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Abstract: With the rapid development of fingerprint recognition systems, fingerprint liveness detec-
tion is gradually becoming regarded as the main countermeasure to protect the fingerprint identifica-
tion system from spoofing attacks. Convolutional neural networks have shown great potential in
fingerprint liveness detection. However, the generalization ability of the deep network model for
unknown materials, and the computational complexity of the network, need to be further improved.
A new lightweight fingerprint liveness detection network is here proposed to distinguish fake finger-
prints from real ones. The method includes mainly foreground extraction, fingerprint image blocking,
style transfer based on CycleGan and an improved ResNet with multi-head self-attention mechanism.
The proposed method can effectively extract ROI and obtain the end-to-end data structure, which
increases the amount of data. For false fingerprints generated from unknown materials, the use of
CycleGan network improves the model generalization ability. The introduction of Transformer with
MHSA in the improved ResNet improves detection performance and reduces computing overhead.
Experiments on the LivDet2011, LivDet2013 and LivDet2015 datasets showed that the proposed
method achieves good results. For example, on the LivDet2015 dataset, our methods achieved an
average classification error of 1.72 across all sensors, while significantly reducing network parameters,
and the overall parameter number was only 0.83 M. At the same time, the experiment on small-area
fingerprints yielded an accuracy of 95.27%.

Keywords: fingerprint liveness detection; spoofing attacks; lightweight; transformer; multi-head
self-attention

1. Introduction

Automatic fingerprint identification systems (AFIS) have been widely used in personal
identification and authentication for their high reliability, strong versatility and low cost.
Due to the challenge of fingerprint spoofing attacks, the security of AFISs has received more
and more attention. In practice, it is likely to be attacked by artificial fake fingerprints [1].
Artificial fingerprint replicas, also known as fake fingerprints, can be easily fabricated from
a variety of inexpensive and commonly used materials, such as gelatine, silicone, wood
glue, plasticine, etc. [2,3]. In addition, with the development of 3D printing technology,
sophisticated 3D printing technology has been used for fingerprint spoofing attacks as
well [4]. For example, a Brazilian doctor was arrested for using fake fingers made of
silicone to deceive the biometric attendance system of a Sao Paulo hospital in March 2013.
In March 2018, a gang in Rajasthan (India) bypassed the biometric attendance system by
using wax-cast wood glue to forge fingerprints for providing proxies in the Police College
Entrance Exam. Figure 1 shows some samples of live and spoofed fingerprints.
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Hence, fingerprint liveness detection is of great significance for the further security of
fingerprint applications. The various anti-spoofing approaches can be broadly classified
into hardware-based and software-based methods [5]. Hardware-based methods need to
utilize additional hardware devices to detect the characteristics of vitality, such as body tem-
perature, humidity, blood pressure, pulse, blood oxygen saturation and so on [6]. Though
external hardware devices can accurately differentiate between live and fake fingerprints,
they also make the fingerprint recognition system more complex and expensive. What is
more, it is hard to update these external hardware devices when attackers renew manu-
facturing techniques to improve hand-crafted fake fingerprints. Software-based solutions,
on the other hand, extract features from the presented fingerprint image (or a sequence of
frames) acquired by the fingerprint sensors, without incurring any additional hardware
cost. Compared to hardware-based approaches, those that are software-based make fin-
gerprint recognition systems low-cost and easy to update. Software-based methods are
further divided into two types based on dynamic features (such as ridge deformation and
sweating) and static features (such as ridge frequency, elastic characteristic skin, energy
spectrum, etc.). Dynamic features are obtained from a time series of images, so the finger-
print acquisition process is very time-consuming. On the other hand, static features only
need one or a few images for fingerprint liveness detection, which can not only prevent
spoofing from attacking a fingerprint authentication system, but also is more convenient
in practice.

A fingerprint liveness detection network with lightweight and high generalization
based on ResNet and Transformer is proposed in this paper. The foreground of the fin-
gerprint image is extracted by image processing methods such as adaptive thresholding,
erosion and dilation to eliminate the influence of surrounding areas. Then, the image
center point is chosen as the reference point for partitioning the image into local patches for
training and testing of the network. This partition method is simple and effective, and it
can generate small-area fingerprint images. More importantly, this method avoids directly
extracting fingerprint minutiae and achieves an end-to-end effect. The combination of
Residual Network and Transformer is used to construct a classification network architecture
for fingerprint liveness detection, in which the 3 × 3 convolution kernels in the last block of
the original Residual Network are replaced with MHSA blocks. Convolution can effectively
learn abstract and low-resolution feature maps in large-scale images, and self-attention
can process and summarize the detail information contained in feature maps. To improve
the generalization ability of liveness detection on unknown materials, we used the style
transfer CycleGan to fuse fingerprint images of different forged materials to simulate the
generation of fake fingerprints of unknown materials.

This paper mainly aims to improve the generalization ability of the model for false
fingerprints generated with different materials, and to reduce the computational burden
with the goal of ensuring better fingerprint detection performance. The main contributions
of this paper are as follows:

• End-to-end data structure. Different from most of the existing methods that randomly
select fingerprint local patches, the fingerprint image center is used to guide the
selection of local image patches to form the dataset, which can be used for direct
training of the network without other transformations and avoiding the phenomenon
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of overfitting. The controllable patches partition does not change the size of the
image and is an end-to-end operation that does not depend on minutiae. Moreover,
the size of image patches can be adjusted to accommodate small-area fingerprint
liveness detection.

• The improvement of network generalization ability. CycleGan is used to generate
fingerprint images of unknown materials, expanding the dataset and improving the
generalization ability of the network. The style migration can be carried out on the
fingerprint image of known materials to generate a synthetic forged fingerprint image
corresponding to unknown forged materials. From the LivDet2015 dataset, we can get
two synthetic forged fingerprint images of ecoflex texture + gelatin style and gelatin
texture + ecoflex style at the same time by training the pseudo fingerprint images of
ecoflex and gelatin materials through CycleGan.

• Lightweight network structure. A new lightweight network architecture is proposed
based on ResNet and Transformer. The network introduces the MHSA module in
BotNet (a backbone network based on Transformer) and improves the residual struc-
ture in ResNet. The self-attention mechanism is introduced to integrate the global
information on the high-level feature map, so that the network can pay more attention
to the overall ridge structure characteristics of the fingerprint image. The proposed
network structure greatly reduces the network depth and the number of convolution
cores used in each layer, thereby effectively reducing the network parameters.

2. Related Works

Feature extraction is an important research topic in software-based liveness detection.
The texture features of live fingerprints and fake ones differ in continuity, sharpness and
ductility, so texture-based feature extraction methods have become the most commonly
used methods among static feature-based methods.

Nikam [7] first proposed a method for extracting texture details based on LBP for
fingerprint liveness detection. Some improvements of LBP, such as multi-scale local binary
pattern [8] and unified local binary pattern [9], achieved high classification accuracy on
some standard databases. The local phase quantization (LPQ) descriptor [10] obtained
by short-time Fourier transform was proposed to distinguish real fingerprints from fake
ones by using the information lost during the fabrication of fake fingerprints. In 2013,
Gragnaniello et al. [11] exploited Weber local descriptors (WLD) to prevent spoofing
attacks on fingerprint sensors. In 2015, Gragnaniello et al. [12] further proposed a new
local contrastive phase descriptor (LCPD) which combined gradients with local phase
information to achieve a commendable liveness detection accuracy. Xia et al. [13] proposed
a new Weber local binary descriptor (WLBD) and evaluated the potential of the feature
fusion method in the field of fingerprint liveness detection by analyzing different features
and their aggregation methods.

These methods can be targeted at specific applications, and they have significant
advantages such as rotation invariance and gray invariance. They can achieve high classi-
fication accuracy on some standard databases, but the overall generalization ability and
robustness are unsatisfying, and it may be difficult to produce certain effects on images
produced in some complex environments.

In addition to the handcrafted feature extraction mentioned above, more and more
studies have used deep learning, such as MobileNet-v1, VGG-19, ResNet and GoogLeNet,
to design highly robust and interpretable fingerprint liveness detection algorithms. Most
of the existing methods based on CNN transfer the model pre-trained on natural images
instead of redesigning a new network structure. However, there is a huge difference in
complexity between fingerprint images and natural images, the network models are mostly
prone to overfitting and they fail to achieve the expected effect on fingerprint liveness
detection. Nogueira et al. [14] introduced a pre-trained VGG model for fingerprint liveness
detection, which was significantly better than the previous algorithms in performance,
achieved good results on the LivDet2011 and LivDet2013 datasets, and won the 2015 Finger-
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print Liveness Detection Competition. Chugh, T. et al. [15] proposed a CNN-based method,
which adopted a voting strategy based on multiple local patches centered on minutiae,
showing state-of-the-art average classification accuracy. However, experiments on extract-
ing fingerprint minutiae from fake fingerprint images have shown that their methods are
unsatisfactory. The minutiae extracted from the fake fingerprint are not accurate, and
more than 100 fingerprint minutiae can be extracted from many fake fingerprints, so the
patches centered on each minutia greatly increase the computational cost and processing
time, which is not suitable for real-time detection. Moreover, for the randomly cropped
fingerprint image, adjusting the image resolution to adapt to the input size of the network
will lead to the deformation of the fingerprint image, and the loss of some fingerprint
information will lead to a decrease in classification accuracy. In the case of small-area
fingerprints, the fingerprint minutiae may not be extracted, resulting in the failure of the
method. Zhang et al. [16] modified the original residual network and named Slim-ResCNN,
which was relatively light-weight but powerful and won the LivDet 2017 competition. In
2020, Zhang et al. [17] proposed FLDNet with only 0.48 M parameters.

At present, a large number of researchers have begun to use deep learning methods
for fingerprint liveness detection. Such a method can save researchers a significant amount
of manual design on the algorithm, and the model can learn autonomously from the data.
Eliminating many preprocessing and intermediate steps, the learned model has a certain
generalization ability, and many studies have shown that deep learning methods have
certain advantages in performance on fingerprint live detection tasks, with indicators
leading most traditional algorithms, lower average detection time consumption and better
overall performance.

3. Fingerprint Foreground Segmentation and Patches Extraction

The pre-processing of fingerprint images includes two steps: foreground segmentation
and local patches extraction. In the whole fingerprint image, the surrounding area of
the fingerprint does not contain any useful information and is removed by foreground
segmentation, and then the center of the fingerprint image is used to locate local patches
from the foreground area, which reduces the network execution time and model parameters.
The fingerprint image foreground segmentation mainly includes the following steps:

3.1. Adaptive Threshold Segmentation

According to the gray distribution of pixels in different regions of the image, local
thresholds are adaptively calculated by a local mean or Gaussian weighted average for fore-
ground or background segmentation of each pixel. In this paper, the segmentation threshold
of each pixel is determined by the 3 × 3 neighborhood mean. Given Tp = Mean− Delta,
where Tp is the local threshold, Mean represents the 3 × 3 neighborhood average of pixels
and Delta is an adjustment offset, set to −2. The effect of setting the adjustment offset
Delta here is that, for the background area, the local threshold can be increased, thereby
forcing the background grayscale to 0. The binarized image segmentation is performed
on each pixel using the local threshold of the pixel. The original fingerprint image and the
segmented fingerprint image are shown in Figure 2a,b, respectively.
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3.2. Dilation and Connected Components with Stats

For the fingerprint image segmented by adaptive threshold, we expect the fingerprint
area to be as separate from the background as possible, so we use the dilation method
to expand the highlighted white part of the image. Due to the noise interference of the
original image, there may be small white patches around the fingerprint in the image after
the above two processes, so the largest white block is selected as a more accurate fingerprint
area. Figure 2 shows the process of fingerprint foreground extraction.

After foreground extraction, to unify the size of the fingerprint image, we partition
a local patch of w × w (w = 112) from the foreground region of the fingerprint in the
center of the fingerprint image. We also select four points at the upper left, lower left,
upper right and lower right in steps of 56 pixels of the center point. Then, we cut a w × w
patch centered on each of these four points. This blocking method takes full advantage
of the entire fingerprint image information. However, some of these selected patches
might include little fingerprint information, which is not conducive to training the network.
Hence, they must be excluded from the training set. Color reversal and normalization are
performed on each w × w local patch, and then the maximum closure of the binary patch
is obtained. When the maximum closure area of local patch is more than 60% of the local
patch area, it will be selected as one sample, otherwise it will be excluded. Furthermore,
the extracted local patches will be rotated at four different angles, 0◦, 90◦, 180◦ and 270◦, to
deal with the problem of insufficient fingerprint samples, as shown in Figure 3.
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4. Network Structure

Most of the existing fingerprint liveness detection networks use the residual network
as the skeleton and make modifications based on this. However, it is easy to cause network
overfitting in small databases, especially on grayscale images with relatively simple struc-
tural features such as fingerprints, which is not directly suitable for fingerprint liveness
detection tasks. We propose a lightweight fingerprint liveness detection network based on
ResNet and Transformer. In terms of residual blocks, we borrowed some ideas from the
Slim-ResCNN network [16] and a dropout layer was added to each residual block to reduce
network overfitting. The modified residual structure is shown in Figure 4. We believe
that the texture information of fingerprints is particularly important in fingerprint liveness
detection, especially the continuity and structural shape of the ridges, so we introduced
the self-attention mechanism in the Transformer into the network to make the network
pay more attention to the overall ridge relationship of the fingerprint image. CNN effec-
tively learns abstract information in large-scale images through convolution and obtains
low-resolution feature maps, while self-attention layers can summarize and process high-
level semantic information contained in low-resolution feature maps to improve network
performance and computational efficiency.
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The multi-head self-attention layer is shown in Figure 5. The dimension of the input
feature map is represented as H×W× d, and three 1×1 trainable parameters of Wq, Wk and
Wv are used to convolve the feature map to obtain three matrices, the q query matrix, k key
matrix and v value matrix, with the size being H×W× d. Unlike applications in NLP tasks,
where positional encoding is done before word vectors enter the network, it is not easy
to do positional encoding before input in CV tasks, so two learnable vectors Rh and Rw
were embedded in the MHSA used, and two matrices with dimensions H × d and W × d
are obtained, and then expanded to H × 1× d and 1×W × d; the two are added to get the
matrix r, which is regarded as the spatial attention of the horizontal and vertical dimensions
to complete the position encoding. Then, r and q are multiplied to get the relationship
between content and location qrT , and q and k are multiplied to get the content-to-content
query qkT . The similarity feature obtained by adding content–position and content–content
is multiplied by v after softmax, so that MHSA can focus on the appropriate area. We used
four MHSAs to project features into multiple subspaces to improve the expressiveness of
the model.

Following the principles of neural network structure design, a binary classification
network structure was constructed for spoof presentation attacks detection. The proposed
network consists of seven parts: Conv1, Conv2, Conv3, Conv4, Conv5, global average
pooling layer and final classification layer. The overall framework of the proposed fin-
gerprint liveness detection network is shown in Figure 6. In order to make the network
can be more lightweight, we greatly reduced the depth of the network and the number of
convolution kernels used in each layer; for example, there are only 32 convolution kernels
in the Conv1 layer.

The structure of the network is shown in Table 1, and the network structure is explained
as follows: (1) Conv1 is responsible for connecting the input local patches and extracting
the initial features passed to the subsequent residual blocks. The image input size of the
modified network is required to be 112 × 112. (2) Conv1 is followed by Conv2, Conv3 and
Conv4. Deeper image feature information is extracted through convolution operations, and
the size of the output feature map in some layers will be halved. We doubled the number
of convolution kernels to ensure that the total amount of learnable parameters remains
unchanged, as can be seen from Conv3 and Conv4. (3) In Conv5, the MHSA module
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is used to replace the original 3 × 3 convolution kernel. (4) To reduce network model
parameters, the global average pooling layer is used instead of the fully connected layer.
(5) The network is trained on local patches using a cross-entropy loss function. The network
structure is shown in Table 1. Compared with the image size used in object detection
and segmentation (such as 1024 × 1024), in image classification tasks we often deal with
relatively small image sizes, such that VGG network and ResNet originally required image
input size of 224 × 224, This will cause the feature map of the original ResNet to only have
a size of 7 × 7 when entering the last layer of bottleneck, which is not conducive to the
processing of global feature information by the last self-attention layer. Therefore, in our
proposed network, the input size of the image was modified to 112 × 112, which is just
in line with the local patch size after preprocessing, and the size of the feature map when
entering the Conv5 block was enlarged to 28 × 28 compared to the original network. The
stride in the MHSA layer in the Conv5 block was uniformly changed to 1 to increase the
feature map resolution and thus improve the accuracy of the final classification.
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Table 1. Lightweight network structure.

Layer Output Kernel

Conv 1 112 × 112 3 × 3 × 32

Conv 2 112 × 112 3 × 3 × 32
3 × 3 × 32

Conv 3 56 × 56 3 × 3 × 64
3 × 3 × 64

Conv 4 28 × 28 3 × 3 × 128
3 × 3 × 128

Conv 5 28 × 28
1× 1× 128

MHSA
1× 1× 128

× 2

Avg pool 1 × 1 -

By referring to the relevant literature, and based on our own experiments, we obtained
the optimized relevant parameters for the size of the image being 112 × 112. We trained
our models using stochastic gradient descent with batch size 32 for 200,000 iterations. The
initial learning rate was set to 0.01, initial momentum was 0.9 and it was reduced by 20%
per 50,000 iterations. A dropout layer was added after each convolutional layer (except the
first one) and the dropout rates were set to 0.2.

5. Fingerprint Image Style Transfer

One of the major limitations of current spoof detection methods is their unsatisfying
generalization performance across “unknown” or novel spoof materials that were not used
during training of the spoof detector. It has been shown that the selection of spoof materials
used in training (known spoofs) directly impacts the performance against unknown spoofs.
In particular, Chugh and Jain [18,19] analyzed the material characteristics (two optical and
two physical) of 12 different spoof materials to identify a representative set of 6 materials
that cover most of the spoof feature space. With the increasing popularity of fingerprint
authentication systems, hackers are constantly devising new fabrication techniques and
novel materials to attack them. As a result, it is not feasible to include all potential spoof
fabrication materials in training a spoof detector. Sandouka and Bazi, Y. [20,21] used a
network with EfficientNets as the backbone and a GAN network for generating additional
images to solve the problem of the poor generalization ability of fingerprint PAD across
sensors and compared with other GAN networks and non-GAN networks.

We use a CycleGAN-based [22] style transfer method to improve the cross-material
generalization performance of fingerprint liveness detectors.X and Y represent two different
datasets, and the model needs to train two mappings: G : X → Y and F : Y → X. Two
discriminators, Dx and Dy, have been introduced; Dx is used to determine whether the
image comes from x or F(y), and Dy is used to determine whether the image comes from
y or F(x). For cross-material scenarios, we hypothesized that the style information from
fake fingerprint images of known material can be transferred to synthesize fake fingerprint
images that can be made from unknown materials, which could improve the model’s
performance for novel materials while preserving its performance on known materials.

The loss function of CycleGAN mainly includes three parts: adversarial loss function,
cycle-consistent loss function and identity loss function. The fingerprint image has many
details in structure, such as minutiae, ridges and pores, etc. The role of the adversarial loss
function is mainly to make the generated image more realistic. The cycle-consistent loss
function ensures that the generated image retains the content part of X and only changes
the style part of it. Identity loss function maintains the original fingerprint features during
the migration process, preventing the generator from adjusting the features autonomously
and changing the overall image. The loss function is shown in Equations (1)–(5):

{ LGAN(G, DY, X, Y) = Ey∼Pdata(y)
[log DY(y)] + Ex∼Pdata(x)

[log(1− DY(G(x)))] (1)
LGAN(F, Dx, Y, X) = Ex∼Pdata(x)

[log DX(x)] + Ey∼Pdata(y)
[log(1− DX(G(y)))] (2)
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Equations (1) and (2) refer to the cross-entropy loss function, and they are dual relations.
Taking Equation (1) as an example, like the loss function of the conventional GAN network,
it is a process of mutual game between D and G, where D tries to distinguish between
synthetic images and real images, while G tries to cheat D by generating realistic images.
The goal of G is to minimize this objective function, while the goal of D is to maximize the
objective function. The optimal solution is when Px∼data(x) = Py∼data(y).

During the training process, our sample x obtains a fake image y through the generator,
which tends to become a value that can deceive the discriminator. The generator will
gradually discover that no matter what x is sent in, as long as the output of the generator
is more similar to y, it can deceive the discriminator. To retain the content of x and only
change the internal style, we introduce a cycle-consistent loss function to solve this problem,
as shown in Equation (3):

Lcycle(G, F) = Ex∼Pdata(x)
[‖F(G(x))− x‖1] + Ey∼Pdata(y)

‖G(F(y))− y‖1 (3)

The cyclic consistency loss adopts L1 loss, in order to constrain x̂ = F(G(x)) = x, so that
the G(x) generated by G can still be consistent with x in content. Similarly, for y, the cyclic
consistency loss can prevent the generator from deceiving the discriminator by ignoring
the input image x and only changing the style part of the generated image to ensure that
the generated image retains the content part of x. In addition, identity loss is also used in
CycleGAN, as shown in Equation (4):

LIdentity(G, F) = Ey∼Pdata(y)
[‖G(y)− y‖1] + Ex∼Pdata(x)

‖F(x)− x)‖1 (4)

The total loss function of the network is shown in Equation (5):

Lloss = LGAN(G, DY, X, Y) + LGAN(F, Dx, Y, X) + λ1Lcycle(G, F) + λ2LIdentity(G, F) (5)

The weight ratio of adversarial loss function, cycle-consistent loss function and authenti-
cation loss function is set to 1:10:10. During training, the batch size is set to 1, the number of
training rounds is 100, the Adam optimizer is used, the initial learning rate is set to 0.0002,
the learning rate is fixed for the first 50 rounds, and the learning rate is decayed to 0 in equal
parts for the last 50 rounds. The result of CycleGan style transfer is shown in Figure 7.
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The leftmost column of Figure 7 represents false fingerprints from known materials,
and the top row of Figure 7 provides different style elements. Through style transfer,
the fingerprint images of the leftmost column will generate false fingerprint images with
corresponding style according to the fingerprint images of the top row.

6. Datasets

The following datasets were used in this research:
LivDet Dataset: To evaluate the performance of the proposed method, we used the

LivDet 2011 [23], LivDet 2013 [24] and LivDet 2015 [25] datasets. Each of these datasets
contained more than 16,000 fingerprint images acquired from four different fingerprint
readers. The CrossMatch and Swipe readers in the LivDet 2013 dataset were not included
in the research since the fingerprint data of the CrossMatch reader was abnormal, which is
discouraged for evaluation. The resolution of the fingerprint image obtained by the Swipe
reader was only 96 dpi, which was different from other LivDet datasets. In LivDet 2015,
the test set consisted of fake fingerprints fabricated from new and unknown materials in
the training set. These new materials included Liquid Ecoflex and RTV for the Biometrika,
Digital Persona and GreenBit readers, and OOMOO and gelatin for the CrossMatch reader.
Table 2 summarizes the LivDet datasets included in the research.

Table 2. LivDet datasets information.

Dataset Sensor Image Size Live Image
(Train/Test)

Fake Image
(Train/Test) Spoof Materials

LivDet
2011

Biometrika 315 × 372 1000/1000 1000/1000 Ecoflex, Gelatin,
Latex, Silgum,

Wood GlueItalData 640 × 480 1000/1000 1000/1000

Digital Persona 355 × 391 1000/1000 1000/1000 Gelatin, Latex,
PlayDoh, Silicone,

Wood GlueSagem 352 × 384 1000/1000 1000/1000

LivDet
2013

Biometrika 315 × 372 1000/1000 1000/1000 Ecoflex, Gelatin,
Latex, Modasil,

Wood GlueItalData 640 × 480 1000/1000 1000/1000

LivDet
2015

GreenBit 500 × 500 1000/1000 1000/1500 Ecoflex, Gelatin,
Latex, Wood Glue,

Liquid Ecoflex, RTVBiometrika 1000 × 1000 1000/1000 1000/1500

Digital
Persona 252 × 324 1000/1000 1000/1500 BodyDouble, Ecoflex,

PlayDoh,
OOMOO, GelatinCrossMatch 640 × 480 1510/1500 1473/1448

7. Performance Evaluation Metrics

In all the experiments for this paper, we followed the metrics used in LivDet:
Classification accuracy (Accuracy) was defined as the ratio of the number of samples

correctly classified by the classifier to the total number of samples for a given test dataset. Ferrlive
was the percentage of misclassified live fingerprints. Ferr f ake was the percentage of misclassified
spoof fingerprints. The last of these was the average classification error rate (ACE) [15,16].

The output of the Softmax layer of the trained model was in the range [0–1], and we
averaged all patch outputs of the fingerprint to get the score. The threshold for determining
the liveness of fingerprints was set to 0.5. The fingerprint image with a liveness score over
0.5 was considered as an “alive” entity, otherwise it was considered as a “spoof” artifact.

8. Experimental Results and Analysis

The proposed method was tested in the following two scenarios to evaluate the
effectiveness of the algorithm.

Known Sensors and Known Materials Scenario: In this case, all images were captured
using the same sensor for training and testing, and all the materials used to make the
deceptions in the test set were known. The ACE of the proposed network was compared
with that of several existing works. The results are shown in Table 3.
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Table 3. LivDet2011 and LivDet2013 results (%).

Dataset Sensor State-of-the-Art VGG AlexNet Proposed

LivDet 2011

Biometrika 1.24 [15] 5.2 5.6 2.55
Digital 1.61 [15] 3.2 4.6 1.15
Italdata 2.45 8.0 9.1 1.55
Sagem 1.23 [26] 1.7 3.1 1.52

Average 1.63 4.53 5.6 1.69

LivDet 2013
Biometrika 0.20 [15] 1.8 1.9 0.75

Italdata 0.30 [15] 0.4 0.5 0.20
Average 0.25 1.1 1.2 0.48

Most of the current SOTAs in LivDet2011 and LivDet2013 used MobileNet-V1 for training
and testing on local patches based on fingerprint minutiae. The method proposed in this
paper showed a slight improvement for the data of the Digital reader and the Italdata reader
in the LivDet 2011 dataset and for the data of the Italdata reader in the LivDet 2013 dataset,
and the overall average accuracy rate was not far from the best result. The method of [15]
needs to extract minutiae from the fingerprint image, and then segment the fingerprint image
based on the minutiae. However, it is not easy to extract minutiae points on fake fingerprints.
When we extract the minutiae points of fake fingerprints through Verifinger, we find that
there will be many wrong minutiae and the average number of minutiae extracted is more
than 80, which will divide a fingerprint image into more than 80 local patches. During testing,
all local patches need to be tested and scored, and then a weighted average obtained, which
is not suitable for real-time fingerprint liveness detection systems. In comparison, the local
fingerprint partition method proposed in this paper is simpler, and there are only 5 fingerprint
local patches at most from a fingerprint image. For testing the same fingerprint image, the
time consumption can be shortened twelvefold, and the final accuracy is almost the same.

Known Sensor and Unknown Material Scenario: In this case, the fingerprint images in
the training and test sets were captured by the same sensor. But new materials that were
not known during training were used in the test set. The detailed performance comparison
between the proposed algorithm and other algorithms is shown in Table 4. When all the
spoof fabrication materials were known during the training, the metric was referred to
as Ferrfakeknown, and for cases where all the spoof fabrication materials to be encountered
during testing were not known during training, the metric was referred to as Ferrfakeunknown.

Table 4. LivDet2015 results (%).

Method LiveDet2015 Ferrlive Ferrfake Ferrfakeknown Ferrfakeunknown Ace

LivDet
2015-winner [27]

Biometrika 8.50 3.73 2.70 5.80 5.64
CrossMatch 0.93 2.90 2.12 4.02 1.90

Digital
Persona 8.10 5.07 4.60 6.00 6.28

GreenBit 3.50 5.33 4.30 7.40 4.60
Average 4.78 4.27 3.48 5.72 4.49

SlimResCNN
[16]

Biometrika 3.55 4.23 2.44 7.72 3.10
CrossMatch 1.72 3.91 3.18 4.58 4.32

Digital
Persona 4.28 4.78 3.73 6.40 2.37

GreenBit 2.22 2.65 2.42 3.11 2.64
Average 2.94 3.89 2.94 5.45 3.11

FLDNet [17]

Biometrika 1.01 3.67 2.61 5.75 2.34
CrossMatch 0.87 2.21 0.69 4.45 1.54

Digital
Persona 3.26 1.90 1.43 2.85 2.58

GreenBit 0.71 0.41 0.52 0.21 0.56
Average 1.46 2.05 1.31 3.31 1.76
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Table 4. Cont.

Method LiveDet2015 Ferrlive Ferrfake Ferrfakeknown Ferrfakeunknown Ace

Fingerprint
Spoof Buster

[15]

Biometrika 0.90 1.27 0.60 2.60 1.12
CrossMatch 0.80 0.48 0.82 0.00 0.64

Digital
Persona 1.97 1.17 0.85 1.80 1.48

GreenBit 0.50 0.80 0.30 1.80 0.68
Average 1.02 0.93 0.64 1.48 0.97

Proposed
Method

Biometrika 3.70 2.07 1.80 2.60 2.72
CrossMatch 1.67 0.96 0.71 1.34 1.32

Digital
Persona 5.20 2.47 2.00 3.40 3.56

GreenBit 1.70 1.13 0.40 2.60 1.36
Average 2.91 1.66 1.24 2.44 2.20

Proposed
Method +

CycleGAN

Biometrika 3.70 0.87 0.70 1.20 2.00
CrossMatch 1.00 0.82 1.41 0.00 0.91

Digital
Persona 4.80 2.20 2.00 2.60 3.24

GreenBit 0.90 0.60 0.20 1.40 0.72
Average 2.6 1.12 1.08 1.73 1.72

The best performance results are highlighted in bold.

The network model obtained by the fingerprint image training enhanced by style
transfer had a significant improvement in the recognition accuracy for forged fingerprints of
unknown materials. The Ferrfakeunknown indicators for the Biometrika, CrossMatch, Digital
Persona and GreenBit readers were improved from 2.60, 1.34, 3.40 and 2.60 to 1.20, 0.00, 2.60
and 1.40. At the same time, the style transfer did not affect the recognition and judgment
of the model for known material fingerprints and real fingerprints, which can be seen from
the two indicators of Ferrfakeknown and Ferrlive. Compared with the other algorithms, it can
be found that our proposed method showed a significant improvement compared with the
methods of the LivDet2015 and LivDet2017 competition champions [16]. Compared with the
method proposed in [15], our method also had a slight advantage in the recognition accuracy
for unknown materials. It can be shown that the style transfer of fingerprint images via
CycleGAN can enhance the generalization ability of the network model to fake fingerprints
of unknown materials. Moreover, we list the comparison with the ACE of some other
experimental methods in Table 5 and the accuracy on the LivDet 2015 datasets in Table 6.

Table 5. ACE comparisons with existing methods on LivDet 2015 datasets (%).

Method Green Bit Biometrika Digital Persona Crossmatch Average

WLBD [13] 4.53 13.72 10.82 9.94 9.68
FPAD [28] 1.2 3.2 2.28 4.6 2.82
DRN [29] 4.77 6.24 6.8 3.46 5.32

VGG-19 [14] 4.6 5.6 6.3 1.9 4.6
SlimRes-CNN [16] 2.64 3.10 2.37 4.32 3.11

FLDNet [17] 0.56 2.34 2.58 1.54 1.76
Proposed + CycleGAN 0.72 2.0 3.24 0.91 1.72

The best performance results are highlighted in bold.

Table 6. The accuracy on the LivDet 2015 datasets (%).

Datasets Proposed + CycleGAN

GreenBit 98.54
Biometrika 97.23

Digital Persona 95.11
Crossmatch 98.01

Average 97.22
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In addition, in order to verify that the method proposed in this paper can solve the
problem of liveness detection for small-area fingerprints, we also tested the accuracy of small-
area fingerprint recognition on the LivDet2015 database, and the results are shown in Table 7.

Table 7. LivDet2015 small-area fingerprint experiment results (%).

LiveDet2015 Ferrlive Ferrfake Ferrfakeknown Ferrfakeunknown Ace

Biometrika 6.12 3.10 2.11 5.09 4.30
CrossMatch 3.74 4.79 6.67 2.77 4.26

Digital Persona 9.69 5.73 5.07 7.06 7.27
GreenBit 3.32 3.09 1.62 6.01 3.18
Average 5.50 4.17 3.77 5.14 4.73

Because there were no related references for small-area fingerprint liveness detection,
this paper did not make a comparison with other works. In the test results for small-area
fingerprints, the results of the data for the Digital Persona reader were poor, and the overall
ACE was 7.27. What was more abnormal was the data tested on the CrossMatch reader.
After the fusion of five local patches, a high recognition accuracy could be obtained, but
the results of the test on a single small-area fingerprint were not particularly good. The
results for the data in the GreenBit reader were the best, with an overall ACE of 3.18 and an
overall average ACE of 4.73.

Since the running speed of the network model will be affected by many factors such as
the experimental environment and the amount of input data each time, we demonstrated
the superiority of the network by comparing the sizes of network parameters. We compared
the parameters of the network proposed in this paper with those of the Slim-ResCNN used
by the champion of the 2017 fingerprint liveness detection competition and those of the
commonly used lightweight networks MobileNet-V1 and MobileNet-V2. The network used
in [15] was MobileNet-V1, and its parameters were 4.04 M. The parameters of MobileNet-V2
were 2.19 M. The parameter number for Slim-ResCNN was 2.15 M. The parameter number
for the network proposed in this paper was only 0.83 M. It can be seen that the number of
network parameters proposed in this paper was significantly smaller than those for the
other networks. Table 8 compares the sizes of network parameters.

Table 8. Comparison of network parameters and test time.

Proposed Slim-ResCNN MobileNet-V1 MobileNet-V2

Parameters 0.83 M 2.15 M 4.04 M 2.19 M
Time 0.07132 s 0.196 s 0.5389 s 0.226 s

We drew the ROC curves for the small-area fingerprint recognition results of LivDet2011,
LivDet2015 and LivDet2015, and these are shown in Figure 8. In order to facilitate viewing,
the ROC curves of LivDet2011 and LivDet2015 are enlarged in the 0–0.2 parts.
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9. Conclusions

This work studied the problem of fingerprint liveness detection and proposed a simple
and effective method for fingerprint foreground and local patch extraction. Furthermore,
we designed a lightweight fingerprint liveness detection network based on a multi-head self-
attention mechanism, and we enhanced the generalization ability of the model through style
transfer. By modifying the convolutional neural network and adding the MHSA mechanism
to improve recognition accuracy, we significantly reduced the network parameters. The
CycleGAN network was used for the style transfer of fingerprint images, enhancing the
generalization ability of the fingerprint live detection system. The proposed method
achieved excellent results on the LivDet2011, LivDet2013, and LivDet2015 datasets; on the
LivDet 2015 dataset, our methods achieved an average classification error of 1.72 across all
sensors, outperforming most of the state-of-the-art methods, while significantly reducing
network parameters, with the overall parameter number only 0.83 M. At the same time,
the experiment on small-area fingerprints yielded an accuracy of 95.27%. In the future, we
will explore more effective FLD technology, further improve the accuracy of fingerprint
liveness detection on the LivDet datasets and explore other GAN-based models to improve
the cross-sensor generalization ability between different sensors to deal with fingerprint
deception attacks.
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