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Abstract: Scene text recognition is a crucial area of research in computer vision. However, current
mainstream scene text recognition models suffer from incomplete feature extraction due to the small
downsampling scale used to extract features and obtain more features. This limitation hampers their
ability to extract complete features of each character in the image, resulting in lower accuracy in
the text recognition process. To address this issue, a novel text recognition model based on multi-
scale fusion and the convolutional recurrent neural network (CRNN) has been proposed in this
paper. The proposed model has a convolutional layer, a feature fusion layer, a recurrent layer, and a
transcription layer. The convolutional layer uses two scales of feature extraction, which enables it
to derive two distinct outputs for the input text image. The feature fusion layer fuses the different
scales of features and forms a new feature. The recurrent layer learns contextual features from the
input sequence of features. The transcription layer outputs the final result. The proposed model
not only expands the recognition field but also learns more image features at different scales; thus,
it extracts a more complete set of features and achieving better recognition of text. The results of
experiments are then presented to demonstrate that the proposed model outperforms the CRNN
model on text datasets, such as Street View Text, IIIT-5K, ICDAR2003, and ICDAR2013 scenes, in
terms of text recognition accuracy.

Keywords: text recognition; feature fusion; multi-scale

1. Introduction

Scene text recognition involves recognizing a sequence of text with semantic informa-
tion in a real-world scene, such as a billboard or street sign. The result is usually a text
of varying length. The input images are gray, as text recognition does not need to take
colour information into account. Scene text recognition has wide-ranging applications in
computer vision, including intelligent robotics, autonomous driving, and other areas.

Traditional text recognition can only segment the text into individual characters, recog-
nize the individual characters separately, and then switch the detected individual characters
into a word by dynamic programming, lexicon search [1], and so on. The typical process for
character recognition involves breaking it down into four stages: feature extraction, feature
encoding, feature aggregation and feature classification. For feature extraction, one com-
mon approach involves extracting a multitude of local feature descriptors from an image at
a fixed scale and step size. Popular methods used for this purpose include scale-invariant
feature transform (SIFT) [2], local binary pattern (LBP) [3], histogram of oriented gradient
(HOG) [4], and so on. Multiple features can also be used together to prevent losing too
much useful information. However, the extracted features contain a lot of redundant and
noisy information. In order to improve the robustness of the feature representation, the
underlying features need to be encoded using a feature transformation algorithm. The
classical feature coding methods include vector quantization [5], locality-constrained linear
coding (LLC) [6], Fisher vector coding [7], and so on. Following feature encoding, spatial
feature constraint (or “feature aggregation”) is applied by taking the average or maximum
value of each dimensional feature within a spatial range. One common feature aggregation
method, denoted as spatial pyramid pooling [8], involves dividing the image into blocks
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and applying a specific operation to each block, resulting in a fixed-dimensional vector
after feature pooling. Finally, features are classified using a classifier, such as a support
vector machine (SVM) [9], random forest [10], conditional random field [11] and so on.
SVMs based on the kernel methods are the most widely used classifiers as they perform
well on traditional image classification tasks; however, they are still somewhat less accurate
than methods based on convolutional neural networks (CNNs).

CNN-based image recognition methods have successfully overcome the limitations
of traditional approaches that require manual extraction of image features in many com-
puter vision tasks. Convolutional neural networks, including LeNet-5 [12], AlexNet [13],
VGG [14], and ResNet [15], have achieved great breakthroughs in the image recognition
task. CNNs are trained by forward and backward propagation and gradient descent to
automatically learn feature information in an image, which greatly improves the recog-
nition accuracy of individual text. However, to recognize text sequences with contextual
semantics, it is necessary to incorporate additional methods. For example, Wang et al. [1]
proposed a method which combines individual text with dictionary search to recognize
text sequences.

Text recognition models that combine CNN and a recurrent neural network (RNN)
(e.g., CRNN [16], RARE [17], and other models) extract features from images and learn
contextual semantic information by means of deep learning; thus, they significantly im-
prove the accuracy of recognizing text with contextual semantics and have become the
mainstream text recognition framework. The mainstream text recognition frameworks
usually input images with text to a CNN to learn a set of feature sequences, then input
the feature sequences to an RNN to learn contextual information, and finally output text
according to the length of the feature sequences, thus, realizing text recognition for different
lengths. However, when CNN learns image features, in order to obtain more feature
sequences, the model usually uses a special downsampling method (e.g., 2 × 1 pooling),
i.e., the height is reduced to half the original size, but the width remains the same. For
example, the CRNN model uses four poolings in the convolutional layer by using VGG to
extract image features. The first two poolings use a pooling size of 2 × 2, and the third and
fourth pooling layers use a pooling size of 2 × 1, in order to obtain more feature sequences
by pursuing a proper height to width ratio. However, the small perceptual field associated
with this method does not allow for the extraction of features from the larger surrounding
area, making the recognition of larger text ineffective. Therefore, a single downsampling
method used in CNN is not conducive to better feature extraction.

This paper proposes a method to improve the accuracy of text recognition. The
multiple scales fusion CRNN (MSF-CRNN) model incorporates multi-scale fusion into
the CRNN model. The MSF-CRNN model uses different downsampling scales to ob-
tain two different scales of feature output when extracting features in the convolutional
layer. The feature sequences are then fed into the recurrent layer to learn the contextual
information, and the final predicted results are output in the transcription layer.

The main contributions of the proposed MSF-CRNN model are outlined as follows:

(1) The proposed MSF-CRNN model uses a new multi-scale output CNN in the convolu-
tional layer. The use of two different scales of downsampling when extracting image
features allows for more image features and outputs two different scales of results.

(2) The MSF-CRNN model uses a new fusion approach in the feature fusion layer, which
fuses the outputs of the different scales of the convolutional layer to better represent
the features of the image and improve the accuracy of the recognized text.

(3) The proposed model was evaluated on datasets, such as IIIT5k [18], SVT [1], IC-
DAR2003 [19] and ICDAR2013 [20]. Quantitative and qualitative analyses were con-
ducted, and the experimental results demonstrate that the accuracy of the MSF-CRNN
model with multiscale fusion is higher than that of the model without multiscale
fusion.
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2. Related Work

In recent years, a large amount of scientific literature has been published on scene text
recognition. A comprehensive survey can be found in the literature [21]. According to their
implementation, text recognition algorithms are classified into traditional text recognition
algorithms, text recognition algorithms based on attention mechanisms, and connectionist
temporal classification (CTC).

Traditional text recognition algorithms rely heavily on manually crafted features, such
as HOG and SIFT, to recognize text. These algorithms use techniques, such as hidden
Markov models and SVM, to classify the text.

In contrast, attention-based text recognition algorithms dynamically select important
parts of an image during recognition, reducing the reliance on manually engineered fea-
tures. These algorithms use RNN combined with attention mechanisms to recognize text.
Attention mechanisms enable these algorithms to focus on specific parts of an image while
ignoring irrelevant regions, which improves recognition accuracy.

Text recognition algorithms based on CTC involve training a model to learn the
probability distribution of output sequences and selecting the most likely output sequence
for a given input image. These algorithms use deep neural networks, such as CNN or RNN,
to extract features from the softmax layer to predict the output sequence.

Overall, while traditional text recognition algorithms have proven effective, attention-
and CTC-based algorithms are becoming increasingly popular due to their ability to auto-
matically learn features and achieve higher recognition accuracy.

2.1. Traditional Text Recognition Algorithms

Traditional text recognition methods follow a bottom-up approach that includes three
steps: image preprocessing, character segmentation, and character recognition [21]. Indi-
vidual characters are first detected using traditional methods, such as sliding windows [22],
Hough voting [23], and connected components [24]. Dynamic programming and dictionary
searching are utilized to form words from the individual characters that have been detected
in the traditional text recognition method. There are also some top-down approaches to
text recognition, where text is recognized directly from the entire input image, rather than
detecting and recognizing individual characters. For example, the model proposed by
Almázan et al. [25] takes the image after convolution and projects it into a subspace. The
text recognition task has been modelled as a feature space word retrieval task. However,
it is less accurate than CNN-based models. Jaderberg et al. [26] treated text recognition
as a classification task. However, constructing a dataset with 90 k categories requires a
large number of samples. Cheng et al. [27] proposed local monitoring of attention scores
to mitigate the attention drift. The model proposed by Su and Lu et al. [28] first converts
images into continuous HOG features and predicts the corresponding character sequences
using an RNN. The model proposed by Ranjitha et al. [29] first segments the image by
characters, extracts the required features using maximally stable extremal regions (MSERs),
and then performs a stroke width transformation on the obtained results and merges all
the processed regions to obtain accurate recognition results.

Due to the irregular arrangement of scene text and complex background, character
segmentation is widely regarded as the most difficult task in achieving accurate recogni-
tion for the overall system. Character segmentation presents a considerable challenge to
the recognition system’s performance. To overcome this issue, two main techniques are
implemented, namely attention mechanisms and CTC [30]. Attention-based methods use
RNN combined with attention mechanisms to focus on specific parts of an image, while
CTC-based approaches involve training models to acquire a probability distribution over
all potential output sequences, subsequently electing the most probable output sequence for
a provided input image. These methods can recognize text without explicitly segmenting
characters and achieve higher accuracy than traditional methods.
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2.2. Text Recognition Algorithms Based on Attention Mechanisms

The use of attention mechanisms has been extended beyond machine translation
systems and is now being implemented in scene text recognition with the aim of en-
hancing its performance. Bahdanau et al. proposed an attention mechanisms model [31]
in 2014. Lee et al. [32] proposed an RNN for text recognition in wordless scenes. The
model first extracted image features and then decoded the output characters using RNNs.
However, the attention-based approach suffers from the problem of attention drift, so
Cheng et al. [27] proposed localized supervision of attention scores to attenuate the atten-
tion drift. Bai et al. [33] found the problem of misalignment between attentional output
sequences of probability distributions. A solution proposed by Bai et al. [33] is the “edit
probability” (EP) metric. The EP model used maximum likelihood loss to reduce misalign-
ment. Liu et al. [34] introduced an efficient attention-based encoder–decoder model. Some
attention-based text recognition methods focus on recognition of irregular text recognition,
such as Shi et al.’s [35] system that combines a spatial transformer network (STN) [36] with
an attention-based text sequence recognition network. Cheng et al. [37] argue that encoding
a text image as a one-dimensional feature sequence is insufficient and propose encoding the
input image as a sequence of four features in four directions: horizontal, vertical, reverse,
and horizontal. Liu et al. [38] introduced a hierarchical attention mechanism (HAM), which
models the deformation of individual characters using local transformations, improving
efficiency and handling different types of deformations difficult to model with a single
global transformation. Liao et al. [39] transformed the recognition task into semantic slicing
by treating each character type as a distinct class. This approach made it insensitive to
shape, thereby rendering it effective for recognizing irregular text.

Another approach for recognizing curved text is the two-dimensional attention mecha-
nism (2D attention) [40], which has been verified in the literature [41]. Qiao et al. proposed
a semantically enhanced encoder–decoder framework [42] that exploits global semantic
information to robustly identify low-quality scene text. This framework enhances the fea-
ture representation by incorporating both local and global contextual information, which
improves recognition accuracy even under adverse conditions [43].

2.3. Text Recognition Algorithms Based on CTC

CTC has become a popular technique in scene text recognition. By using only
sequence-level labels as supervision, this enables the network to be trained effectively.
Graves et al. [44] proposed a CTC-based model for handwriting recognition. Since then,
CTC has been applied to text recognition [45–47]. Shi et al. proposed the CRNN model [16],
which combines RNN and CNN to recognize text images of scenes. The CRNN is com-
posed of three components: a convolutional layer, a recurrent layer, and a CTC layer. Saffar
et al. proposed to use the salp swarm optimization algorithm to optimize the parameters
of convolutional neural network in DC-CRNN [48] to further improve the recognition
accuracy of CRNN. The multi-modal text recognition network (MATRN) [49] proposed by
Na et al. can better improve the accuracy of text recognition by fusing visual and semantic
information. In addition, the parallel positional attention module (PPAM) [50] proposed by
Fu et al. can improve the accuracy of recognition by parallel computing.

CLIP4STR [51], proposed by Zhao et al., is a simple and effective STR method for
CLIP-based image and text encoders, which can effectively improve the accuracy of text
recognition models. The PARSeq method [52] proposed by Bautista et al. uses permu-
tation language modeling to learn an internal set of AR language models with shared
weights and achieves good results on text datasets. The model proposed by He et al. [53]
constructs a subgraph for each instance and trains it using graph convolutional network
and cross-entropy loss function, which achieves good results in text recognition. Zheng
et al. proposed a new multi-domain character distance perception (MDCDP) module [54]
to establish visually and semantically relevant position encoding, so as to improve the
recognition position of the model. Cui et al. proposed a representation and correlation
enhanced encoder–decoder framework (RCEED) [55] to address these shortcomings and
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break through the performance bottleneck. In the encoder module, local visual features,
global contextual features, and location information are aligned and fused to generate a
small-sized comprehensive feature map. In the decoder module, two methods are used to
enhance the correlation of the scene and text feature spaces.

In order to obtain better text recognition accuracy, we proposed a multi-scale fusion
CRNN model. The CRNN model uses a combination of CNN and RNN, and we further
consider the problem of multi-scale fusion by fusing different scales, both expanding the
receptive field when extracting features and extracting more scales of text features, thus,
improving the accuracy of text recognition.

3. Methodology

The overall framework of the MSF-CRNN model was proposed in Section 3.1. We
proposed the convolutional layer of the MSF-CRNN model in Section 3.2. A multi-scale
approach to feature extraction is proposed to address the problem that too small downsam-
pling scale makes text recognition poor. That is, the features are extracted using different
scales of downsampling to obtain two different scales of output. Different downsampling
methods, namely MaxPooling and AvgPooling, are also used to extract features to address
the problem that a single downsampling method cannot extract image features accurately.

The feature fusion layer of the MSF-CRNN model is developed in Section 3.3. Different
fusion methods are compared in Section 3.3. The recurrent layer of the MSF-CRNN model
is presented in Section 3.4. The application of a bidirectional RNN model to the task of
contextual semantic learning in text is outlined. The loss function and the transcription
layer are discussed in Section 3.5.

3.1. The Overall Model of the MSF-CRNN Model

Figure 1 shows the overall structure of the MSF-CRNN model. The overall structure
of the MSF-CRNN model has four layers, and our approach involves utilizing a multiple
scales VGG (MS-VGG) convolutional neural network (CNN) architecture consisting of
four main layers, namely the convolutional layer, the feature fusion layer, the recurrent
layer, and the transcription layer. By applying this model to an input image with dimensions
of 32 (height) × 40 (width) × 1 (gray-scale channel), we generate two feature sequences,
scaleA and scaleB, through downsampling. Specifically, scaleA has a length of 10, while
scaleB has a length of 5, resulting in different scales for the extracted features.

In the feature fusion layer, scaleB is upsampled to obtain scaleB’, and then scaleA and
scaleB’ are fused to obtain a feature sequence of length 10. In the recurrent layer, a feature
sequence of length 10 is fed to the RNN to learn the features of the context, and, for the
RNN, an output result is obtained for each input. If the size of the input feature sequence is
(1 × 10 × 512), then ten outputs are obtained. As shown in Figure 1, these ten outputs are
-A-FTTERR-. In the transcription layer, the output of the recurrent layer is subjected to CTC
to obtain the final result, which is the conversion of -A-FTTERR- to AFTER.

3.2. Convolutional Layer

In the convolutional layer of the MSF-CRNN model, we used different scales to extract
the image features and obtained two different scales of features. Different downsampling
methods are used to better extract the image features. The extraction of different scales and
different downsampling methods will be described in the following sections.
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3.2.1. Extraction of Features at Different Scales

When a CNN uses different downsampling scales, it obtains feature sequences of
different lengths. The expressiveness of an image is different when it is downsampled to
1/32, 1/16, 1/8, 1/4. ScaleA means downsampling to 1/4, while scaleB means downsam-
pling to 1/8 in Figure 2. If the image is downsampled to 1/4 of its original width, then the
most significant number of feature sequences will be obtained, and smaller characters are
displayed more clearly. However, there are also other problems: for some characters, the
result of the downsampling may be the same, so it is not possible to identify the character
exactly.
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As shown in Figure 3, (1/32, 1/4) of scaleA refers to downsampling the height size
of the input image to 1/32 of its original size and reducing the width size to 1/4 of the
original size. Similarly, for scaleB, (1/32, 1/8) means that the height size of the input image
is reduced to 1/32 of the original size and the width size is reduced to 1/8 of the original
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size. The scaleA graph is capable of predicting ten characters, while the scaleB graph is
capable of predicting only five characters.
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It can be seen that the first block and the fifth block in scaleA are the same, so the
same result is obtained after the CNN, but with two different letters, H and F. Even if the
contextual features are learned through the recurrent layer, the accuracy of the recognition
is still affected. In scaleB, it can be seen that in block IV, e and i are in a grid, and only one
character can be recognized in a grid, but there are two characters. As such, the accuracy of
the text recognition was affected.

In order to better extract the information of the text, multiple scales VGG (MS-VGG) in
the proposed MSF-CRNN model obtains two different scales by different downsampling.
Here, 2 × 1 pooling is used for scaleA and 2 × 2 pooling is used for scaleB. The features of
the smaller text are extracted in scaleA and the features of the larger text are extracted in
scaleB. The results of the two different scales are shown in Figure 4.
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3.2.2. Different Downsampling Methods

The common ways of downsampling in convolutional neural networks are MaxPool-
ing and AvgPooling. We present the implementation of AvgPooling and MaxPooling in
Figure 5. MaxPooling retains the most “important” features in the local region when down-
sampling and uses the important features to determine the class of the image. AvgPooling
selects the average features in the region when downsampling and reflects the global
characteristics of the region more clearly.
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To better learn the features of the image, a combination of MaxPooling and AvgPooling
is used in multiple scales VGG (MS-VGG). For scaleA, MaxPooling is used to downsample
and derive the most important features in the region, while for scaleB, AvgPooling is
used to downsample, and the average features of the whole region were derived. The
general structure of MS-VGG is shown in Figure 6. The MS-VGG model is divided into two
branches: scaleA uses MaxPooling and scaleB uses AvgPooling. To speed up the training,
we use a common convolutional layer in the MS-VGG model.
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3.3. Feature Fusion Layer

In the feature fusion layer, in order to fuse two features of different scales (scaleA and
scaleB) and better represent the features of the image, scaleB’ is obtained by upsampling
scaleB so that scaleA and scaleB’ have the same dimensions. Then, we can fuse the scaleA
and scaleB’ features.

3.3.1. Upsampling of ScaleB

In order to fuse scaleA and scaleB, scaleB needs to be upsampled to obtain scaleB’,
which is shown in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

upsampling scaleB so that scaleA and scaleB’ have the same dimensions. Then, we can 
fuse the scaleA and scaleB’ features. 

3.3.1. Upsampling of ScaleB 
In order to fuse scaleA and scaleB, scaleB needs to be upsampled to obtain scaleB’, 

which is shown in Figure 7. 

 
Figure 7. Upsampling method for the feature sequence. 

Let the original feature sequences be 𝑉 , and we obtain 𝑉  after up sampling. Let the 
dimensions of 𝑉  be [l, 𝜔, c], then the dimensions of 𝑉  be [l, 2𝜔, c], where l represents 
height, 𝜔 represents width, and c denotes the number of channels, 𝑉  is obtained from 
Equation (1). 

𝑉 𝑙, 𝑖, 𝑐 = 𝑉 𝑙 , 𝑖2 , 𝑐     if 𝑖 is even𝑉 𝑙, 𝑖 12 , 𝑐    if 𝑖 is odd     1  𝑖  2𝜔  (1)

3.3.2. Fusion of scaleA and scaleB 
Figure 8 shows the fusion of scaleA and scaleB’. There are two ways to merge: concat 

and add. The concat method superimposes the two results to obtain a number of channels 
of 2 × c. For example, scaleA has dimensions [1, 10, 512] and scaleB has dimensions [1, 10, 
512], which are fused to obtain [1, 10, 1024]. Since the number of channels input to the 
recurrent layer is set to 512, it is necessary to change the number of channels from 1024 to 
512 by 1 × 1 convolution. This will increase the training time. 

 
Figure 8. Fusion of scaleA and scaleB. 

Figure 7. Upsampling method for the feature sequence.

Let the original feature sequences be V1, and we obtain V2 after up sampling. Let the
dimensions of V1 be [l, ω, c], then the dimensions of V2 be [l, 2ω, c], where l represents
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height, ω represents width, and c denotes the number of channels, V2 is obtained from
Equation (1).

V2[l, i, c] =

V1

[
l , i

2 , c
]

if i is even

V1

[
l, i+1

2 , c
]

if i is odd
1 ≤ i ≤ 2ω (1)

3.3.2. Fusion of scaleA and scaleB

Figure 8 shows the fusion of scaleA and scaleB’. There are two ways to merge: concat
and add. The concat method superimposes the two results to obtain a number of channels
of 2 × c. For example, scaleA has dimensions [1, 10, 512] and scaleB has dimensions
[1, 10, 512], which are fused to obtain [1, 10, 1024]. Since the number of channels input to
the recurrent layer is set to 512, it is necessary to change the number of channels from 1024
to 512 by 1 × 1 convolution. This will increase the training time.
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The add method involves adding the corresponding elements, for example, the size
of scaleA is [1, 10, 512], the size of scaleB is [1, 10, 512]; by adding the corresponding
elements, the result is still [1, 10, 512], which can be sent directly to the recurrent layer to
learn the context information. The accuracy of the concat and add methods was compared
in experiment 2 in the experiments section. Since the results obtained by concat have
to undergo a 1 × 1 convolution, which increases both the training time and the training
difficulty, the MSF-CRNN model was fused using the add method.

3.4. The Recurrent Layer

To better learn the contextual information, we use a bi-directional RNN, so that the
network learns both the information of the previous text and the later text. There are two
mainstream approaches to bidirectional recurrent neural networks (bi-directional RNNs).
The first is the BiLSTM [56], which utilizes a complex architecture consisting of memory
cells and gates to selectively regulate information flow between time steps in both forward
and backward directions. The second model is the BiGRU [57], which employs gating
mechanisms to control the amount of information that is retained or discarded at each
time step, allowing for efficient processing of long sequences while avoiding the vanishing
gradient problem. To verify the reliability of the two models, BiLSTM and BiGRU, were
used in the experimental part. The results show that BiLSTM is more accurate, but requires
more model parameters, while BiGRU is less accurate, but uses fewer model parameters.
To achieve higher accuracy, the MSF-CRNN model uses Bi-LSTM as the recurrent layer of
the bi-directional RNN.

3.5. The Transcript Layer and Loss Function
3.5.1. The Transcript Layer

The transcription layer uses the conditional probabilities defined by the CTC to convert
the predicted results of the recurrent layer into a sequence of labels. Figure 9 shows the
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output of each frame from the recurrent layer. The output of each frame is a vector
representing the probability of being a particular character. The transcription layer finds
the sequence of labels with the highest probability given the conditions predicted for each
frame. In practice, when it comes to speech recognition and transcription, two models
are often used in speech recognition and transcription: lexicon-free transcription and
lexicon-based transcription. Lexicon-based transcription means that all possible words are
predetermined, and then the output is matched to the words in the lexicon. However, the
model proposed in this paper can predict any word, so there is no predetermined lexicon.
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Let the output of the recurrent layer be y = y1, y2, y3, ..., yT , where T denotes the length
of the feature sequence, yi is a vector with length n, yi =

(
yi

1, yi
2, yi

3, ..., yi
n
)
, n denotes the

number of characters to be predicted plus one blank character (if only lowercase letters
are predicted, then n = 26 + 1 = 27), and yi

k denotes the probability that the vector yi will
predict the kth character, so ∑k yi

k = 1.
Define the mapping function B with input π = (π1, π2, π3, ..., πT), and the output is

L, i.e., B(π) = L. The mapping function B performs the following two steps in sequence:
(1) removing consecutive repetitive characters and (2) removing blank characters.

As an example: B(--hh-e-l-ll-oo--) = hello, B(-hhh-eel-llloo--) = hello.
P(π|y) denotes the probability of obtaining π conditional on input y, which is cal-

culated as shown in Equation (2), and yi
πi

denotes the probability that the i-th output is
predicted to be character πi, as follows:

P(π|y) =
t

∏
i=1

yi
πi

(2)

P(L|y) represents the probability of obtaining the label L given the input y, which is
calculated as shown in the following Equation (3):

P(L|y) = ∑
π:B(π)=L

P(π|y) (3)

where P(L|y) takes the maximum value for π, and I∗ = B(π) is used as the predicted
result. However, it would take a lot of time to use the exact finding method, and to speed
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up the finding, a fuzzy finding strategy is used, under which I∗ ≈ B(argmaxπ P(π|y)), i.e.,
each P(π|y) outputs only the maximum probability.

3.5.2. The Loss Function

This paper sets the loss function O as a negative log-likelihood function of the condi-
tional probability and trains the model by minimizing this loss function. This approach is
commonly used in machine learning, where the goal is to train a model that can accurately
predict outputs given inputs. The negative log-likelihood function measures the differ-
ence between the predicted probabilities and the actual outcomes and penalizes incorrect
predictions more heavily. Equation (4) is given as follows:

O = −∑
Ii ,Li

log P(Li|yi) (4)

where X = {Ii, Li} refers to the training set, Ii represents the training image, Li represents
the real label sequence, and yi represents the output of the recurrent layer.

4. Experimental Results

The MSF-CRNN model was trained and tested on a desktop computer with an Intel
i5-9500 CPU (3.00 GHz), 32 GB RAM, and a GTX 1080 Ti 11 GB, using Python 3.7. The code
in this paper uses the PyTorch 1.8 deep learning framework, where the input images are
scaled equally and the height is uniformly modified to 32, the learning rate is 3 × 10−3, and
the gradient descent method is Adam. The model utilizes an exponential decay rate of 0.5
to estimate the first-order moments, and a decay rate of 0.999 to estimate the second-order
moments.

As the text recognition is different from image classification, in order to better evaluate
the effectiveness of the model recognition, two metrics are used for evaluation in this paper,
namely the average precision (AP) and the average precision of character (APc).

4.1. Benchmark Dataset

To evaluate the effectiveness of the proposed scene text recognition algorithm, we
have employed four widely recognized and commonly used datasets in the field, namely
ICDAR2003 (IC03), IIIT 5k-word (IIIT5k), ICDAR2013 (IC13), and Street View Text (SVT).
By utilizing these diverse datasets, we hope to provide a comprehensive evaluation of the
proposed algorithm’s effectiveness under different conditions and scenarios.

The ICDAR2003 dataset [19] consists of 251 images of scenes with labels. We cropped
out images that contained only characters of letters or numbers and had more than or equal
to three characters. The dataset contains 1823 character images, with 936 assigned to the
training set and 860 to the test set.

The ICDAR2013 dataset [20] consists of 462 (training 229, test 233) images of natural
scenes annotated in English. We discarded images that contained only characters of
numbers or letters and when the number of characters was more significant than or equal
to 3, resulting in 680 training images and 857 test images.

The IIIT 5k-word dataset [18] contains 3000 cropped word test images, which we
cropped out to contain only numbers or letters, resulting in 2000 training images and
3000 test images.

The SVT dataset [1,22] contains 249 street view images. We cropped out images
containing only characters with numbers or letters, resulting in 647 training images and
257 test images.

4.2. Model Performance Comparison
4.2.1. Qualitative Comparison

In this section, we give an experiment to show the prediction results of the CRNN
model with and without multi-scale fusion. Figure 10 shows the recognition results of
some images after the MSF-CRNN and CRNN models, respectively. It can be seen that
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the CRNN model uses a too small downsampling scale in order to obtain more feature
sequences, and the recognition cannot fully extract the whole text information completely,
which leads to the decrease in recognition accuracy. The MSF-CRNN model incorporates
multi-scale fusion to obtain results at different scales by downsampling at different scales
and fusing the results at different scales, which enables the MSF-CRNN to predict larger
text more accurately.
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From Figure 10, in the first image, we can see that the CRNN model identifies a “2d”,
but the other half is incorrectly identified as “d” due to the small receptive field, whereas
the MSF-CRNN model more correctly identified the text as “2” due to the multi-scale fusion.
In the second image, the CRNN extracts only half of the features of the number “4” due
to the small receptive field and identifies it as “A”. The MSF-CRNN model, on the other
hand, fuses the features of different scales to extract more comprehensive information and
correctly identifies it as “4”. The CRNN is also incorrectly identified because of the too
small receptive field, whereas the MSF-CRNN model is able to recognize the exact text
content in other images in Figure 10.

4.2.2. Quantitative Comparison

The proposed MSF-CRNN model is a complex and sophisticated approach to scene text
recognition, which requires careful validation to demonstrate its effectiveness. Therefore, to
evaluate the validity of this model, the authors have conducted three separate experiments
in this paper. The first experiment compares the different effects of different scales for the
feature scales in part (1) of Section 3.2. The second experiment compares the recognition
accuracy of the two fusion methods, namely add and concat, respectively, in Section 3.3. The
third experiment demonstrates that the MSF-CRNN model, which incorporates multi-scale
fusion has a higher text recognition accuracy than the CRNN model. To further validate
the reliability of the model, experiment 3 also uses BiLSTM and BiGRU in the recurrent
layer for comparison, respectively.

In the first experiment, we give the comparison results of the effects with different
downsampling. To verify the effect of features at different scales, we obtain the results
after downsampling at different scales on the ICDAR2003 dataset by using the CRNN
model. Here, S4, S8, S16 represent the accuracy of downsampling to the original 1/4, 1/8,
1/16, respectively, where S4 corresponds to the scaleA and S8 corresponds to scaleB in
Section 3.2.

Table 1 defines the meaning of S4, S8, and S16 in the context of the input size. Specifically,
S4 refers to scanning the input size down to 1/4 of its original size, S8 means scanning it down
to 1/8 of its original size, and S16 means scanning it down to 1/16 of its original size.
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Table 1. Recognition precision of feature sequences extracted with different scales.

The Way of Scales Average Precision
(AP)

Average Precision of Character
(APc)

S4 86.3 97.4
S8 65.3 82.1

S16 45.3 74.0

Table 1 shows that different downsampling scales have different effects, with S4 being
the best, followed by S8, and S16 being the worst. This is mainly because the downsampling
scale of S16 is too large, resulting in only one result for multiple characters, which reduces
the accuracy rate. S4 corresponds to the scaleA scale and S8 corresponds to the scaleB scale.
It can be seen from the experiment that the difference between the accuracy of S4 and S8
is not large, but the difference between the accuracy of S8 and S16 is large. Both S4 and
S8 scales can extract the features of the image relatively well, so the model proposed in
this paper complements their advantages by combining S4 and S8 to obtain better text
recognition results.

To provide a comprehensive comparison of the effectiveness of different fusion meth-
ods, this paper conducts an experiment to evaluate their performance. In order to compare
the two fusion methods, namely add and concat, in Section 3.3, the MSF-CRNN model was
used on the ICDAR2003 dataset to obtain the accuracy rates by using two different fusion
methods, respectively.

From Table 2, after analyzing the results of the experiment, it is clear that the add
fusion method outperforms the concat method in terms of accuracy. Specifically, the
accuracy obtained by the add fusion method was found to be higher than that of the concat
method. There are three reasons for this. Firstly, the concat fusion method has to change the
number of channels of the image by 1 × 1 convolution, which makes training difficult and
increases the training time and makes it difficult to converge to good results. Secondly, the
concat fusion method is a superposition of two features, which does not fuse the features
of two scales well. Thirdly, the add fusion method adds the elements corresponding to the
two features, which can fuse the features of two different scales well. The computation is
simpler, and the training is relatively easy. Therefore, the add fusion method is used for
fusion in the MSF-CRNN model.

Table 2. Comparison of the accuracy of different fusion methods.

Model Average Precision
(AP)

Average Precision of
Character (APc)

MSF-CRNN + concat 31.1 78.3
MSF-CRNN + add 80.4 91.4

To further validate the reliability of the MSF-CRNN and CRNN models, in the third
experiment, we use BiGRU and BiLSTM in the convolutional layer to learn contextual
information, respectively. The two models were tested on the ICDAR2003, ICDAR2013,
IIIT5K, and SVT datasets, respectively, and the results obtained are shown in Tables 3 and 4.
Table 3 shows the results obtained by comparing the performance of the proposed MSF-
CRNN model against the CRNN model, when BiGRU is used in the convolutional layer.
The evaluation is carried out on different benchmark datasets to assess the effectiveness of
the models under different conditions and scenarios.
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Table 3. Results of the MSF-CRNN model and the CRNN model by using BiGRU on different
datasets.

Models Weights ICDAR2003 ICDAR2013 IIIT5K SVT

CRNN
(BiGRU) 29.3M 87.3 84.2 80.1 79.1

MSF-CRNN
(BiGRU) 31.3M 91.2 92.9 83.3 83.5

+3.9 +8.7 +3.2 +4.4

Table 4. Results of the MSF-CRNN model and the CRNN model by using BiLSTM on different
datasets.

Models Weights ICDAR2003 ICDAR2013 IIIT5K SVT

CRNN
(BiLSTM) 31.8M 90.4 86.7 83.2 82.8

MSF-CRNN
(BiLSTM) 33.9M 96.3 94.9 91.3 90.1

+5.9 +8.2 +8.1 +7.3

The experimental results demonstrate that the proposed MSF-CRNN model can also
improve the accuracy of recognizing scene text compared to the CRNN model when using
BiGRU and BiLSTM in the recurrent layer.

It can be seen from Table 4 that the accuracy of the MSF-CRNN model with multi-scale
fusion on the ICDAR2003, ICDAR2013, IIIT5K, and SVT datasets is increased by 5.9%, 8.2%,
8.1%, and 7.3%, respectively, and the model parameters of MSF-CRNN and CRNN are
almost unchanged. Experimental results show that the model with multi-scale fusion has
higher recognition accuracy than the model without fusion.

The use of different RNNs in the recurrent layer shows that different RNNs have
their own advantages. After analyzing Tables 3 and 4, it is clear that using BiLSTM
for the recurrent layer results in higher recognition accuracy compared to using GRU.
However, the disadvantage of this approach is that it requires a significantly larger number
of parameters. When BiGRU is used, the recognition accuracy is slightly lower, but the
number of parameters required is also lower. Therefore, different RNNs can be used
according to different needs. When using the same recurrent neural networks in the
convolutional layer, the MSF-CRNN model can perform better than the model without
multi-scale fusion.

There are three reasons for improving the accuracy of text recognition, as follows:
(1) The MSF-CRNN model expands the receptive field when extracting image features,
allowing a larger range of features to be seen; (2) the use of two different downsampling
methods to extract more image features, MaxPooling for smaller scales and AvgPooling
for larger scales, enables a more comprehensive extraction of image features and makes it
easier to distinguish between different types of characters; (3) the fusion method of add
can fuse the features of two different scales well, and it is easier to train the network after
using add than other fusion methods, so that good recognition results can be achieved
more quickly.

As shown in Table 5, the inference time is the time required to predict each image in
ms. The training time is the time needed for each epoch. It can be seen that the inference
time and training time of the multi-scale fusion model are slightly higher than that of
the model without multi-scale, but the recognition accuracy of the model is significantly
improved. In general, compared with the model without fusion, the multi-scale fusion
model consumes more time but achieves a more significant improvement in accuracy.
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Table 5. Model training time and inference time.

Models Inference
Time

Training Time (min/epoch)

ICDAR2003 ICDAR2013 IIIT5K SVT

CRNN
(BiGRU) 42 ms 20 min 30 min 18 min 17 min

MSF-CRNN
(BiGRU) 46 ms 22 min 32 min 20 min 19 min

CRNN
(BiLSTM) 53 ms 25 min 35 min 23 min 22 min

MSF-CRNN
(BiLSTM) 58 ms 26 min 36 min 23 min 24 min

To evaluate the recognition effect of the MSF-CRNN model, we compare it with other
mainstream models and analyze their performance in terms of recognition accuracy. These
models include R2AM [32], RARE [17], FAN [27], NRTR [58], Char-Net [38], ASTER [35],
MORAN [59], SCATTER [60], and RCEED [55]. The models were published between the
years 2016 to 2022, and their performance results are summarized in Table 6. By comparing
the tabular data, we can derive a comprehensive assessment of the recognition accuracy
of different models. The purpose of this comparison is to help us understand the relative
performance of the MSF-CRNN model in competition with other popular models.

Table 6. Comparison of MSF-CRNN with other models.

Models ICDAR2003 ICDAR2013 IIIT5K SVT

R2AM (2016) [32] 97.0 90 78.4 80.7
RARE (2016) [17] 90.1 88.6 81.9 81.9
FAN (2017) [27] 94.2 93.3 87.4 85.9

NRTR (2017) [58] 95.4 94.7 86.5 88.3
Char-Net (2018) [38] 93.3 91.1 92 87.6
ASTER (2018) [35] 94.5 91.8 93.4 89.5

MORAN (2019) [59] 95.0 92.4 91.2 88.3
SCATTER (2020) [60] 96.1 93.8 92.9 89.2

RCEED (2022) [55] - 94.7 94.9 91.8

MSF-CRNN (ours) 96.3 94.9 91.3 90.1

Based on the information provided and the data in Table 6, we can draw some conclu-
sions. Firstly, the accuracy of MSF-CRNN on the four datasets ICDAR2003, ICDAR2013,
IIIT5K, and SVT is 96.3%, 94.9%, 91.3%, and 90.1%, respectively. It is particularly note-
worthy that MSF-CRNN achieves the highest accuracy on the ICDAR2013 dataset. In
addition, the accuracy on other datasets is also close to the performance of other models.
By fusing information from different scales, the MSF-CRNN model is able to extract more
useful information from the data. This fusion process significantly enhances the recognition
accuracy of the model. The ability to leverage multi-scale information enables the model to
better handle text images with varying scales and features, leading to improved overall
performance. In summary, the MSF-CRNN model demonstrates high accuracy in text
recognition tasks, particularly on the ICDAR2013 dataset. Its ability to fuse multi-scale
information allows it to effectively utilize features from different scales and adapt to diverse
text images, resulting in improved recognition performance across multiple datasets.

5. Conclusions

The existing text recognition models have too small downsampling scale to better
extract features from images, so we propose a new text recognition model that incorpo-
rates multi-scale fusion. The MSF-CRNN model is divided into a convolutional layer, a
feature fusion layer, a recurrent layer, and a transcription layer. In the convolutional layer,
two different scales of features, scaleA and scaleB, are obtained by convolutional neural
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networks. In the feature fusion layer, scaleB is upsampled and fused with scaleA to obtain a
new feature sequence, and then the feature sequence is fed into the recurrent layer to learn
the contextual information. We use Bi-LSTM in the recurrent layer. Finally, the final result
is output through the transcription layer. The experimental results show that the proposed
MSF-CRNN model has better performance on four publicly available text datasets.

In future research, different fusion methods will be considered to better extract the
features of the image, so as to further improve the accuracy of text recognition. In addition,
the model will be appropriately lightweight for easy deployment, and we will also consider
using different convolution methods and transformer methods to extract image features.
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