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Abstract: Airborne electromagnetic (AEM) surveys using airborne mobile platforms enable rapid and
efficient exploration of areas where groundwork is difficult. They have been widely used in fields such
as shallow resource exploration and environmental engineering. Three-dimensional AEM inversion
is the main technique used in fine structural interpretation. However, most current methods focus on
separate component data inversions, which limit the kinds of structures that can be recovered in the
inversion results. To address this issue, a method for the robust 3D joint inversion of multicomponent
frequency-domain AEM data was developed in this study. First, a finite element method based on
unstructured tetrahedral grids was used to solve the forward problem of frequency-domain AEM
data for both isotropic and anisotropic media. During inversion, a limited-memory quasi-Newton
(L-BFGS) method was used to reduce the memory requirements and enable the joint inversion of
large-scale multicomponent AEM data. The effectiveness of our algorithm was demonstrated using
synthetic models for both isotropic and anisotropic cases, with 5% Gaussian noise added to the
modeling data to simulate the measured data for separate and joint inversions. The results of the
synthetic models show that joint inversion has advantages over separate inversion in that it enables
the recovery of finer underground structures and provides a novel approach for the fine interpretation
of frequency-domain AEM data.

Keywords: AEM; finite element method; 3D joint inversion; multicomponent

1. Introduction

The rapid development of the economy has led to a continuous increase in demand
for minerals, with an urgent need to expand resource exploration to areas with complex
geological conditions and conduct secondary fine detection in near-surface areas. The
AEM method, which uses airborne mobile platforms, has advantages in terms of fast
exploration speed, low cost, and strong adaptability to terrain and landforms. It can quickly
complete regional electromagnetic data scanning and collection work, and has become one
of the preferred technical methods for exploration work in areas with complex geological
conditions [1–3]. In addition, with the continuous upgrading of AEM hardware systems,
their lateral resolution and sampling rates have been improved considerably, providing the
necessary guarantees for fine near-surface detection. However, the increasing complexity
and refinement of exploration targets pose severe challenges because they require the
processing of massive amounts of AEM data under high-sampling-rate conditions.

Currently, the interpretation of field-measured AEM data is mainly reliant on imaging
technologies and 1D inversion that can ensure the rapid processing of massive amounts of
data. Such technologies include the differential resistivity method [4], the modified Seng-
piel imaging method [5], the conductivity depth imaging method [6–9], the tau domain
imaging method [10,11], Occam inversion [12–16], the simulated annealing method [17],
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and Bayesian inversion [18,19]. However, 1D imaging and inversion based on a layered
electrical model cannot satisfy the requirements of fine inversion for complex electrical
models. Therefore, the 3D AEM inversion of recovered electrical models with fine and
complex structures is the key technical means by which AEM data are accurately inter-
preted. The abovementioned method is also crucial for advancement of near-surface AEM
exploration in complex geological conditions. Some studies indicate that the anisotropy of
underground media has a serious impact on AEM data [20–26]. However, current AEM
data interpretation is mainly based on isotropic models. When anisotropy is present in
underground media, interpreting AEM data based on isotropic models may lead to incor-
rect interpretations of the measurement data. Therefore, it is necessary to perform AEM
inversion based on anisotropy.

Current 3D inversion algorithms are relatively mature and include the nonlinear
conjugate gradient method [27,28], the Gauss–Newton method [29–31], and the L-BFGS
method [32–36]. The nonlinear conjugate gradient method avoids the problems of the
Hessian matrix and considerably reduces computational cost, although its convergence
speed is slow. The Gauss–Newton method ignores the second-order term of the Hessian
matrix and improves the convergence speed. The quasi-Newton method iteratively obtains
an approximate Hessian matrix, whereas the L-BFGS method further reduces the need for
computational memory and is suitable for large-scale electromagnetic data inversion [37].
Many studies have been conducted on the 3D inversion of AEM data [38–52]. Most
frequency-domain AEM data acquisition systems use airborne mobile platforms, which
simultaneously carry vertical coaxial (VCX) and horizontal coplanar (HCP) coil pairs to
acquire data for both orthogonal components. Currently, in AEM data interpretation, only
data inversion is generally based on each independent coil pair, which makes it difficult
to meet the requirements of fine structural interpretation. Therefore, the development of
a method for the joint inversion of the HCP and VCX datasets that can effectively reduce
the non-uniqueness of separate 3D inversions and recover more underground structures is
necessary.

In this study, we implement the 3D joint inversion of multicomponent frequency-
domain AEM data based on the L-BFGS algorithm. First, a 3D forward theory based on
unstructured vector finite elements is introduced, followed by the basic theory of L-BFGS
inversion. Finally, 5% Gaussian noise is added to the modeling data of the 3D isotropic
and anisotropic models to serve as the measured data for separate and joint inversions.
The results of the synthetic models show that joint inversion has advantages over separate
inversion, i.e., it enables the recovery of finer underground structures.

2. Forward Method

The receivers of the AEM system are located very close to the transmitter sources,
resulting in the requirement of a fine mesh partition near the transmitter sources in order
to meet the accuracy requirements of forward modeling. The receiver setup results in
a significant waste of computational resources. Therefore, in this paper, we adopt the
method of separating the primary field and the secondary field for forward modeling. The
primary field and the secondary field are separated in order to deal with the source term,
rendering the fine mesh partition unnecessary [52]. As explained by Zhang et al. [52], by
assuming the time harmonic dependence of eiωt, the governing equation is satisfied by the
frequency-domain AEM secondary field:

∇×∇× Es + iωµσEs = −iωµ(σ− σp)Ep (1)
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where Es and Ep represent the background electric field and secondary field, respectively; σ
and σp are the model conductivity tensor and background conductivity tensor, respectively;
and µ is the magnetic permeability.

σ =

σx
σy

σz

, σp =

σ
p
x

σ
p
y

σ
p
z

 (2)

To ensure the uniqueness of the solution to the electromagnetic field, we need to
impose boundary conditions on the electromagnetic diffusion problem. We adopt the
Dirichlet first-type boundary condition at the boundary (Γ):

Es|Γ = 0 (3)

Equation (5) can be transformed from Equation (1) (Zhang et al., 2016):
y

Ω
(∇×Ne · ∇ × Es) + iωµσNe · EsdΩ =

y

Ω
−iωµ(σ− σp)Ne · EpdΩ (4)

where superscript e represents the element number. The calculation region of Equation (4)
can be decomposed into a series of tetrahedral elements, and through the integration of
Equation (4) within each small element, the coefficient matrix equation within the element
can be obtained:

KeEe
s = Se (5)

where Ke represents the sum of the density matrix and the stiffness matrix, and Se rep-
resents the source vector. By synthesizing the coefficient matrices of all elements into
a global matrix, the finite element forward equation of the frequency-domain airborne
electromagnetic method can be obtained:

KEs = S (6)

Equation (6) is solved using the multicore parallel direct solver PARADISO. The
secondary magnetic field of the frequency-domain AEM response can then be obtained
through Faraday’s law:

Hs = − 1
iωµ
∇× Es (7)

3. Inversion Method
3.1. Basic Principles

According to the regularization theory, the geophysical inversion problem can be
reduced to a problem of finding the minimum of the following objective function:

Φ(m) = Φd(m) + λΦm(m) (8)

where the data-fitting term (Φd(m)) is

Φd(m) = ||Cd(d− f(m))||2 (9)

where m represents the model parameter vector, d represents the observed data vector, f(m)
represents the forward operator, and Cd represents the variance–covariance matrix of the
data. The model constraint term (Φm(m)) is

Φm(m) = αrΦr(m) + αsΦs(m) (10)
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where αr and αs are extra regularization factors, and the expressions for roughness Φr and
smallness Φs are

Φr = ||Rm||2 =
M

∑
i = 1

Vi[
N(i)

∑
j = 1

wj[(
∆mxij

dij
)

2

+ (
∆myij

dij
)

2

+ (
∆mzij

dij
)

2

]] (11)

Φs =
∣∣∣∣Ws(m−mpri)

∣∣∣∣2
=

M
∑

i = 1
[ 1

Vi
[(mxi −mxipri)

2 + (myi −myipri)
2 + (mzi −mzipri)

2]]
(12)

where m = [mT
x , mT

y , mT
z ], mpri is the prior model, Vi represents the volume of the current

element, N(i) is the number of neighboring elements for the current element, and dij
represents the distance between the centers of the current element (Figure 1).

wj =
Vj

N(i)
∑

k = 1
Vk

(13)

∆mxij = mxi −mxj, ∆myij = myi −myj, ∆mzij = mzi −mzj (14)
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tetrahedrons.

We set the center point of the element as (xi,yi,zi); then,

dij =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (15)

Once the objective function is established, the inversion problem is to minimize the
objective function. The gradient of the objective function can be expressed as

g(m) = ∇Φ(m) = ∇Φd(m) + λ(αr∇Φr(m) + αs∇Φs(m)) (16)

the gradient of the data-fitting term is

∇Φd(m) = −2JTCT
d Cd(d− f(m)) (17)

where J is the sensitivity matrix: J = ∂f(m)/∂m.
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Equation (17) can be solved using adjoint forward modeling [53]. The gradients of Φr
and Φs can be directly analytically obtained, and their expressions are as follows:

∇Φr = 2
M

∑
i = 1

Vi[
N(i)

∑
j = 1

wj(
1

dij
)

2
(∆mxij + ∆myij + ∆mzij)] (18)

∇Φs = 2
M

∑
i = 1

[
1
Vi
[(mxi −mxipri) + (myi −myipri) + (mzi −mzipri)]] (19)

3.2. L-BFGS Algorithm

The L-BFGS algorithm does not store all the information of the inverse matrix of the
approximate Hessian matrix (Hk)—it only stores the latest m pairs of sk and yk, where m is
usually between 3 and 20 (we use 5 in this paper).

Hk+1 = vT
k Hkvk + ρksksT

k (20)

Here, ρk = 1/yT
k sk, vk = I− ρkskyT

k , sk = mk+1 −mk, yk = gk+1 − gk, and I is a unit
matrix.

For Equation (20), by keeping the latest m correction pairs in L-BFGS, we can obtain

Hk+1 = (vT
k vT

k−1 · · · v
T
k−m)H0(vk−m · · · vk−1vk)

+(vT
k vT

k−1 · · · v
T
k−m)(ρ0s0sT

0 )(vk−m · · · vk−1vk)

+(vT
k vT

k−1 · · · v
T
k−m)ρ1s1sT

1 (vk−m · · · vk−1vk)
+ · · ·
+(vT

k vT
k−1)(ρk−2sk−2sT

k−2)(vk−1vk)

+(vT
k )ρk−1sk−1sT

k−1(vk−1)

+ρksksT
k

(21)

Due to the complexity of computing Hk and the fact that the most important part of
model updating is the search direction (dk), the double-loop recursive algorithm is used to
calculate the search direction (dk = −Hkgk) [54].

The search step size in the optimization process generally needs to satisfy the following
sufficient descent condition:

f (mk + αkdk) ≤ f (mk) + c1αkgT
k dk (22)

and the following curvature condition:

g(mk + αkdk)
Tdk ≥ c2gT

k dk (23)

where αk is the iteration step; c1 and c2 are constants; 0 < c1 < c2 < 1, and in general,
c1 = 10−4 and c2 = 0.9; and k is the iteration number. These two conditions are
collectively referred to as Wolfe conditions.

The process of the L-BFGS algorithm is as follows:

(1) We assume the initial model (m1) and the initial Hessian matrix (H1) (usually the
identity matrix). We set the error threshold to ε > 0 and the objective root mean
square (Rms) to Rms = 0, with iteration number k = 1;

(2) We calculate the Rms and gradient of the objective function (gk). If Rms < Rms0 or
||gk||< ε , the iteration terminates, and the final solution (mk) is output; otherwise,
continue to the next step;

(3) We use a double-loop recursive algorithm to obtain dk;
(4) We search for the iteration step length (αk) using the Wolfe conditions and update the

model using the following equation: mk+1 = mk + αkdk;
(5) We set k = k + 1 and return to step 2.
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4. Numerical Experiments

In frequency-domain AEM data processing, data from individual AEM HCP and VCX
datasets are commonly processed separately. In this study, we fully exploit the advantages
of HCP and VCX datasets in data collection and develop techniques for joint inversion
of the two types of data. In the inversion process, the two types of data are sequentially
arranged, and the L-BFGS method is used for joint inversion.

4.1. Three-Dimensional Frequency-Domain AEM Isotropic Inversion Example

To test the stability and effectiveness of the inversion algorithm, we added a low-
resistivity anomalous body to the background space for the forward modeling, with 5%
Gaussian added to the modeling data as the measured data for separate and joint inversions.
Figure 2 shows the distribution of anomaly bodies and 225 receivers in model 1, with a
survey spacing of 25 m. The resistivity of the background half-space is 100 Ω ·m, the depth
of the anomalous body is 20 m, the size of the anomalous body is 100 m × 100 m × 25 m,
and the anomalous resistivity is 10 Ω ·m. The mesh used in theoretical forward modeling
contains 431,223 elements and calculates the HCP and VCX responses for two frequencies:
900 Hz and 5000 Hz. The mesh used in model inversion contains 214,325 elements. The
cooling principle is used to change the value of λ. The initial value of λ is 0.01, with
additional regularization factors of αr and αs both set to 0.1. The prior model and initial
model are set as a half-space with a resistivity of 100 Ω ·m. To demonstrate the advantage
of joint inversion of HCP and VCX data in this study, separate inversions were conducted
for HCP and VCX for comparison.
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Figure 3 shows the results of the HCP inversion. HCP inversion can roughly recover
the true position of the anomalous body. However, the HPC inversion method is subject to
two drawbacks: first, the inversion sections show that the estimation of the lower boundary
of the anomalous body is not sufficiently accurate; secondly, the shape of the horizontal
plane of the anomalous body is deformed and approximates a circular shape smaller
than its true extent. The two drawbacks of HCP inversion directly affect the accuracy of
inversion interpretation. Figure 4 shows the results of VCX inversion. The lower boundary
of VCX inversion is more accurate than HCP inversion, and the contour of the anomalous
body is closer to the true value. However, some small, high-resistivity false anomalies can
be observed in the VCX inversion slices in the shallow part, which introduces errors to
the interpretation of the inversion. Figure 5 shows the joint inversion results of HCP and
VCX. Joint inversion is superior to the separate HCP inversion in both lower-boundary
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and horizontal contours. Moreover, joint inversion does not show false high resistivity
anomalies in the shallow part, indicating that it can overcome the limitations of separate
HCP and VCX inversions.
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Figure 6a shows a total of 111 iterations of the HCP inversion. The data misfit (Φd)
was reduced from 226.6 to 5.8, and the model’s roughness (Φr) and Φs ultimately stabilized
and converged. Figure 6b shows that the HCP inversion changed step sizes 13 times, and
Figure 6c shows that the HCP inversion changed the regularization factor six times.
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Figure 7a shows a total of 68 iterations of the VCX inversion. The data misfit Φd was
reduced from 216.4 to 18.2, and the model’s roughness (Φr) and Φs finally stabilized and
converged. Figure 7b shows that VCX inversion changed step sizes 14 times, and Figure 7c
shows that VCX inversion changed regularization factors seven times.
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Figure 8a shows a total of 49 iterations of the joint inversion. The data misfit (Φd) was
reduced from 227.4 to 15.2, and the model’s roughness (Φr) and Φs ultimately stabilized
and converged. Figure 8b shows that the joint inversion changed step sizes five times, and
Figure 8c shows that the joint inversion changed regularization factors three times.
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A comprehensive analysis of Figures 6–8 shows that, first, in terms of the number
of iterations, the HCP inversion converges slowest, with 111 iterations, whereas the VCX
inversion take 68 iterations and the joint inversion is the fastest, only requiring 49 iterations.
Secondly, in terms of the number of changes in step size during the inversion process, VCX
inversion changes the most (14 times), and HCP inversion changes 13 times, whereas joint
inversion only changes five times. The effectiveness of joint inversion is also demonstrated
by the smaller number of step size changes. Finally, in terms of the number of changes
in the regularization factor, VCX inversion changes the most, followed by HCP inversion,
whereas joint inversion changes the least. The fewer the number of changes, the better the
stability of the inversion, which also demonstrates the effectiveness of joint inversion in
this study.

4.2. Three-Dimensional Frequency-Domain AEM Anisotropic Inversion Example

To test the stability and effectiveness of the triaxial anisotropic inversion algorithm
for 3D AEM, in this study, we added an anisotropic anomalous body to the background
space for forward modeling, with 5% Gaussian noise added to the modeling data as the
measured data for separate and joint inversions. Figure 9 shows the distribution of anomaly
bodies and 225 measurement points in model 2, with a survey point spacing of 25 m. The
resistivity of the background half-space is 100 Ω ·m; the depth of the anomalous body is
20 m; the size of the anomalous body is 100 m × 100 m × 25 m; and the principal-axis
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electrical resistivity values of the anisotropic anomalous body are 50 Ω ·m for ρx, 10 Ω ·m
for ρy, and 500 Ω ·m for ρz. The mesh used in theoretical forward modeling contains
445,672 elements and calculates the HCP and VCX responses for two frequencies: 900 Hz
and 5000 Hz. The mesh used in model inversion contains 281,242 elements. The cooling
principle is used to change the value of λ. The initial value of λ is 0.01, with additional
regularization factors of αr and αs, both set to 0.1. The prior model and initial model are set
as a half-space with a resistivity of 100 Ω ·m. To demonstrate the advantage of the joint
inversion of HCP and VCX data in this study, separate inversions of HCP and VCX were
also conducted for comparison.
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Figure 9. Schematic representations of model 2: (a) plan view; (b) cross-sectional view.

As shown in Figures 10a, 11a and 12a, the ρx of the HCP inversion result has poor
recovery. A high-resistivity body appears in the x–z section, with a lower boundary
shallower than the actual anomaly body in the z direction. The y–z section shows two
low-resistivity bodies and one high-resistivity body, roughly indicating the position of
the actual anomaly body. The x–y section shows two low-resistivity bodies and one
high-resistivity body, with relatively accurate positioning in the x direction. As shown
in Figures 10b, 11b and 12b, the ρy of the HCP inversion result has a good recovery. The
inverted resistivity is close to the true value of 10Ω ·m. The x–z section accurately depicts
the position of the actual anomaly body. The y–z section relatively accurately indicates the
positioning in the y direction, but the lower boundary is larger than the actual anomaly
body in the z direction, approximately forming an ellipse. The x–y section relatively
accurately depicts the positioning in the y direction, but the width is larger than the
actual anomaly body in the x direction, approximately forming an ellipse. As show in
Figures 10c, 11c and 12c, ρz is close to the theoretical background resistivity value, and the
anomaly is not obvious, indicating that the parameters of anisotropic bodies (ρz) cannot be
inverted in 3D anisotropic inversion. Overall, the inversion effect of HCP is acceptable, and
the inversion effect of ρy is satisfactory, roughly restoring the true position of the anomalous
body. However, the inversion effect of ρx is poor, and the recovery of ρz is difficult.
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Figure 10. HCP anisotropic inversion results from the x–z section (y = 0 m): (a) ρx; (b) ρy; (c) ρz. The
red box area indicates the actual location of the anomalous body.
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Figure 12. HCP anisotropic inversion results from the x-y section ( z= −30 m): (a) ρx; (b) ρy; (c) ρz.
The red box area indicates the actual location of the anomalous body.

As shown in Figures 13a, 14a and 15a, the ρx of the VCX inversion result has moderate
recovery. A low-resistivity body appears in the x–z section, with a resistivity of approxi-
mately 88 Ω ·m and a relatively accurate positioning in the x direction and lower boundary
larger than the actual model in the z direction. The y–z section shows two low-resistivity
bodies with a resistivity of approximately 80 Ω ·m and relatively accurate positioning
in the z direction. The x–y section shows two low-resistivity bodies with a resistivity
of approximately 85 Ω ·m and a relatively accurate positioning in the x direction. As
shown in Figures 13b, 14b and 15b, the ρy of the VCX inversion result has a good recovery.
In all three sections, a low-resistivity body appears with a resistivity of approximately
35 Ω ·m, and the position of the actual abnormal body is well restored. As shown in
Figures 13c, 14c and 15c, ρz is close to the theoretical background resistivity value, and the
anomaly is not obvious, indicating that the parameters of anisotropic bodies (ρz) cannot
be inverted in 3D anisotropic inversion. Overall, the inversion effect of VCX is acceptable,
and the inversion effect of ρy is satisfactory, roughly restoring the true position of the
anomalous body. However, a discrepancy remains between the inverted resistivity and the
true resistivity. The inversion effect of ρx is acceptable, indicating a low-resistivity anomaly,
but the recovery of ρz is difficult.

As shown in Figures 16a, 17a and 18a, the ρx of the joint inversion result has good re-
covery. In the x–z section, a low-resistivity body appears with a resistivity of approximately
45 Ω ·m, with is close to the true value of 50 Ω ·m. The width is smaller than the actual
model in the x direction, and the thickness is greater than the actual model in the z direction,
roughly forming a circular shape. The y–z section shows a low-resistivity body with a
resistivity of approximately 45 Ω ·m and a slightly larger width than the actual model in
both the x and z directions. The x–y section shows a low-resistivity body with a resistivity
of approximately 45 Ω ·m, a relatively accurate positioning in the x direction, and a wider
width in the y direction than the actual model. As shown in Figures 16b, 17b and 18b, the ρy
of the joint inversion result has good recovery. The inverted resistivity is very close to the
true value of 10 Ω ·m, and position of the actual abnormal body is restored well. As shown
in Figures 16c, 17c and 18c, ρz is close to the theoretical background resistivity value, and
the anomaly is not obvious, indicating that the parameters of anisotropic bodies (ρz) cannot
be inverted in 3D anisotropic inversion. Overall, the joint inversion effect is very good,
with a positive inversion effect of ρy, which can recover the true position of the anomalous
body. The inverted resistivity is close to the true resistivity. The inversion effect of ρx is also
acceptable, roughly restoring the true position of the anomalous body, with little difference
in the inverted resistivity and the true resistivity. However, the recovery of ρz is difficult.
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Figure 13. VCX anisotropic inversion results from the x–z section (y = 0 m): (a) ρx; (b) ρy; (c) ρz. The
red box area indicates the actual location of the anomalous body.
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red box area indicates the actual location of the anomalous body.
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Figure 16. HCP and VCX anisotropic joint inversion results from the x–z section (y = 0 m): (a) ρx;
(b) ρy; (c) ρz. The red box area indicates the actual location of the anomalous body.

Under the condition of triaxial anisotropy, ρz has difficulty recovering and obtain-
ing a consensus conclusion in time-domain 3D AEM anisotropy inversion [51]. As the
electromagnetic method is more sensitive for low resistivity, the inversion results of ρy
with the lowest resistance are the best, followed by the inversion results of ρx with the
lowest resistance.
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Figure 17. HCP and VCX anisotropic joint inversion results from the y–z section (x = 0 m): (a) ρx;
(b) ρy; (c) ρz. The red box area indicates the actual location of the anomalous body.
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Figure 18. HCP and VCX anisotropic joint inversion results from the x-y section (z = −30 m): (a) ρx;
(b) ρy; (c) ρz. The red box area indicates the actual location of the anomalous body.

Figure 19a shows a total of 141 iterations of HCP inversion. The data misfit (Φd) was
reduced from 69.8 to 1.31, and the model’s roughness (Φr) and Φs ultimately stabilized
and converged. Figure 19b shows that HCP inversion changed step sizes 21 times, and
Figure 19c shows that HCP inversion changed regularization factors 15 times.
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Figure 19. Convergence plots of anisotropy HCP inversion: (a) fitting term (Φd), model constraint
term (Φr), and Φs; (b) n f g and search step length (α); (c) Rms and regularization factor (λ).

Figure 20a shows a total of 78 iterations of VCX inversion. The data misfit Φd was
reduced from 63.6 to 2.9, and the model’s roughness (Φr) and Φs finally stabilized and
converged. Figure 20b shows that HCP inversion changed step sizes eight times, and
Figure 20c shows that HCP inversion changed regularization factors five times.
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Figure 20. Convergence plots of anisotropy VCX inversion: (a) fitting term (Φd), model constraint
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Figure 21a shows a total of 34 iterations of the joint inversion. The data misfit (Φd)
was reduced from 67.1 to 5.6, and the model’s roughness (Φr) and Φs ultimately stabilized
and converged. Figure 21b shows that joint inversion changed step sizes four times, and
Figure 21c shows that joint inversion changed regularization factors three times.
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A comprehensive analysis of Figures 19–21 shows that, first, in terms of the number of
iterations, the HCP inversion converges slowest, with 141 iterations; the VCX inversion
takes 78 iterations; and the joint inversion example is the fastest, only requiring 34 iterations.
Secondly, in terms of the number of changes in step size during the inversion process, HCP
inversion changes the most (21 times), VCX inversion changes eight times, and joint
inversion only changes four times. The effectiveness of joint inversion is also demonstrated
by the smaller number of step size changes. Finally, in terms of the number of changes
in the regularization factor, HCP inversion changes the most, followed by VCX inversion,
whereas joint inversion changes the least. The fewer the number of changes, the better and
more stable the inversion, which also demonstrates the effectiveness of joint inversion in
this study.

5. Conclusions

A 3D AEM multicomponent joint inversion algorithm for both isotropic and anisotropic
cases based on the finite element and L-BFGS methods was developed in this study. Syn-
thetic models prove the effectiveness of joint inversion compared to the separate inversions
in both simply isotropic and anisotropic cases. This study revealed that for isotropic model
cases, separate HCP and VCX inversions can effectively recover the distribution and mag-
nitude of resistivity in the model, with some shortcomings. Joint inversion can effectively
alleviate the shortcomings of separate inversion, achieving improved inversion results.
Because the electromagnetic method is more sensitive for low resistivity, for anisotropic
model cases, separate HCP and VCX inversions can effectively recover the distribution
and magnitude of ρy in the model, although the inversion results for ρx are not as sat-
isfactory. Joint inversion can effectively recover the distribution and magnitude of both
ρx and ρy in the model, resulting in improved inversion results. Based on the inversion
results for isotropic and anisotropic models, joint inversion achieves better results than
separate inversion, and can provide a new approach for fine structural interpretation of
frequency-domain AEM data.
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