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Abstract: Passive radio-frequency identification (RFID) systems have been widely applied in different
fields, including vehicle access control, industrial production, and logistics tracking, due to their
ability to improve work quality and management efficiency at a low cost. However, in an intersection
situation where tags are densely distributed with vehicle gathering, the wireless channel becomes ex-
tremely complex, and the readers on the roadside may only decode the information from the strongest
tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag
identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in
order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the
successful application of RFID technology. In this paper, we first establish a Nakagami-m distributed
channel capture model for RFID systems and provide an expression for the capture probability, where
each channel is modeled as any relevant Nakagami-m distribution. Secondly, an advanced capture-
aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the
proposed algorithm has strong adaptability to circumstances for capturing under-fading channels
and outperforms the existing algorithms in terms of complexity and reliability of tag identification.

Keywords: vehicular networks; RFID; tag identification; capture effect

1. Introduction

The vehicle networking industry is booming due to the rapid development of emerging
technologies such as edge computing, wireless communication, and artificial
intelligence [1–7]. Compared to visual inspection technology, which relies on “seeing”
assets, RFID solutions rely on “listening” by using ultra-high-frequency (UHF) signals to
remotely interrogate RFID tags attached to or embedded in objects, which greatly improves
the efficiency of traffic control systems, including electronic toll collection, cargo inspection,
and vehicle entry control, among other applications [8,9].

A complete UHF RFID system consists of readers, UHF tags, and back-end servers [10].
Each tag has a globally unique electronic product code (EPC). However, collisions may
occur when multiple vehicles or cargo tags use backward scattering modulation to respond
to readers simultaneously on the same cascaded channel [11,12]. Therefore, the RFID
system needs to effectively coordinate the network and employ anti-collision algorithms.
Collisions between readers will also certainly occur in the application system for intensive
readers. In particular, with the rise of reinforcement learning [13–16], it is necessary for
RFID systems that a multi-reader anti-collision algorithm based on reinforcement learning
is used. However, this paper focuses on the field of identifying tags for a single reader in
densely distributed vehicular networks.

Anti-collision algorithms are divided into two categories: the tree-based algorithm [17–19]
(including query tree and tree splitting) and the ALOHA-based algorithm [20–23]. The for-
mer requires high computing costs when solving the problem of tag starvation. In addition,
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when the length of the tag ID is long, the tree-based algorithm causes frequent time slot
collision, resulting in a large identification delay [20]. In contrast, the ALOHA-based algo-
rithm guarantees equal opportunity for tags in random access, especially in table-dense
scenarios with better adaptability [21]. It is favored by most RFID vendors due to its com-
pliance with EPC Class 1 Gen2 UHF standards [24]. The ALOHA-based tag-identification
algorithm is designed for rapid vehicle identification on expressways [22,23]. However,
the aforementioned works do not comprehensively take into account actual difficulties and
simply concentrate on tag recognition in ideal circumstances, neglecting the capture effect.

In Figure 1, as roadside observers, readers can swiftly discern multiple densely clus-
tered tags within each vehicle as they congregate at intersections and obtain reliable target
information by using RFID technology [25]. However, in wireless communication, the cap-
ture effect is a ubiquitous phenomenon [26]. For instance, in scenarios of checkpoints and
intersections, tag density increases significantly with vehicle aggregation, which causes
a complex RFID channel condition and frequent timeslots collision. The impact of the
capture effect on the system is amplified as the number of collision timeslots increases.
Furthermore, for the densely distributed tags, identification delay is a crucial issue for
vehicular networks. Thus, it is necessary to mitigate the capture effect under collision
timeslots to reduce identification delay and improve system efficiency.

Figure 1. Vehicles with a high volume of cargo tags are statically detected at traffic intersections.

An analytic model for the capture effect categorizes tags based on signal strength [27].
Subsequently, to study the relationship between frame length and the number of tags
that can be identified under unreliable channels, some work has focused on improving
the efficiency of tag identification through capture-aware anti-collision schemes on the
reader side [28–31]. The capture-aware backlog-estimation algorithm (CMEBE) estimates
tag population and the probability of the capture effect with two-dimensional searches for
minimum values [28]. However, it is difficult for the the CMEBE algorithm to guarantee
identification performance under a large-scale tag environment. A capture-aware estima-
tion (CAE) algorithm also simultaneously estimates the tag population and the probability
of capture effect based on the number of idle slots in a frame [29]. Although it has low
computational complexity, the algorithm fails in tag identification when the number of tags
is much larger than the frame length. Minimum mean square error (MMSE) and Bayesian
mean square estimation (CBMS) are proposed respectively in Ref. [30,31] for large-scale
tag identification scenarios. However, the computational cost is increased because the
algorithm uses a 2D search. Although researchers have begun to study the effect of capture
on the system identification rate of RFID systems, this study is still in its infancy. They
only give a fixed value of the capture probability, and the estimation performance and
computational cost need to be improved.

Some researchers have explored the capture effect by establishing an RFID model
through the stochastic distribution of tag positions, using a uniform or sigmoid-shaped
distribution function for distance. In Ref. [32], the authors discussed an RFID model
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related to the capture effect under unreliable fading channel conditions. In Ref. [33,34],
the authors provided a collision-avoidance algorithm for mobile tags under complex
channel conditions. However, these studies fail to account for the impact of the capture
effect on system identification efficiency in scenarios where tags are densely distributed
within a specific area. In fact, due to the dense concentration of numerous tags in a particular
region, the wireless channel becomes highly complex during tag identification [35,36],
significantly affecting the identification efficiency of the system. Relying on path-loss
analysis to determine capture probability is insufficient. In Ref. [37], the authors discussed
the advantages of the RFID system in traffic recognition compared to visual detection under
dense tags and proposed a traffic sign inventory-management system. However, it does not
further study the reader’s recognition performance in the context of dense tags. Therefore,
it is unclear how the capture effect behaves when tags are located at the same distance or
densely distributed. In this work, we construct a channel model to explore and analyze the
capture probability of dense tag distributions and their influence on the performance of
tag-identification algorithms. The contributions of this paper are as follows:

• A fading channel-capture model is established to analyze the capture probability in
different channel environments, and the closed expression of the Nakagami-m fading
channel capture probability is derived.

• We propose an advanced capture-aware estimation algorithm that quickly adjusts the
initial frame length through the first few timeslots in a frame, reduces the delay caused
by the lack of prior knowledge of the number of tags, and improves the estimation
performance of both tags and capture probabilities.

• Considering the capture effect in fading channels and the duration of the slots, this
paper dynamically adjusts the size of the next frame by combining the estimate
of the number of tags and the capture probability, thus greatly improving the tag-
identification rate. Compared with other excellent algorithms, the estimation method
proposed in this paper shows better identification performance.

The remainder of the paper is organized as follows. Section 2 introduces the back-
ground, Section 3 establishes the system model, Section 4 shows the proposed estimation
algorithm and the optimal frame length strategy. The numerical and analytical results
are presented in Section 5, and Section 6 concludes the paper with an overview of some
crucial points.

2. Background
2.1. Brief Analysis of ALOHA-Based Anti-Collision Algorithm

Each time slot in the UHF RFID system is expected to have three states: collision,
successful, and idle. Based on statistics, the probability of collision timeslots, successful
timeslots, and idle timeslots in the ALOHA algorithm follows a binomial distribution

p(r) =
(

n
r

)(
1
l

)(
1− 1

l

)n−r
(1)

where n is the number of tags in the system, r is the number of tags in the same timeslot,
and l is the size of the frame length. Therefore, the number of idle timeslots is Ni = lp(0),
the number of success timeslots is Ns = lp(1), and the number of collision timeslots
can be expressed as Nc = l − Ni − Ns. Compared to the basic frame-slotted ALOHA
(FSA) with a fixed frame length, the dynamic frame-length adjustment algorithm (DFSA)
dynamically adjusts the size of the next frame according to the number of tags, which
makes tag identification more stable [38]. Therefore, the next frame length needs to be
determined by the backlog of the number of unidentified tags, which requires the system
to estimate it in advance. At present, the anti-collision scheme in the two major standards,
EPC C1 G2 standard and ISO18000-6C standard TypeA [39], is based on the DFSA.
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2.2. The Entire System under the Capture Effect

In fact, due to the near–far effect and the random fluctuation of the received signal
power caused by fading and shading, the probability of a packet being successfully received
is significant even when multiple packets are transmitted at the same timeslot, which is
called the capture effect [40]. An example of detection results from ALOHA, when the
capture effect occurs, can be seen in Figure 2, where the collision state can transform into a
successful state with a certain probability because of the capture effect. Therefore, the ap-
plication of traditional tag estimation and its optimal frame configuration is challenging
due to inaccurate backlog estimation, which in turn poses an obstacle to the identification
performance of UHF RFID tags [34].

Figure 2. Detection results from ALOHA when the capture effect occurs.

Under the capture effect, if the capture probability is α, then the numbers of idle
timeslots, successful timeslots, and collision timeslots are as follows

Ncap
i = Ni

Ncap
s = Ns + Ncα

Ncap
c = Nc − Ncα

. (2)

If the duration of all three states is equal, the system throughput can be expressed as

η =
Ncap

s

Ncap
i + Ncap

s + Ncap
c

=
n
l

(
1− 1

l

)n−1
+

(
1−

[(
1− 1

l

)n(
1 +

n
l − 1

)])
α. (3)

Figure 3 presents the expectation of system throughput under the non-capture effect
and capture effect when a fixed frame length and the DFSA are adopted. The results show
that the capture effect can enhance system throughput. This work has defaulted to the
traditional frame-length adjustment scheme for DFSA, which sets the next frame length to
an unrecognized number of tags. The first curve in the legend using DFSA converges to the
optimal value of FSA under non-capture effects. The second curve cannot converge to the
optimal value of FSA under the capture effect, which indicates that the next frame length
cannot simply be set to an unidentified number of tags under the capture effect. Therefore,
the adjustment of the next frame length under the capture effect needs further research,
which will be discussed in Section 4.
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Figure 3. A comparison of FSA and DFSA with the capture effect.

3. Capture Model of High-Density Tag Distribution

To analyze the capture effect in densely distributed tags and its impact on anti-collision
algorithms, this work models this complex channel and uses a fading channel to simulate
interference and the attenuation of RF signals during transmission.

From Figure 4, the reader communicates with n tags densely stored in each container
through one channel, which is characterized by its connection to two channels, namely the
forward link and the reverse link. The forward channel coefficient h f ,D describes the signal
propagation from the reader to the tag, while the reverse channel coefficient hb,D describes
the signal propagation from the tag to the reader after scattering.

In a fading channel, signal strength varies randomly due to multipath propagation,
shadowing effects, and other factors. Thus, this work takes the strength of the signal
received between the tags as a sample of the signal during that period.

Figure 4. A monostatic system with transmit and receive antennas to be colocated at the reader (the
reader device is positioned on the left side of the diagram, while the dotted line box on the right
represents areas with high-density tag distribution).

In Section 2, this work concludes that the capture effect occurs during the collision
timeslot. Therefore, this work assumes that there are s (s ∈ [2, smax]) tags in a collision
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timeslot, where smax is the maximum number of tags. The t-th tag is successfully captured,
and the remaining s− 1 tags are interference tags or noise for the RFID capture model,
where tags are located at the same distance. Then, the probability of the t-th tag being
captured can be defined as

Ms(q) = Pr
{

PRt > qPRIS

}
(4)

where PRt is the received power from the t-th tag, PRIS = ∑s−1
k=1 PRd,rx,k is the hidden power

from other tags, and q represents the power ratio threshold, which represents the minimum
carrier-to-Interference Ratio (CIR) required by the reader to receive signals successfully.
This CIR is primarily determined by the modulation mode and coding scheme used by the
reader. The capture probability can then be written as [41]

α = s
∫ ∞

0
fpt(pt)Ms(q)dpt = s

∫ ∞

0
fpt(pt)

[∫ pt/q

0
fps−1(ps−1)dps−1

]
dpt (5)

where fps−1(ps−1) is the pdf (for the power) that results from the convolution of s − 1
non-central Chi-square pdf’s.

According to the expression [34] for the received power of a reader in free space,
assuming constant transmit power and carrier frequency of the reader, the received power
is inversely proportional to distance d. However, when tags are densely distributed and
located very close to each other, the distance between each tag and the reader is also close.
Assuming equal reflected power from each interference tag, this work uses the default
that the power of other interference signals received by the reader in each collision slot is
approximately equal. In addition, these articles [42–44] assume that the wireless channel of
the RFID system experiences Rayleigh fading and Rician fading. However, Nakagami-m
is a multi-application model that is suitable for various channel conditions [45], and its
distribution is closer to experimental data in various wireless communication environ-
ments [46]. Therefore, this work considers a Nakagami-m fading channel, ignoring the
effect of propagation path loss and assuming that the mean received power of all interfering
signals is the same. It is worth noting that the Nakagami-m fading channel model is only
used to simulate the noise and attenuation effects on the signal during transmission, and it
cannot accurately describe the mutual coupling effect between tags. And the instantaneous
received power in Nakagami-m fading channel is then given by

fp(p) =
mm pm−1

p̄mΓ(m)
e−

mp
p̄ (p ≥ 0, m ≥ 0.5) (6)

where m is the channel fading parameter, p̄ is the average power of the tag’s signal,
and Γ(m) represents the Gamma function. This work was derived by adopting the Laplace
and inverse Laplace transformation of the expressions for the PDF, but the details are
omitted in this paper for brevity. Consequently, the compound PDF results from the
convolution of n− 1 PDFs of received power can be written as

fps−1(ps−1) =
mm(s−1)

Γ(ms−m) p̄m(s−1)
pms−m−1

s−1 e−
mps−1

p̄ . (7)

Substituting (6) and (7) into (5), we can obtain [47]

αNak(s, q, m) =
s

Γ(m)Γ(ms−m)

∞

∑
k=0

(−1)kΓ(ms + k)
k!(ms−m + k)qms−m+k . (8)

It can be seen from the above formula that the capture effect for the RFID system is
not only affected by the capture threshold q and the channel parameter m but also by the
number of tags s in the collision timeslots.
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4. Capture-Aware Algorithm for Large-Scale Tag Identification
4.1. Proposed Estimation Algorithm

The capture-aware algorithm can achieve parameter estimation by counting the num-
ber of different timeslot states observed after each frame and further adjusting the frame
length to improve the efficiency of tag identification. However, due to the lack of prior
knowledge of the number of tags, especially during large-scale intensive tag identification,
it is difficult for the initial frame length to match the true number of tags, which negatively
affects the system’s efficiency of tag identification [29]. When the number of tags is much
larger than the initial frame length, there are many collision timeslots in a frame, and tag
identification efficiency is very low, and on the other hand, many idle timeslots can also
affect the system’s identification delay. Therefore, we propose a method of solving the
problem of matching the initial frame length to an unknown number of tags by using the
first several timeslots in a frame. In this work, we define the probability that there are no
idle timeslots in the first w timeslots, which can be expressed as

Pw = 1−
w

∑
i=1

(
w
i

)
pi

I(1− pI)
w−i (9)

where the probability pI of the idle timeslot can be expressed as aI/l†. When l† = 128,
theoretical and simulation results Pw are given in Table 1, where w = 1 to 8 and the number
of tags n varies from 50 to 1000.

Table 1. Probability of no idle slot in the first w slots when l† = 128.

n w = 1 w = 2 w = 4 w = 6 w = 8

50 0.3244 0.1052 0.0110 0.0011 0.0001
(0.3241) (0.1055) (0.0110) (0.0010) (0)

100 0.5436 0.2955 0.0873 0.0258 0.0076
(0.5439) (0.2956) (0.0871) (0.0257) (0.0074)

400 0.9566 0.9151 0.8374 0.7663 0.7012
(0.9557) (0.9152) (0.8374) (0.7675) (0.7010)

700 0.9959 0.9918 0.9836 0.9755 0.9675
(0.9956) (0.9905) (0.9833) (0.9750) (0.9677)

1000 0.9996 0.9992 0.9984 0.9976 0.9969
(1.0000) (0.9995) (0.9983) (0.9977) (0.9966)

where the results given in the brackets are computed from (9).

The results from Table 1 indicate that the probability Pw of having all non-empty
timeslots in the first w timeslots increases with the number of tags regardless of the value
of w. In the context of large-scale RFID tags, the initial frame length can be rapidly adjusted
according to l = µl† when Pw is close to 1. It is worth noting that Pw being close to 1 is not
an exact expression, and in experiments, we need to perform relevant debugging based on
w and the parameter σ to determine the conditions for the rapid adjustment of the initial
frame length, which will be introduced in Algorithm 1. Indeed, the estimation strategy of
the proposed algorithm can be divided into two parts: the estimation of tags’ numbers and
the estimation of capture probability. Then, considering that the number of idle timeslots
observed by the reader is not affected by the capture effect of Nakagami-m fading channels,
the number of tags can be estimated using idle timeslots. Invert Ni = lp(0) and replace Ni
with the observed value ccap

i and the proposed algorithm estimates the number of tags by

n̂ =
ln
(

ccap
i /l

)
ln(1− 1/l)

, ccap
i 6= 0. (10)
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Algorithm 1: Pseudo-code operation of a reader.

1 begin
2 Initialization: l†, w, κ, σ;
3 while unidenti f ied tags 6= 0 do
4 Interrogate(l†)
5 for timeslot← 1 to l† do
6 Update the statistics of Slot_di f f (w)
7 if Slot_di f f (w) > σ then
8 l = κl†
9 else

10 l = ł†
11 break
12 end if
13 end for
14 while unidenti f ied tags 6= 0 do
15 Interrogate(l)
16 Receive tag responses and observe ccap

i , ccap
s , ccap

c

17 Estimate n̂ according to ccap
i and formula (10)

18 Estimate α̂ according to ccap
s ccap

c and formula (11)
19 l = AdjustFrame(n̂, α̂, k∗)

//Compute lopt according to Equations (12)–(14)
20 end while
21 end while
22 end

In addition, the number of unidentified tags in the i + 1-th frame is backlog = nest − cs
if the estimated number of tags is nest after the i-th frame; then, the capture probability α
can be shown to be

α̂cap = arg min
αcap∈P

E
{(

ccap
s − N

′
s

)2
+
(

ccap
c − N

′
c

)2
}

(11)

based on the minimum mean square error. The proposed algorithm can accurately search
the capture probability under the fading channel, where ccap

s and ccap
c denote the observed

numbers of successful and collision timeslots, respectively; N
′
s and N

′
c denote their expecta-

tions, respectively; and P can be expressed as P =
{

αcap|0 ≤ αcap ≤ 1
}

.

4.2. Frame Length Adjustment

In Section 2, it is observed that collision timeslots have the potential to convert into
successful timeslots in the capture environment. However, setting a frame length that is
too long may increase idle timeslots and ultimately lead to time slot waste. Conversely,
reducing the frame length can increase the likelihood of capturing transmission slots
but may also decrease system identification efficiency. Therefore, this paper proposes an
optimal method for frame-length adjustment. Combining Equation (3) and capture-aware
efficiency with the duration of different time slots can then be written as

ηid =
Nsts + Nctcαcap

Niti + Nsts + Nctc
(12)

where ti, ts and tc can be expressed as the duration of the idle time slot, the successful time
slot, and the collision time slot, respectively. Divide the numerator and denominator of the
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above equation by ts. Let u = ti/ts, υ = tc/ts and take a linear model (l = kn, k ∈ R+) into
account [48]. Combining the lim

n→∞
(1− 1/kn)n = e−1/k, we can obtain

ηid ≈

1(
ke

1
k +k−1

) + αNak

1+ku(
ke

1
k −k−1

) + v + (1− v)αNak
. (13)

Then, the optimal frame length can be written by

lopt = [k∗n̂] (14)

where k∗ = argmax
k∈k

(ηid), k denotes the searching range of k and [·] is a floor integer

function.
Table 2 shows the performance comparison between equal timeslots and unequal

timeslots. According to the different frame size and system-throughput values correspond-
ing to different channel shape parameters, we find that the method under an unequal time
slot is better than the method under an equal time slot, which further verifies that the time
slot setting in EPC C1 G2 protocol is still suitable under the influence of fading channel
capture effect. Next, according to Equation (14), this work establishes the relationship
between n and the optimal frame length lopt for different channel parameters m adopting
the EPC C1 G2 standard, as depicted in Figure 5. It is evident that when the number of tags
is constant, the RFID system requires a greater optimal frame length as m increases.

Table 2. The values of lopt and ηid when n = 700.

Fading Channels (m)
u = v = 1 u = 0.125, v = 0.5

lopt ηid lopt ηid

0.5 393 0.6303 699 0.8427
1 466 0.5522 828 0.8116

1.5 508 0.5131 898 0.7938
2 535 0.4885 944 0.7823

2.5 555 0.4712 978 0.7738
3 571 0.4581 1004 0.7672

3.5 583 0.4478 1025 0.7618

where the results are computed from the Equation (12)–(14).

Figure 5. Optimal frame length lopt as function of tags n (q = 2, u = 0.125, v = 0.5).
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4.3. Description of the Algorithm

In the proposed algorithm, an identification cycle is depicted, which is implemented
as shown in Algorithm 1.

To recognize densely distributed large-scale tags, the reader will send a query com-
mand with a short frame l† after initializing the parameters. Then, the tag will ran-
domly select a time slot from the frame and respond to the query command. After that,
the Slot_di f f (w) and σ are compared, where Slot_di f f (w) is used to record the calculation
results of the first w slot states, and σ can control the pace of the frame length adjustment
(w = 4, σ = 1 in this work). If the former is larger than the latter, a dynamic adjustment of the
initial frame length l is performed according to the method of l = κl†. Otherwise, the adjust-
ment is completed. After sending the query command with the frame length l, the reader
will count the idle slots after each frame ends to estimate the number of tags. It will also
count the number of successful slots and collision slots to estimate the capture probability.
Finally, the optimal frame length is found according to the Formulas (12)–(14), and the
reader will send a query command with the next frame length until all tags are recognized.

5. Numerical and Analytical Result

In this section, numerical results are presented to verify the performance of the
proposed algorithm. The random data used in the experiments were generated using
MATLAB’s internal function (MATLAB Version: 9.14.0.2194193 (R2023a)). Firstly, the
capture effect was simulated using the Monte Carlo method, and 10,000 independent
experiments were performed to obtain the average results. Simulation results, including
Figures 6 and 7, are presented to investigate the impact of various parameters on the cap-
ture performance of Nakagami-m fading channels in a dense tags environment. In the exper-
iment, the numbers of collision slot tags were set to two, three, and four, and the theoretical
value in the closed expression of capture probability in the Nakagami-m fading channel in
Section 3 was compared with the actual value. Then, in order to more intuitively explore
the influence of other factors on the capture effect, a 3D surface diagram of the capture
probability under the Nakagami-m fading channel was presented in Figure 6. Addition-
ally, in order to validate the performance and versatility of the proposed algorithm in
estimating the capture probability, the capture probability under the actual Nakagami-
m fading channel was not used. Instead, the search range for the capture probability
was set to a larger range, α = {0, 0.1, 0.2, . . . , 1}, and the step size was 0.1. The prior
distribution of the tag was set to be uniform over the range of µ, where µ varies from
50 to 1000. The search range for the tag of the CMEBE and MMSE, CBMS algorithms was
set to N =

{
ccap

s + 2ccap
c ≤ n ≤ Nmax|n ∈ Z

}
, where Nmax = 1000. In the experiments,

the initial frame length of the proposed algorithm was set to 128. The parameters w, κ, and
σ were set to 4, 2, and 0.85 in the proposed algorithm, respectively. Based on the analysis
in Table 2, the setting of time slot duration was ti = 50 µs, ts = 400 µs, and tc = 200 µs
(u = 0.125, v = 0.5), which is consistent with the EPC C1 G2 Protocols, and the VOGT [49]
algorithm used an equal duration for all timeslots. To evaluate the performance of an
algorithm, the estimation error is defined as error =

∣∣ x−x̂
x

∣∣× 100%.
Figure 6 shows that when the capture threshold is constant, the capture effect is

related to these two factors, which are the shape parameter m of the fading channel and the
number of tags s in the collision timeslots. Among them, the value of the capture probability
decreases with the increase in the shape parameter m of the channel; in other words, a larger
m will make the capture effect more difficult to occur. The capture probability also decreases
as the number of tags in the collision timeslots increases.



Sensors 2023, 23, 6792 11 of 16

Figure 6. Capture probability on the Nakagami-m fading channel (q = 2).

Figure 7. 3D Capture probability on Nakagami-m fading (s = 2).

Figure 7 presents the same trend as Figure 6 and also shows that the capture probability
is closely related to the coding and modulation capability of the reader. When the capture
threshold is set to a large size, the conditions for satisfying the capture will be more
stringent, such as q = 7, m = 2, and the capture probability is only 0.08 (s = 2).

Afterward, we conducted simulations to evaluate the estimation performance of the
proposed algorithm. The simulation results are shown in Figures 8 and 9. In Figure 8, we
compare the estimation error of the capture probability of the proposed algorithm with that
of other algorithms. The results show that the estimation error of the capture probability
of all four algorithms decreases as the capture probability increases. Compared with the
other algorithms, the estimation algorithm for capture probability proposed in this paper
demonstrates good estimation performance in the range of capture probabilities from 0 to
0.5. For example, when the capture probability is 0.2, the estimation error of the proposed
algorithm is only 3.46%, much lower than that of the other three algorithms. Additionally,
Figure 7 shows that the capture probability is usually small under a fading channel, which
further demonstrates the superiority of the proposed algorithm.
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Figure 8. Capture probability estimation of the proposed algorithm (l = 128, n = 700).

Figure 9. Tag estimation of proposed algorithm under fading environment (m = 1.5, q = 2).

Figure 9 illustrates the tag estimation performance of various algorithms in the pres-
ence of the capture effect. Notably, CMEBE and CAE exhibit suboptimal tag-estimation
accuracy when the number of tags is large. Specifically, when there are more than 700 tags,
CAE’s estimation algorithm becomes invalid due to a lack of free timeslots caused by
mismatched initial frame length during tag estimation, which significantly impairs its
performance. Because the VOGT algorithm does not have the capture sensing ability, it has
a large estimation error when the number of tags exceeds 200. In contrast, both MMSE and
CBMS and our proposed algorithm employ an identical initial frame-length-adjustment
mechanism, resulting in similar performance trends for tag estimation. Simulation results
indicate that with 1000 tags, the proposed algorithm achieves a tag estimation error of
only 1.94%, which is a reduction of 29.96% compared to the MMSE, CBMS algorithm
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and 70.29% compared to the CAE algorithm. Therefore, this paper’s proposed algorithm
exhibits superior tag estimation performance in the presence of a capture effect under
fading channels.

The capture probability of a Nakagami-m fading channel is not only related to the
encoding and modulation method of the reader but also depends on the degree of fading
and the number of tags in the collision epoch. Therefore, compared to a fixed capture effect,
we need to deeply explore the impact of different estimation algorithms on the stability of
tag identification under the parameters of channel fading.

To simplify the analysis of the role of the capture effect in collision-avoidance strategies,
we assume that the reader can count the number of tags in the collision epoch and use the
formula, combined with the setting of the capture threshold, to obtain the probability of the
occurrence of capture effect in different collision epochs under the fading channel. In this
experiment, the number of tags is n = 700, and the capture threshold is set to q = 2.

When the capture threshold is fixed, the probability of the occurrence of the capture
effect is mainly affected by the shape parameters of the fading channel. Therefore, different
shape parameters will affect the efficiency of tag identification in the system. However,
by combining with the channel environment, we can set the optimal next frame length to
achieve the optimal overall efficiency of tag identification. To determine the next frame
length in the VOGT algorithm, this article employs the method lnext = n̂− ccap

s . In contrast,
for the CAE and CMEBE algorithms, method lnext = α̂ + (1− α̂)

(
n̂− ccap

s

)
is utilized to

determine the subsequent frame length. As for both MMSE and CBMS and our proposed
algorithm, we adjust the next frame length using the formulas (12)–(14).

Figure 10 shows the influence of shape parameters of the Nakagami-m fading channel
on the tag-identification efficiency under different algorithms, in which channel shape
parameters reflect the fading degree of the channel. When m = 1, the fading channel
follows Rayleigh distribution. It can be seen that the identification efficiency of the five
algorithms decreases with the increase in the channel-shape parameter m, among which
the VOGT algorithm has the worst tag-identification performance. When the shape pa-
rameter m = 0.5, the proposed algorithm is very close to the tag-identification efficiency
of CMEBE, CAE, MMSE, and CBMS, all reaching 83%, mainly because their estimation
performance is not different when the capture probability is large. However, with the
increase in the channel shape parameters, the capture effect becomes smaller. When m = 3,
the identification efficiency of the proposed algorithm is 76.83%, only declining by about
six percentage points, indicating that the proposed algorithm exhibits strong stability
compared to other algorithms.

Next, we employ the Big O notation to obtain the computational complexity of the
proposed algorithm with that of pre-existing algorithms. Here, we specify that the set of
estimation tags n and capture effect α of the above algorithm are N and P, respectively.
Assuming that ε = |P|, ϕ = |N|, where |·| represents the cardinality of the set, the VOGT
method needs to gradually search for an extreme value within a certain number of tags,
and its computational complexity can be approximated as O

(
∑

ϕ
i=1 ñi

)
. CMEBE, MMSE,

and CBMS all require a two-dimensional search for the number of tags and probability
of capture effect. The computational complexity of CMEBE, MMSE, and CBMS can be
approximated as O

(
ε ∑

ϕ
i=1 ñi

)
, where ñi represents the i search value of the number of tags,

and CAE and the algorithms proposed in this paper involve one-dimensional searches, with
the CAE algorithm having a complexity approximation of O(1). The proposed algorithm
has an estimated complexity of O(ε).

Thus, based on the proposed model, a conclusion can be drawn from the experiment
that the estimation performance and tag-identification efficiency of the proposed algorithm
are better than those of other algorithms. Among them, Table 3 indicates that the proposed
scheme possesses the features of low complexity and high identification efficiency in
vehicular network tag identification.
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Figure 10. Comparison of the identification efficiency of five algorithms.

Table 3. Comparison of estimation methods.

Estimation Method Estimated Object
Number of

Identification
Tags

Estimation
Error of Capture
Probability (%)

Estimation
Error of Tags

(%)

Identification
Efficiency (%)

Computational
Complexity Run Time (s)

VOGT n̂ Small - 46.74 54.21 O
(
∑

ϕ
i=1 ñi

)
5.7462

CMEBE 〈n̂, α̂〉 Small 8.50 9.84 72.86 O
(
ε ∑

ϕ
i=1 ñi

)
14.3671

CAE 〈n̂, α̂〉 Small 9.38 6.53 73.21 O(1) 1.15
MMSE, CBMS 〈n̂, α̂〉 Large 5.65 2.77 79.66 O

(
ε ∑

ϕ
i=1 ñi

)
32.61/33.13

Proposed algorithm 〈n̂, α̂〉 Large 2.73 1.94 81.31 O(ε) 15.42

where the estimation error of capture probability when α = 0.2 and the estimation error of tags and identification
efficiency when n = 700.

6. Conclusions

In this paper, a Nakagami-m fading-channel-capture model is established based on
vehicle cargo tags in a large-scale environment with dense tags, and an effective capture-
aware estimation algorithm is proposed. Both theoretical analysis and simulation results
have shown that the proposed capture-aware algorithm is superior to the reference algo-
rithms. In addition, we derive the optimal frame length for different durations of slots,
further confirming that the duration settings of slots in the EPC C1 G2 standard are also
applicable in the channel capture model. Next, we will develop a reader equipped with
capture-aware technology that is in line with the current level of hardware development
and conduct real-world testing on dense vehicle tags or cargo tags to further enhance
its performance.
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