
Citation: Murdivien, S.A.; Um, J.

BoxStacker: Deep Reinforcement

Learning for 3D Bin Packing Problem

in Virtual Environment of Logistics

Systems. Sensors 2023, 23, 6928.

https://doi.org/10.3390/s23156928

Academic Editor: Azfar Khalid,

Jamshed Iqbal, Reza Vatankhah

Barenji and Jürgen Pannek

Received: 7 July 2023

Revised: 30 July 2023

Accepted: 2 August 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

BoxStacker: Deep Reinforcement Learning for 3D Bin Packing
Problem in Virtual Environment of Logistics Systems
Shokhikha Amalana Murdivien and Jumyung Um *

Department of Industrial and Management System Engineering, Kyung Hee University, 1732 Deogyeong-daero,
Yongin-si 17104, Republic of Korea; amalanadivien@khu.ac.kr
* Correspondence: jayum@khu.ac.kr

Abstract: Manufacturing systems need to be resilient and self-organizing to adapt to unexpected
disruptions, such as product changes or rapid order, in supply chain changes while increasing the
automation level of robotized logistics processes to cope with the lack of human experts. Deep
Reinforcement Learning is a potential solution to solve more complex problems by introducing
artificial neural networks in Reinforcement Learning. In this paper, a game engine was used for Deep
Reinforcement Learning training, which allows visualization of view learning and result processes
more intuitively than other tools, as well as a physical engine for a more realistic problem-solving
environment. The present research demonstrates that a Deep Reinforcement Learning model can
effectively address the real-time sequential 3D bin packing problem by utilizing a game engine to
visualize the environment. The results indicate that this approach holds promise for tackling complex
logistical challenges in dynamic settings.

Keywords: Deep Reinforcement Learning; bin packing problems; robot scheduling; warehouse
systems; logistics; artificial intelligence

1. Introduction

In modern manufacturing systems, establishing resilience is crucial to adapt to unfore-
seen disruptions, such as sudden product alterations or rapid fluctuations in supply chain
dynamics. Concurrently, as these systems aim to augment automation through robotized
logistics processes, this becomes particularly crucial in compensating for potential short-
ages in human expertise [1]. The COVID-19 pandemic has resulted in a surge of activity
in the delivery and logistics industry, as social distancing measures have necessitated
the increased use of robotized logistics systems. Due to unexpected disruptions, such as
product changes or rapid orders, re-planning of the robotized handling system is required
frequently for complex loading and unloading tasks, which are intensive manual labor.
Overall, the tasks remain reliant on manual labor, which is the least automated part of the
entire logistics process. Previous loading problem solutions only focus on how to load
a container, whereas bin packing problems (BPP) are handled separately [2]. However,
since the picking position of the box impacts the area in which the box can be placed, those
procedures should be planned concurrently to optimize space [3]. Since the courier logistics
environment is a variable and dynamic environment, there is a limit to human design and
automation of robot work.

In recent years, significant breakthroughs have been achieved through Deep Rein-
forcement Learning (DRL) to address these challenges. DRL is actively studied in artificial
intelligence academia, with a particular focus on optimal robot control. By introducing
artificial neural networks to Reinforcement Learning, DRL enables learners to strengthen
their behavior through function approximation methods, even for initially unsolvable
problems. Based on feedback during the training process, the agent decides actions from a
set of available options to optimize the collected reward. DRL has the potential to learn

Sensors 2023, 23, 6928. https://doi.org/10.3390/s23156928 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156928
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-4420-3350
https://orcid.org/0000-0002-8040-6144
https://doi.org/10.3390/s23156928
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156928?type=check_update&version=2


Sensors 2023, 23, 6928 2 of 15

algorithms for complex behavior using rewards, making it applicable to develop robotic
models for loading and unloading tasks in courier logistics environments.

The high dimensionality of 3D box stacking poses significant challenges that legacy
heuristic algorithms cannot effectively handle. While Reinforcement Learning shows
promise in solving such problems, the curse of dimensionality limits its practical appli-
cation to larger problems. This limitation hampers the real-world implementation of
Reinforcement Learning for addressing practical challenges. DRL algorithms can efficiently
process large inputs, enabling rapid and effective learning in systems. However, their
performance often deviates from reality. To bridge this gap, this study aims to develop an
artificial intelligence agent using game engines to construct a virtual delivery environment
and simulate delivery loading. Using a game engine to perceive the environment, a Deep
Reinforcement Learning model successfully addresses the real-time sequential 3D bin
packing problem.

This paper tries to provide approaches to practical challenges and answer the following
research questions:

1. How is the courier logistics problem of loading and unloading boxes solved? The
evaluation process is carried out by applying Reinforcement Learning to develop the
bin packing algorithm.

2. How can solutions that can perform similarly to reality be provided? This will be
solved by building the experiment environment with a 3D game engine.

3. To what degree are the proposed solutions optimal? This will be analyzed by
evaluating the feasible solutions made by DRL and finding the best positions for
packed boxes.

This paper is organized as follows: Section 2 provides reviews of the relevant literature
and an overview of DRL and 3D game engine technology. In Section 3, the environments
and learning functions of Reinforcement Learning for stacking boxes are proposed. The
obtained results are presented and analyzed in Section 4, followed by discussions in
Section 5. In the final section, the conclusions of the research are summarized.

2. Literature Survey

This section will provide an overview of earlier research that utilized Deep Reinforce-
ment Learning and, in particular, game engines, to solve the bin packing problem.

2.1. Bin Packing Problem

The bin packing problem (BPP) is a well-known and essential combinatorial opti-
mization problem in logistics and manufacturing and a huge number of methods exist
in the literature for packing problems [4,5]. The most crucial and challenging is the 3D
bin packing problem, in which a variety of cuboid-shaped objects of various sizes must
be packed orthogonally into bins [6]. The 3D BPP is a real-world-driven combinatorial
optimization problem with significant economic, environmental, and safety implications [7].
The geometric 3D BPP is a variation of the knapsack problem and is a well-known NP-hard
problem in computer science literature [8]. The purpose is to create a packing method
for boxes of various shapes and sizes that maximizes the space within the bin. Thus,
an efficient bin packing algorithm reduces calculation time, overall packing cost, and
resource consumption.

Many researchers have suggested various approximations or heuristic algorithms [2,5]
due to the difficulties in achieving optimum bin packing problem solutions, including
integer linear programming [9], space minimizing heuristics [10], genetic algorithms [11,12],
quantum algorithms [13,14] and machine-learning-based smart heuristic selection [15].
Solving bin packing in a 3D environment is not an easy task. It has multi goals, different
box sizes, and has to consider orientation and stability [6]. Load stability and balance
factors are generally not considered explicitly in the bin packing literature [16].



Sensors 2023, 23, 6928 3 of 15

2.2. Deep Reinforcement Learning in 3D BPP

Recently, the bin packing problem has been solved through Deep Reinforcement
Learning (DRL) [17–21]. Reinforcement Learning (RL) is a field of machine learning that
entails a set of techniques for determining the optimum agent strategy and maximizing the
reward of the agent [22]. DRL uses a deep neural network (DNN) to extend Reinforcement
Learning without having to explicitly define the state space. Therefore, it combines both RL
and Deep Learning (DL). Artificial intelligence, particularly Deep Reinforcement Learning,
has gained a lot of attention in recent years and has produced outstanding breakthroughs
in a variety of sectors. Furthermore, the DRL technique has shown great promise in
solving combinatorial optimization issues [23,24]. Hu et al. applied the Traveling Salesman
Problem and Pointer Network to solve the 3D bin packing problem [6]. Kundu et al. used
2D vision-based Reinforcement Learning to pick a bin [17]. Le et al. not only applied
bin packing but also considered conveyor belt movement and placing in the RL [18].
Bo et al. transformed the online 3D palletization problem into partially observable Markov
decision processes (POMDPs) and introduced the DRL technique to estimate states using
observation trajectories [25].

2.3. Reinforcement Learning in 3D Game Engine

DRL algorithms need a huge number of experiences to be able to learn complicated
tasks. In order to teach the agents, speed up their learning, and function properly in the real
world, a realistic simulation environment must be performed; thus, it requires advanced
programming knowledge. Therefore, a physics and game engine capable of supporting
multi-agent systems can be the solution to address this issue. A physics engine simulates
physical interactions (e.g., PyBullet [26], MuJoCo [27]), while a game engine is a versa-
tile software framework for game development (e.g., Doom [28], Unreal [29]), including
graphics, physics, AI, and networking capabilities [30]. In this paper, the game engine
was used to visually demonstrate the 3D environment and the physical engine was used
to conduct DRL in a more realistic environment. Unity3D is one of the most well-known
virtual reality technologies and is a cross-platform game production program [31]. Unity
has the capacity to generate diverse multi-agent environments [32]. While there are several
works that address 3D online bin packing problems using Deep Reinforcement Learning
(DRL) [33–35], as of now, there is no work dealing with the autonomous management of
loading and unloading boxes using Deep Reinforcement Learning and game engines to
perform the simulation. This presents an opportunity for further research in this area, as
the incorporation of a game engine may provide additional flexibility and capabilities for
training and evaluating DRL algorithms for the 3D BPP.

2.4. Summary and Opportunities

The following conclusions were obtained from the literature review:

1. Three-dimensional box stacking has high-dimensional problems which cannot be
solved by legacy heuristic algorithms. This method had the disadvantage that it may
become impractical to use when the size of the problem becomes too large due to the
“curse of dimensionality”. This can make it challenging to apply these methods to
real-world problems.

2. Even though DRL can provide available solutions, its performance is often far away
from reality in many cases.

3. Using open space made by a physical game engine to give a degree of freedom to all
arbitrarily shaped boxes is the challenge of the previous literature.

4. Simple modeling of 3D bin packing is better for adapting to new configurations of
warehouse problems.

5. A more realistic environment of bin packing is helpful to realize realistic situations
without statistical simulation.



Sensors 2023, 23, 6928 4 of 15

The aforementioned observations indicate an opportunity to motivate Reinforcement
Learning for open space-based 3D bin packing. In addition to a clear need for an alternative
technological solution in this area, the environment development and reward function
using game-engine-based system architecture will provide benefits in the development of
innovative algorithms for various conditions.

3. Methodology
3.1. System Specifications

The procedure to build a Reinforcement Learning environment in game engines is as
follows: defining agents (observation, action), rewards, and selecting algorithms. Figure 1
depicts the structure of the DRL concept in the proposed work. It consists of three dynamic
environment settings and an agent. The environments are the layout of warehouses in a
simplified manner, and the agent is the box that should learn how to load the box into the
designated plate, which is the simulation of the space inside the container.

Figure 1. General structure of Deep Reinforcement Learning concept in proposed work.

In order to design a Reinforcement Learning environment and an agent, it is recom-
mended to go through the following process:

1. Define goals or specific tasks to be learned.

The goal of this study is to train an agent to stack boxes on a designated plate area,
with the goal of ensuring that the boxes are centered on the center of the plate. The training
process is conducted in a simulated warehouse environment that is designed to be visually
similar to a real-world setting. The warehouse contains five slots, but for the purpose
of the training, only one slot is used, as all the slots are identical. This allows for more
efficient training by eliminating the need to consider variations between slots. To facilitate
the observation of the learning process, the training of the boxes is initially conducted
in a simplified environment that consists of only eight boxes. This allows for a clearer
understanding of the learning dynamics without the added complexity of a larger number
of boxes. The proposed work environment settings are shown in Figure 2.

2. Define agents.

The agent is the one that acts in Reinforcement Learning. The agent may be an actual
object or an abstract object inside the Reinforcement Learning environment. In the context
of this study, the agent is represented by a small box placed in the center of the plate.
Through the process of Reinforcement Learning, the agent will learn to determine the
optimal position for placing the real boxes on the plate one by one. Since the agent has to
act directly and achieve its goals, an agent script to an actual object was assigned.

3. Define agents’ behavior and observation.

In the learning environment, the agent must define what information and behavior to
observe. The Reinforcement Learning model uses observation information as an input of
the model and outputs the value of the state or behavior. In this study, the agent generates



Sensors 2023, 23, 6928 5 of 15

a box (object which needed to load). Generating a box is the action of the agent. Agent
observes the generated box’s positions and how many boxes are stacked. The agent receives
rewards if all the layers are stacked. In the initial stages of this research, the agent was
programmed to move in three dimensions (x, y, and z axes) during the learning process, as
shown in Figure 3a. However, the complexity of the problem was found to be excessively
high (approximately O(61000000)), due to the infinite trajectory space. As a result, the agent
was subsequently modified to generate movement only on the x and y axes (Figure 3b),
reducing the complexity of the problem (O(41000000)).

(a) (b)

(c) (d)
Figure 2. Proposed work virtual environments in all cases. (a) All objects of the warehouse, (b) all
objects of each slot, (c) possible movement of each box, and (d) the simplified loading plate.

(a) (b)
Figure 3. Problem complexity of (a) movement to X, Y, and Z coordinate axes, and (b) movement to
X and Y coordinate axes.



Sensors 2023, 23, 6928 6 of 15

4. Define the reward.

Next, and the most important, the reward for Reinforcement Learning should be
defined. No matter how well the environment and agent are designed, the agent cannot
learn what the target is unless a reward is given. The reward should be provided when the
agent acts and satisfies certain conditions. At this time, the amount of the reward and the
timing of reward are important. Determining the informativeness of a reward function is
an essential issue [36,37]. The agent will get a reward after being able to stack the boxes,
and after all the boxes are stacked, an evaluation will be made of which solution is close to
the optimal solution, as illustrated in Figure 4. The reward function used in this study can
be seen in Algorithm 1.

Algorithm 1: Box Stacker Agent Learning
Environment and Agent Initialize
Initialize transforms of objects (position, rotation)
Initialize member variables (BoxList, BoxIndex, BoxPointer, numberO f Boxes)
b← Box
p← Pointer
while (count < maxsteps) do

if p is Out of bound then
Set reward −0.01
EndEpisode(“Failed”)

else
Set Reward -0.0001

end
if (BoxIndex == numberO f Boxes) then

if CheckBoxBoundary(BoxList) then
Set Reward 1.0
EndEpisode(“Success”)

else
Set Reward −0.01
EndEpisode(“Failed”)

end
else

Move p
if BoxStackedList[BoxIndex]) then

Move b to p
Drop b

end
if CheckBoxBoundary(b) then

EndEpisode(“Failed”)
end
Set Reward 0.01
if CheckStacked(BoxIndex) then

BoxIndex++
end

end
end



Sensors 2023, 23, 6928 7 of 15

Figure 4. Optimal solution for each scenario, the figure on the left is boxes of the same size, the
middle is boxes of varying size, and the right figure is small plane environment.

5. Define the conditions of the start and end of the episode.

The initial state and termination conditions must be set at the beginning of the episode.
The end of the episode is divided into success and failure in achieving the goal, and rewards
for success and failure must also be allocated. At the end of the episode, the episode begins
again, and at this time, learning begins again to its initial state. If the initial state (agent
location, environment information) is set randomly, learning takes longer, but more general
performance can be expected. In this study, the environment consists of a plane for stacking
boxes, a thin collider surrounding the plane, and an agent. The agent’s goal is to create a
target point within the specified range of the plane and then place a box at that point. If the
box collides with a virtual wall or goes out of bounds during the process of placing it, the
agent receives punishment, and the episode is terminated. Therefore, the stacking attempts
will restart from the first box again. However, if all the boxes are placed without collision,
the agent is rewarded for successfully stacking one floor. The agent inputs the information
of the changed environment into the observation and then creates a new coordinate to place
another box at the target point. This process is repeated until the agent either succeeds in
stacking all the boxes or receives punishment for an unsuccessful attempt.

6. Reinforcement learning model (algorithm) selection.

The Reinforcement Learning algorithm is divided into a value-based algorithm and a
policy-based algorithm. In this case, if there is a probabilistic element in the environment, it
is recommended to use a policy gradient-based algorithm. In general, policy gradient-based
algorithms perform better in environments such as robot control. A detailed explanation
about algorithms used in this study will be explained in the next subsection.

3.2. Algorithm

The Proximal Policy Optimization (PPO) Algorithm by Schulman et al. is a prominent
policy gradient algorithm for solving the optimization problem [38], and has proven to
learn policies more efficiently than Trust Region Policy Optimization (TRPO) [39]. From
past studies, this algorithm achieved better overall performance while also ease of im-
plementation and hyperparameter tuning to achieve even better results. PPO performs
each policy update over numerous epochs of stochastic gradient ascent. In the case of ML-
Agents, PPO is recommended since it provides more stable results in the environment and
has better generalization ability [40]. Therefore, PPO algorithms are chosen to implement
the model in this study.

After initializing the policy parameters, θ, it collects a batch of transitions (st, at, rt, st
′
)

from the environment using the current policy. Then, it estimates the expected reward
gradient in relation to the parameters of the policy as follows:

∇θ J(θ) =
1
N ∑

t∇θ log

πθ(at | st) ∗ At(st, at) (1)

where N is the number of transitions in the batch, πθ (at | st) is the probability of taking
action at in state st according to the current policy, and At (st, at) is the advantage function
for the t-th transition. Then, compute the PPO objective function:

LCLIP(θ) = min(rt(θ) ∗ ∇θ J(θ), clipparam ∗ ∇θ J(θ)) (2)



Sensors 2023, 23, 6928 8 of 15

where rt(θ) is the ratio of the new and old policy probabilities and clipparam is a hyperpa-
rameter that limits the size of the policy updates. Lastly, perform a gradient ascent step on
the PPO objective function:

θ = θ + η ∗ LCLIP(θ) (3)

where η is the learning rate. This update step is repeated until the policy has converged.

3.3. Workflow of Deep Reinforcement Learning

Algorithm 1 outlines the process of training an agent to stack boxes in this study. The
training process involves moving the agent, represented by a box pointer, to stack the boxes.
If the current box is out of bounds or successfully stacked, the agent receives a reward, and
the current box is moved. The training process is terminated when the index for the current
box reaches the total number of boxes, at which point the episode is marked as a success
or failure depending on whether all the boxes were stacked. The agent receives a positive
or negative reward in each case. The training process is terminated when the maximum
number of steps is reached.

Basic objects of Reinforcement Learning are a plate to support the dropping boxes, a
pointer to call each box during flying over the plate, and boxes waiting for loading on the
plate. The agent of the pointer reports observations and rewards after conducting actions
generated by the PPO algorithm, as shown in Figure 5. First, the pointer moves along the X
and Y axis. Next, each box is transferred to the position of the point and dropped when
gravity is applied to the box. The agent checks if the box stands on the plate or drops out.
The reward is a plus value when standing while a minus value when dropping out.

Figure 5. Training process of Reinforcement Learning.

The reward of each agent action is the distance of each box from the center of the plate
step by step, as well as the final status of the dropped box. In addition, the PPO algorithm
will be used for training, with the following hyperparameter settings, as shown in Table 1.

Table 1. PPO hyperparameter settings.

Hyperparameter Value

Batch Size 10
Buffer Size 100

Learning Rate 3.0 × 10−4

Epoch 3
Beta 5.0 × 10−4

Epsilon 0.2
Lambd 0.99

Max Steps 50,000



Sensors 2023, 23, 6928 9 of 15

4. Experiment and Results
4.1. Experimental Planning

DRL is applied to find feasible solutions and add the evaluation phase to find the best
success results among the feasible solutions. Especially in this study, DRL with a learning
process that generates random positions for the box and results in a high degree of freedom
is being proposed. Hence, the combined results of the learning process are much bigger.
Therefore, the next evaluation step is needed. The evaluation phase consists of visualizing
the successful solutions during the training process, calculating the summation of the gaps
between the center position of the bottom plane and each box, and finding the best solution
among the successful solutions. As well as the comparison of the summation of gaps, the
performance of Reinforcement Learning was compared with different hyperparameters
such as batch size, max steps, and learning rate. The overall architecture is presented in
Figure 6. There are five steps, starting with the first training of all environments that are
boxes with the same sizes, boxes with various sizes, and the smaller plane environment.
The second step is hyperparameter optimization with the main focus on learning rate, batch
size, and max steps parameters. The next step is the second training of all environments
using new hyperparameter settings followed by cumulative rewards cooperation of first
training and second training. Lastly, solutions are evaluated to find the best one.

Figure 6. Overall architecture of the experiment.

In this experiment, Unity version 2018.4.31f1 and ML-Agents 0.16.0 has been used.
Compared to other game engines, when it comes to an open simulator such as Mujoco,
Gazebo, and Bullet, the model input is more complicated and poses challenges for ease of
use and implementation. While the Unreal Engine excels as a powerful game engine, it
currently lacks a native RL toolkit and users have encountered difficulties in establishing
connections with external modules. Unity offers the advantage of built-in ML-Agents for
RL and seamless integration with external tools, making it a more user-friendly option for
developers seeking to incorporate Reinforcement Learning into their projects. The training
was conducted on a computer with an Intel(R) Core(TM) i5-8500 CPU running at 3.00 GHz,
8 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU.

4.2. Experiment Scenarios

In this study, three experimental conditions depicted in Figure 7 were conducted in
order to examine the effect of different factors on the outcome. The first condition involved
the use of boxes of the same size, while the second condition involved the use of boxes
of varying sizes. The third condition involved reducing the size of the plane. For each
condition, multiple training was with different hyperparameter settings in order to analyze
the results and identify trends.



Sensors 2023, 23, 6928 10 of 15

(a) (b) (c)
Figure 7. Three environment scenario configurations, (a) box of same size, (b) box of varying size,
and (c) small plane.

4.3. Hyperparameter Tuning

In general, max steps, learning rate, and batch size are important hyperparameters that
can have a significant impact on the performance of the model. The appropriate values for
these hyperparameters will depend on the characteristics of the dataset and the complexity
of the model. Experimentation and tuning may be necessary to determine the optimal
batch size for a particular model and dataset.

Max steps in ML-Agents is a hyperparameter that defines the maximum number of
steps that the environment will be allowed to run throughout each training episode. The
step size at which the model updates its weights during training is controlled by another
hyperparameter called the learning rate. It is a parameter of the optimizer, which is the
algorithm used to adjust the model’s weights based on the calculated gradients. The
learning rate determines the size of the update that the optimizer will make to the model’s
weights at each step of the training process. Meanwhile, batch size determines the number
of training examples that will be used in each iteration of the training process.

In this study, experiments were carried out for the max steps, learning rate, and batch
size parameters to get the optimal parameters to train the model. An experiment was
conducted to evaluate the effects of various learning rates (1.0 × 10−4, 2.0 × 10−4 and
3.0 × 10−4), batch sizes (10, 50, and 100), and maximum number of steps (30,000, 40,000,
and 50,000) on the performance of a Deep Reinforcement Learning algorithm. The results of
this experiment can be used to identify the optimal set of hyperparameters for this problem.
The comparisons of experiments are shown in Figure 8.

The results of the hyperparameter tuning suggest that the optimal combination for
the learning rate, batch size, and maximum number of steps for the Deep Reinforcement
Learning algorithm were 2.0 × 10−4, 10, and 40,000, respectively, based on the highest
cumulative rewards achieved. These findings may be useful for guiding the selection of
hyperparameters in future applications of the algorithm to the 3D bin packing problem.

4.4. Cummulative Rewards Comparation

The agent was retrained using the optimized hyperparameter setting (Table 2), and
the resulting cumulative rewards were compared to those obtained during the first training
with the old parameter setting. The results indicate that the new parameter setting resulted
in higher cumulative rewards (Table 3). Boxes with the same size obtained 7.823 cumulative
rewards, 5.866 for boxes with different sizes, and 56.03 for smaller plane using the old
hyperparameter settings. Meanwhile, by using the new hyperparameter settings, boxes
with the same size acquired 12.66 cumulative rewards, boxes with different sizes received
6.101, and the smaller plane earned 238.1. This suggests that the optimization of the
hyperparameters can significantly improve the performance of the Deep Reinforcement
Learning algorithm for the 3D BPP.



Sensors 2023, 23, 6928 11 of 15

Figure 8. Training results of various experiment types.

Table 2. Optimized hyperparameter settings.

Hyperparameter Value

Batch Size 10
Buffer Size 100

Learning Rate 2.0 × 10−4

Epoch 3
Beta 5.0 × 10−4

Epsilon 0.2
Lambd 0.99

Max Steps 40,000

Table 3. Cumulative rewards comparation table.

Environment Setting Cumulative Rewards Using Old
Hyperparameter

Cumulative Rewards Using New
Hyperparameter

Boxes with the same size 7.823 12.66
Boxes with different size 5.866 6.101
Smaller plane 56.03 238.1



Sensors 2023, 23, 6928 12 of 15

4.5. Evaluation

The final stage of the training process involves the evaluation of the results. If all the
boxes are successfully stacked on the plate, a success list is generated. This list includes the
position of each box on the x, y, and z axes. To determine the best or near-optimal solution,
the total gaps between the center point of each box and the center point of the plate are
calculated. The solution with the smallest gaps is considered to be the best solution from
the training process. However, due to the large number of success lists generated from the
training process, as an example, only five success lists for boxes of the same size are shown
(Table 4). The visualization of the success list results is also presented in Figure 9.

(a) (b) (c) (d) (e)
Figure 9. Success results visualization; (a) Solution 1; (b) Solution 2; (c) Solution 3; (d) Solution 4;
(e) Solution 5.

Table 4. Total gaps of solutions result.

Solutions 1 2 3 4 5

Box 1 0.3659 0.3675 0.3678 0.3674 0.3672
Box 2 0.4071 0.4071 0.4071 0.4071 0.4071
Box 3 0.4076 0.4075 0.4075 0.4075 0.4075
Box 4 0.9169 0.9168 0.9168 0.9169 0.9169
Box 5 0.6786 0.6780 0.6774 0.6775 0.6776
Box 6 0.9997 1.0001 1.0004 1.0003 1.0003
Box 7 0.9635 0.9610 0.9601 0.9604 0.9607
Box 8 1.0913 1.0401 1.0131 1.0147 1.0163
Total Gaps 5.8307 5.7780 5.7502 5.7520 5.7537

As demonstrated in the table, Solution 3 exhibits the lowest total gap among the five
solutions presented with the value of 5.7502. Therefore, it can be concluded that Solution 3
is the optimal solution among the ones shown in the table.

5. Discussion

The algorithm for loading packages can be implemented in several ways. Theoretically,
this problem can be infinitely improved. However, there are limitations to trying various
methods because it consumes a lot of training time and a lot of computing resources in real-
ity. In this study, training using various hyperparameter configurations was implemented
in order to identify the optimal settings for the proposed model. As expected, the training
process of boxes with different sizes was the most challenging condition, as evidenced by
the lower cumulative rewards observed in comparison to the other conditions.

The reward function of the proposed model focuses on the gap from the center position
demonstrating a valuable aspect in promoting balance and stability during box stacking
on a pallet. By encouraging the agent to prioritize the center position, the reward function
fosters successful stacking attempts and reduces the likelihood of the boxes toppling over.
To optimize the reward function and facilitate comprehensive learning, it is essential to
incorporate other factors in the reward function, such as the height of stacking, collision
avoidance, and efficient space utilization, that contribute to stable and efficient stacking,
ultimately guiding the agent toward mastering the box stacking task successfully. A
balanced combination of these elements, including maintaining the center position, will



Sensors 2023, 23, 6928 13 of 15

empower the agent to achieve the best solution by creating stable, efficient, and well-
distributed stacks on the pallet.

The use of a game engine allows for the development of a user interface that makes it
simple to change the size of the box and the plate even for users who are not programmers.
Additionally, this approach is applicable to dynamic environments since it also has the
ability to generate various shapes other than only cuboids.

This study presents a novel approach utilizing the Unity game engine to address
the 3D BPP. The method achieves smoother and more efficient packing roll-outs due to
the advanced features of the engine. Furthermore, improved stability in packing results
is observed, leveraging the engine’s robust physics simulation and collision detection
capabilities. Unlike conventional heuristics and RL approaches without game engines,
the proposed method accommodates arbitrary shaped objects, enhancing the flexibility of
packing configurations. Additionally, the visualization capabilities offer clear and intuitive
representations of the packing process and outcomes, facilitating comprehensive analysis
and evaluation. Moreover, the approach enables easy modification and adjustment of
packing environments and parameters, streamlining experimentation and optimization.
Overall, the study demonstrates the superior performance of the proposed method in roll-
out efficiency, stability, handling arbitrary shapes, visualization, and ease of modification
compared to traditional techniques (Table 5).

Table 5. Study comparation.

Heuristics RL without Engine This Study

Roll-out Limited Limited Efficient
Stability Prone to Issues Prone to Issues Enhanced

Arbitrary Shape Handling Limited Limited Yes
Visualization Limited Limited Intuitive

Ease of Modification Difficult Difficult Easy

6. Conclusions

This study demonstrated the use of Deep Reinforcement Learning to automate the
loading process in a simulated environment. The combination of a learning rate of
2 × 10−4, a batch size of 10, and a maximum number of steps of 40,000 resulted in the
best performance for the proposed model, suggesting that the optimization of the hyperpa-
rameters can significantly improve the performance of the DRL algorithm for the 3D BPP.
However, limitations were identified in the reward function of the proposed work, which
was insufficient for guiding the learning process to reach the optimal solution. Further
improvements in the reward function are needed in order to fully optimize the proposed
model. This approach has the potential to be a valuable tool for improving the efficiency
of the loading and unloading process in the logistics industry. The current study shows
that by visualizing the environment using a gaming engine, a DRL model may successfully
handle the real-time sequential 3D bin packing problem. The game engine’s ability to
visualize the packing process and outcomes allow for clear and intuitive representations,
making comprehensive analysis and evaluation easier. The proposed method achieves
smoother and more efficient packing roll-outs due to the advanced features of the engine.
Moreover, improved stability in packing results is observed, leveraging the engine’s robust
physics simulation and collision detection capabilities. The usage of a game engine in the
training process, on the other hand, enables the use of various forms, including shapes
other than cuboid boxes, such as cylinders. Additionally, the game engine facilitates the
implementation of the digital twin system and enhances its capabilities through the inte-
gration of virtual reality technology. The utilization of a game engine thus provides a more
advanced and flexible approach to training for the 3D BPP. The findings show that despite
its limitations, the use of a game engine and its machine learning agents (ML-Agents)



Sensors 2023, 23, 6928 14 of 15

toolkit allows for the development of a user-friendly interface and has the potential to
address complicated logistical difficulties in dynamic environments.

Author Contributions: Conceptualization, J.U.; Methodology, J.U.; Software, S.A.M.; Validation,
S.A.M.; Formal analysis, S.A.M.; Investigation, S.A.M. and J.U.; Resources, J.U.; Writing—original
draft, S.A.M.; Writing—review & editing, S.A.M.; Supervision, J.U.; Project administration, J.U.;
Funding acquisition, J.U. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Korea Evaluation Institute of Industrial Technology (KEIT)
grant funded by the Ministry of Trade, Industry and Energy (No. 20016343, Development of AI
service platform for OM of Manufacturing facility based on field knowledge of precious machining
machinery), and Institute of information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No. RS-2022-00155911, Artificial Intelligence
Convergence Innovation Human Resources Development (Kyung Hee University)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their gratitude to Kim Kook Jin, and Lee
Sang Yoon for their contribution to the model concept and design, as well as Kim Tae Yeong for the
contribution to the model training process.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, F.; Hauser, K. Stable bin packing of non-convex 3D objects with a robot manipulator. In Proceedings of the 2019

International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8698–8704.
2. Zhao, X.; Bennell, J.A.; Bektaş, T.; Dowsland, K. A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res.

2016, 23, 287–320. [CrossRef]
3. Tanaka, T.; Kaneko, T.; Sekine, M.; Tangkaratt, V.; Sugiyama, M. Simultaneous Planning for Item Picking and Placing by Deep

Reinforcement Learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 9705–9711.

4. Levin, M.S. Towards bin packing (preliminary problem survey, models with multiset estimates). arXiv 2016, arXiv:1605.07574.
5. Zuo, Q.; Liu, X.; Chan, W.K.V. A Constructive Heuristic Algorithm for 3D Bin Packing of Irregular Shaped Items. In Proceedings

of the INFORMS International Conference on Service Science, Beijing, China, 2–4 July 2022; pp. 393–406.
6. Hu, H.; Zhang, X.; Yan, X.; Wang, L.; Xu, Y. Solving a new 3d bin packing problem with Deep Reinforcement Learning method.

arXiv 2017, arXiv:1708.05930.
7. Ramos, A.G.; Silva, E.; Oliveira, J.F. A new load balance methodology for container loading problem in road transportation. Eur.

J. Oper. Res. 2018, 266, 1140–1152. [CrossRef]
8. Kolhe, P.; Christensen, H. Planning in Logistics: A survey. In Proceedings of the 10th Performance Metrics for Intelligent Systems

Workshop, Baltimore, MD, USA, 28–30 September 2010; pp. 48–53.
9. den Boef, E.; Korst, J.; Martello, S.; Pisinger, D.; Vigo, D. A Note on Robot-Packable and Orthogonal Variants of the Three-Dimensional

Bin Packing Problem; Technical Report 03/02; Department of Computer Science, University of Copenhagen: Copenhagen,
Denmark, 2003.

10. Crainic, T.G.; Perboli, G.; Tadei, R. Extreme point-based heuristics for three-dimensional bin packing. Informs J. Comput. 2008,
20, 368–384. [CrossRef]

11. Gonçalves, J.F.; Resende, M.G. A biased random key genetic algorithm for 2D and 3D bin packing problems. Int. J. Prod. Econ.
2013, 145, 500–510. [CrossRef]

12. de Andoin, M.G.; Osaba, E.; Oregi, I.; Villar-Rodriguez, E.; Sanz, M. Hybrid quantum-classical heuristic for the bin packing
problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July
2022; pp. 2214–2222.

13. De Andoin, M.G.; Oregi, I.; Villar-Rodriguez, E.; Osaba, E.; Sanz, M. Comparative Benchmark of a Quantum Algorithm for the
Bin Packing Problem. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, 4–7
December 2022; pp. 930–937.

14. Bozhedarov, A.; Boev, A.; Usmanov, S.; Salahov, G.; Kiktenko, E.; Fedorov, A. Quantum and quantum-inspired optimization for
solving the minimum bin packing problem. arXiv 2023, arXiv:2301.11265.

http://doi.org/10.1111/itor.12094
http://dx.doi.org/10.1016/j.ejor.2017.10.050
http://dx.doi.org/10.1287/ijoc.1070.0250
http://dx.doi.org/10.1016/j.ijpe.2013.04.019


Sensors 2023, 23, 6928 15 of 15

15. Ross, P.; Schulenburg, S.; Marín-Bläzquez, J.G.; Hart, E. Hyper-heuristics: Learning to combine simple heuristics in bin packing
problems. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 9–13
July 2002; pp. 942–948.

16. Bortfeldt, A.; Wäscher, G. Constraints in container loading–A state-of-the-art review. Eur. J. Oper. Res. 2013, 229, 1–20.
17. Kundu, O.; Dutta, S.; Kumar, S. Deep-pack: A vision-based 2d online bin packing algorithm with deep Reinforcement Learning.

In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
New Delhi, India, 14–18 October 2019; pp. 1–7.

18. Le, T.P.; Lee, D.; Choi, D. A Deep Reinforcement Learning-based Application Framework for Conveyor Belt-based
Pick-and-Place Systems using 6-axis Manipulators under Uncertainty and Real-time Constraints. In Proceedings of
the 2021 18th International Conference on Ubiquitous Robots (UR), Gangneung-si, Republic of Korea, 12–14 July 2021;
pp. 464–470.

19. Erbayrak, S.; Özkır, V.; Yıldırım, U.M. Multi-objective 3D bin packing problem with load balance and product family concerns.
Comput. Ind. Eng. 2021, 159, 107518. [CrossRef]

20. Jia, J.; Shang, H.; Chen, X. Robot Online 3D Bin Packing Strategy Based on Deep Reinforcement Learning and 3D Vision. In
Proceedings of the 2022 IEEE International Conference on Networking, Sensing and Control (ICNSC), Shanghai, China, 15–18
December 2022; pp. 1–6.

21. Huang, S.; Wang, Z.; Zhou, J.; Lu, J. Planning irregular object packing via hierarchical reinforcement learning. IEEE Robot. Autom.
Lett. 2022, 8, 81–88. [CrossRef]

22. Oucheikh, R.; Löfström, T.; Ahlberg, E.; Carlsson, L. Rolling Cargo Management Using a Deep Reinforcement Learning Approach.
Logistics 2021, 5, 10. [CrossRef]

23. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. arXiv 2015, arXiv:1506.03134.
24. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with Reinforcement Learning. arXiv 2016,

arXiv:1611.09940.
25. Bo, A.; Lu, J.; Zhao, C. Deep Reinforcement Learning in POMDPs for 3-D palletization problem. In Proceedings of the 2022 China

Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 577–582.
26. Mower, C.; Stouraitis, T.; Moura, J.; Rauch, C.; Yan, L.; Behabadi, N.Z.; Gienger, M.; Vercauteren, T.; Bergeles, C.; Vijayakumar,

S. ROS-PyBullet Interface: A framework for reliable contact simulation and human-robot interaction. In Proceedings of the
Conference on Robot Learning, PMLR, Auckland, New Zealand, 14–18 December 2022; pp. 1411–1423.

27. Bálint, B.A.; Lämmle, A.; Salteris, Y.; Tenbrock, P. Benchmark of the Physics Engine MuJoCo and Learning-based Parameter
Optimization for Contact-rich Assembly Tasks. Procedia CIRP 2023, 119, 1059–1064. [CrossRef]

28. Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; Jaśkowski, W. Vizdoom: A doom-based ai research platform for visual
reinforcement learning. In Proceedings of the 2016 IEEE Conference on Computational Intelligence and Games (CIG), Santorini,
Greece, 20–23 September 2016; pp. 1–8.

29. Sørensen, J.V.; Ma, Z.; Jørgensen, B.N. Potentials of game engines for wind power digital twin development: An investigation of
the Unreal Engine. Energy Inform. 2022, 5, 1–30. [CrossRef]

30. Kaur, D.P.; Singh, N.P.; Banerjee, B. A review of platforms for simulating embodied agents in 3D virtual environments. Artif.
Intell. Rev. 2023, 56, 3711–3753. [CrossRef]

31. Wang, S.; Mao, Z.; Zeng, C.; Gong, H.; Li, S.; Chen, B. A new method of virtual reality based on Unity3D. In Proceedings of the
2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–5.

32. Oroojlooy, A.; Hajinezhad, D. A review of cooperative multi-agent Deep Reinforcement Learning. Appl. Intell. 2023, 53, 13677–13722.
33. Zhao, H.; She, Q.; Zhu, C.; Yang, Y.; Xu, K. Online 3D bin packing with constrained Deep Reinforcement Learning. In Proceedings

of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 741–749.
34. Verma, R.; Singhal, A.; Khadilkar, H.; Basumatary, A.; Nayak, S.; Singh, H.V.; Kumar, S.; Sinha, R. A generalized Reinforcement

Learning algorithm for online 3d bin packing. arXiv 2020, arXiv:2007.00463.
35. Duan, L.; Hu, H.; Qian, Y.; Gong, Y.; Zhang, X.; Xu, Y.; Wei, J. A multi-task selected learning approach for solving 3D flexible bin

packing problem. arXiv 2018, arXiv:1804.06896.
36. Gleave, A.; Dennis, M.; Legg, S.; Russell, S.; Leike, J. Quantifying differences in reward functions. arXiv 2020, arXiv:2006.13900.
37. Devidze, R.; Radanovic, G.; Kamalaruban, P.; Singla, A. Explicable reward design for Reinforcement Learning agents. Adv. Neural

Inf. Process. Syst. 2021, 34, 20118–20131.
38. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
39. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International

Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 1889–1897.
40. Xu, C.; Zhu, R.; Yang, D. Karting racing: A revisit to PPO and SAC algorithm. In Proceedings of the 2021 International Conference

on Computer Information Science and Artificial Intelligence (CISAI), Kunming, China, 17–19 September 2021; pp. 310–316.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cie.2021.107518
http://dx.doi.org/10.1109/LRA.2022.3222996
http://dx.doi.org/10.3390/logistics5010010
http://dx.doi.org/10.1016/j.procir.2023.03.149
http://dx.doi.org/10.1186/s42162-022-00227-2
http://dx.doi.org/10.1007/s10462-022-10253-x

	Introduction
	Literature Survey
	Bin Packing Problem
	Deep Reinforcement Learning in 3D BPP
	Reinforcement Learning in 3D Game Engine
	Summary and Opportunities

	Methodology
	System Specifications
	Algorithm
	Workflow of Deep Reinforcement Learning

	Experiment and Results
	Experimental Planning
	Experiment Scenarios
	Hyperparameter Tuning
	Cummulative Rewards Comparation
	Evaluation

	Discussion
	Conclusions
	References

