculated curvature k under different param-
eters. Let the measurement curvature error function be the fitness function, as shown in
Equation (14). When ∆k reaches the minimum value, the optimization parameter is the
actual deviation angle. The detailed process is shown in Figure 10.

∆k = |k− ktrue| (14)

1. Enter the measured curvatures ka, kb, and kc for FBG a, FBG b, and FBG c in the fixed
curvature state, respectively.

2. Initialize the inputs and set the placement angles θ1, θ2, and θ3 of the FBG sensor. In
this paper, θ1 = 90◦, θ2 = 210◦, and θ3 = 330◦.

3. Set the FBG calibration direction deviation ∆θi and placement angle deviation ∆αi,
and ∆θi and ∆αi are randomly assigned and coded within a certain range.

4. ∆θi and ∆αi are substituted into Equation (10) to obtain the theoretical curvatures k1,
k2, and k3, and are optimized using Chebyshev-SSA.

5. The optimal parameters of ∆θi and ∆αi are output when the value of the fitness
function ∆k is minimized or at the end of the iteration. Otherwise, steps (3) to (5)
are repeated.
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In order to evaluate the performance of the Chebyshev-SSA optimization algorithm,
it is compared with the original SSA, Chebyshev-PSO algorithm, and Chebyshev-WOA.
Taking the calibration curvature k = 1/7 m−1 as an example, the above optimization
algorithm is used to automatically correct the placement angle and calibration coefficient
of the FBG, and the average value of the error iteration curves of different optimization
models is obtained by repeating 10 times, as shown in Figure 11. It can be seen from
Figure 11 that the convergence speed and convergence accuracy of the Chebyshev-SSA
optimization algorithm are the best.

The calibration direction deviation and placement angle deviation of the FBG for each
detection point of the shape sensor, obtained after parameter optimization, are shown
in Table 2.
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Table 2. Deviations of FBG calibration direction and placement angle at each test point.

Detection
Point

Placement Angle Deviation/◦ Calibration Direction Deviation/◦

FBGa FBGb FBGc FBGa FBGb FBGc

Point1 0 −3.9 7.5 3.9 12.5 2.2
Point2 7.5 −4.5 4.3 1.6 −8.0 1.8
Point3 2 5.3 −6.1 −9.2 8.4 −7.4
Point4 −4.1 10.5 5.8 11.2 −4.3 8.1
Point5 2.3 14.8 9.4 9.1 9.2 −3.5

3.3. Shape Reconfiguration

We experimentally verified the effectiveness and practicability of the error correction
model. Selecting a reasonable reconfiguration shape in the experiment is important. Any
complex shape can be regarded as a composition of multiple micro-arc segments with
constant curvature and torsion. As long as the error correction model is effective for shapes
with a fixed curvature and torsion, it is also applicable to arbitrary complex shapes [27].

A series of molds was designed as shape carriers for the sensors by using a calibration
board and 3D printing technology. Figure 9a has multiple arcs of known curvature inscribed
in the calibration plate, and Figure 12b is a 3D model designed using SolidWorks with spiral-
shaped recesses of known curvature and deflection inscribed on the surface of the model;
the spiral-shaped recesses have a circumference of 900 mm. As shown in Figure 12a,b, the
shape sensor is fixed in the groove of the calibration plate and the 3D model to carry out
the shape reconfiguration experiment.
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Figure 12. Experimental diagram for shape reconfigurations. (a) Arc shape reconfiguration. (b) Spiral
shape reconfiguration.

The error corrections for the curvature and bending direction were completed by
substituting the deviations of the FBG calibration direction and deviations of the placement
angle optimized by the Chebyshev-SSA model in Table 2 into Equations (10) and (11).
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The reconfiguration results before and after the corrections are compared and shown in
Figure 13, with Figure 13a for 1/7 m−1 arc reconfiguration and Figure 13b for the spiral
curve reconfiguration. The reconstructed shape of the sensor after error correction was
closer to the actual shape. The tail point reconfiguration errors for the arc and spiral were
11.66 mm and 22.6 mm before the error correction, which were corrected to 5.23 mm and
11.4 mm, respectively. The average relative accuracy of shape reconfiguration is improved
by 56.25% and 50.6%, respectively.
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Figure 13. (a) Arc reconfiguration results. (b) Spiral reconfiguration results.

The reconfiguration experimental results for arcs of different curvatures are shown in
Table 3. The experimental results show that the absolute reconfiguration errors of the tail
points with arcs were reduced by 6.83 mm, and the relative errors were reduced by 1.47%.

Table 3. Results of different arc reconfigurations.

Radius of
Curvature

r/mm

Tail Point Reconfiguration Error

Uncorrected Error Corrected Error

Absolute Error/mm Relative Error/% Absolute Error/mm Relative Error/%

600 11.80 2.54 4.63 0.99
700 11.66 2.51 5.23 1.13
800 11.72 2.52 4.38 0.94
900 10.67 2.29 4.21 0.91
1000 12.50 2.69 5.65 1.22

4. Discussion

Based on the error model and error delivery theory of multicore fiber shape sensing
under the Frenet–Serret framework, the error model for the relationship between the shape
reconfiguration error, FBG calibration direction, and placement angle was established. The
theoretical relationship between the bending curvature, bending direction, FBG calibration
direction deviation, and placement angle deviation was derived, and an error-corrected
model for the bending curvature and bending direction was proposed. The validity of the
solution for correcting the curvature and bending direction was verified using a simulation
model. The results show that the curvature and bending direction can be corrected by the
method for different FBG calibration deviations and placement angle deviations.

In this paper, the Chebyshev mapping is introduced into SSA, and the errors correction
model of the FBG calibration direction and placement angle based on Chebyshev-SSA
optimization is established. Compared with the existing methods, the model has strict
theoretical model support, can self-correct the calibration direction and placement angle of
FBG during the sensor calibration process, and reduces the complexity of the experiment.
Then, the optimization model was combined with the curvature and bending direction
solution method proposed in this paper to construct the FBG shape sensor reconfiguration
error correction model, and the experiment verified the feasibility and practicability of the
error correction model. The results show that Chebyshev-SSA can simply and efficiently



Sensors 2023, 23, 7052 13 of 14

optimize the calibration direction and placement angle of FBG, and further improve the
measurement accuracy of curvature and bending direction, thereby reducing the shape
reconfiguration error of the FSS.

We propose a new method for correcting FBG calibration deviation and placement
angle deviation. Compared with the existing methods, this method alleviates the limitations
related to the accuracy of the experimental equipment and size of the sensor. In addition, it
has strict theoretical model support and stronger applicability.

We perform reconfiguration experiments using shapes with fixed curvature and tor-
sion. Because the complex shape will introduce more influencing factors [28,29], which is
not conducive to the verification of the error correction model. In future research, we will
study the influence of factors such as twist on the accuracy of FSS shape reconfiguration,
and further improve the proposed reconfiguration error correction model.
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