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Abstract: This work is concerned with the vulnerability of a network industrial control system to
cyber-attacks, which is a critical issue nowadays. This is because an attack on a controlled process
can damage or destroy it. These attacks use long short-term memory (LSTM) neural networks, which
model dynamical processes. This means that the attacker may not know the physical nature of the
process; an LSTM network is sufficient to mislead the process operator. Our experimental studies
were conducted in an industrial control network containing a magnetic levitation process. The model
training, evaluation, and structure selection are described. The chosen LSTM network very well
mimicked the considered process. Finally, based on the obtained results, we formulated possible
protection methods against the considered types of cyber-attack.
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1. Introduction

Cyber-attacks pose an increasingly significant threat to industrial networks. This
applies to industries such as energy, robotics, and automotive [1–8]. On the one hand, rela-
tively obvious protection methods against such attacks exist, i.e., isolation of information
technology (IT) and operational technology (OT) networks, as well as the precise definition
of permissions for individual human and hardware elements of the network based on
whitelisting [9]. On the other hand, unauthorized access to such networks’ critical elements
remains a real threat [10].

Cyber-security and proper operation of control algorithms heavily depend on sensors
required to provide precise measurements. First, when a cyberattack occurs, measurements
from those sensors might be used to detect this malicious activity and further investigate
the problem. There are various approaches to performing this detection, e.g., models
such as support vector data description [11], neural autoencoders [12], long short-term
memory networks [13], k-nearest-neighbors (KNN), decision tree (DT), support vector
machines (SVM), naive Bayes and random forest [14] could be trained on the data collected
from sensors during the typical work of the system. Then, when the measurements differ
from the norm, the said algorithms can raise the alarm about anomalies or potential
attacks. Anomalies are often related to some errors in the sensors, external disturbances,
or even manual human interventions, but they can also arise from the interference of
an malicious actor. The algorithms used for anomaly detection vary in complexity, from
simple threshold analysis [15] to deep neural network models [16,17] or classifiers based
on statistical properties [18–20].
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Another category of cyber-attacks is attacks on the communication between sensors
and other devices. This ranges from denial of service attacks [21], sleep deprivation
attacks [22], through flooding [23], and jamming attacks [24], to attacks based on network
traffic analysis and self-replay attacks [25]. All of these rely on the fact that the data from
the sensors must be transmitted somehow. This is an especially significant threat to IoT
and industrial IoT devices and sensors [26,27]. Even the commonly used IIoT protocol
MQTT is prone to typical attacks [28,29], e.g., as considered in this paper, man in the
middle attacks [30].

Second, the efficiency of control algorithms relies on the accuracy of sensors, e.g., in
UAV [31] or autonomous vehicle [32,33] control. It is necessary to point out that the efficient
operation of control algorithms can be significantly improved using neural networks.
Typically, neural networks serve as models of dynamical processes, e.g., utilized online in
model predictive control (MPC) algorithms [34,35].

The intensive development of neural networks in various configurations makes it
possible to find networks that approximate dynamical phenomena [36,37]. Additionally,
neural networks can carry out effective cyber-attacks that are invisible to the process
operator with much less effort than classical methods. Therefore, this publication proposes
defense mechanisms against such attacks that would provide additional protection against
the destructive actions of the attacker in the event of a breach of the OT network’s integrity.

Often in research, it is assumed that the attacker has gained access to the industrial
network, and further considerations are made from that point. This is because gaining
access to the attacked network is often the result of social engineering, which is difficult to
standardize. Specifying a precise and effective methodology to access an industrial network
is also difficult. Therefore, assuming access has been obtained, the attacker may consider
various methods of attacking the industrial network.

The operator often oversees the key time series or some derivative plots of this signal
(e.g., histograms, signal increments, control errors). This paper presents the vulnerability
directly related to the operator’s responsibilities. The attack presented in our work aims
to take advantage of the operator’s inability to discern small changes in the signal, as the
LSTM model that we propose generates similar results to the real signals. On the other
hand, a slow degradation of the control quality is performed via subtle changes in the
control signals that affect the signal that is being forged.

A commonly considered approach for detecting attacks based on network traffic
is to use genetic or evolutionary algorithms [38], Bayesian networks [39], or machine
learning [40]. One of the more time-consuming approaches is to identify the target under
attack by monitoring network traffic and, based on that traffic or the data acquired from it,
to develop a model of the process under attack, to accurately generate malicious signals.
Such an approach is often impossible to implement, due to the large number of signals
used in the network. In this case, it is necessary to identify signals relevant to the operation
of the process and interpret them correctly. The model can be obtained using classical
approaches such as support vector machines [10] or random forest [39]. A relatively new
approach is to use deep neural networks [6,39]. These are attractive because of their high
degree of automation of the learning process and because they require less knowledge of
the process being modeled. However, these models tend to be less well adapted to the
actual process, and their learning requires selecting a number of meta-parameters.

This study presents an example of using LSTM-type neural networks to model a
process of unknown physical form. This model is then used to simulate the process. Such
data are transmitted to the supervisory control and data acquisition (SCADA) system, to
conceal the attack on the actual process. Finally, considerations are formulated regarding
potential protection methods against such attacks, abstracting from the methodology for
acquiring the process model.
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1.1. Problem Definition: Cyber-Attacks

The problem considered in this paper relates to cyber-attacks, which are understood
as harmful actions against critical elements of industrial processes accessible from the
industrial network. They may lead to a prolonged reduction in the efficiency of industrial
processes [41] or their accelerated aging [42]. Attacks aimed at immediately disabling
network elements [43,44] are not considered in this context, as such a failure is easy to
detect and repair. At the same time, the attacker may seek to remain hidden in their actions
for as long as possible [45]. In these studies, the assumed motive of the attacker is to carry
out a prolonged attack that would be difficult to detect by operators.

There are a few potential implications of carrying out prolonged cyber-attacks that are
difficult for operators to detect:

• introduction of an ill-natured (e.g., high frequency) control signal, which might in-
crease the aging rate of the actuators, which would result in a larger overall loss due
to the prolonged exposure, compared to more devastating but quicker to detect and
fix attacks, e.g., denial of service;

• gaining knowledge about the process of control; as the operators are not aware of the
subtle changes in the control signals, subtle responses visible in the measurements
might be attributed to noise and disturbances, whereas the attacker might use this
knowledge to understand the process and design more precise attacks;

• the prolonged presence of the attacker in the network might result in getting operators
used to the new characteristics of the signals, thus lowering the operators’ caution.

This paper considers an attack on one of the control loops in a system. It is worth
underlining that the described system is simple, and thus there is a clear relation between
the signals. From the point of view of the malicious actor, the control signal should be
considered the most relevant for the attack, as the quality of this signal is often not validated.
This is because this signal is a result of simple computations (e.g., a PID algorithm) based
on the measured and setpoint values, and therefore it is assumed that the root cause is
based on the measured or setpoint signals. There is, of course, a challenge for the attacker
in determining which of the signals is the control signal (as designers or even maintainers
of the system, this information should be known). There might be some premises for
some signals to be assumed to be the control signals (e.g., dynamics of the signal, the
variance of the signal increments). Nevertheless, in systems with hierarchical or generally
complex control schemes, this might be nontrivial or impossible to achieve. In this paper,
the interpretation of the signals is assumed to be known.

1.2. State of the Art: LSTM Neural Networks

Long short-term memory (LSTM) networks originated as a modification of the classical
recurrent neural network (RNN), differing from it in the neuron’s structure [46]. Classical
RNNs are prone to a vanishing gradient phenomenon [47], which often makes them unable
to model long-term dependencies in data. LSTM networks, on the other hand, are much
more resistant to this problem. The neuron in an LSTM network is often referred to as a
cell and consists of a set of gates that regulate the flow of information. In particular, gates
allow for selecting relevant, and forgetting unnecessary, information. This often occurs in
classical recurrent networks. The unique memory properties of LSTM models have led
them to find a wide range of applications, such as in traffic forecasting [48], gaze-based
deception detection [49], speech synthesis [50], and handwriting recognition [51]. LSTMs
can also be used to model nonlinear dynamic processes [52]. In this case, one can find that
LSTM models with a relatively low number of neurons and internal weights, and short
input sequences, are easily trained and offer excellent modeling quality. LSTM models can
also be successfully implemented in a model predictive control algorithm [35,53,54]. LSTM
networks are often used for time series modeling, i.e., for prediction of indoor temperature
and air pollution [55], forecasting in finances [56], and time series classification [57].
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1.3. Article Contribution

This work investigates the vulnerability of a physical industrial control system operat-
ing in a network to cyber-attacks. Specifically, we consider to what extent a cyber-attack can
cause disruptions to the process operation but remain invisible to the operator. The Stuxnet
worm performed the first such hidden attack, infecting PLC devices controlling Iran’s
nuclear centrifuges. In effect, a hostile PLC program deliberately changed the spinning
frequency, to destroy the centrifuge. However, normal signals were provided to the SCADA
and the operator. In effect, hostile activity was detected when the centrifuge was seriously
damaged. During our research, we would like to use machine learning methods to carry
out such cyber attacks, while generating fake signals. A cyber attack that is difficult to
detect while causing damage to a process can be challenging to carry out using classical
methods, without knowledge of the system under attack. However, the development of
artificial intelligence carries the risk of using machine learning methods to automate the
execution of an attack. In this article, we examine whether LSTM networks allow a physical
process to be modeled in an automated manner. Then, we use the process knowledge
in this black-box model to mask the cyber attack. Security measures are also discussed,
including data redundancy and isolating the industrial network from the IT network; the
described attack is only possible in the case of a human error.

1.4. Article Organization

This work is structured as follows. First, Section 2 describes the laboratory control net-
work used in our study. Section 3 presents the article’s main contribution: the LSTM neural
networks for SCADA system operator deception; issues such as the network architecture,
data-driven training, evaluation, and structure selection are discussed. Section 4 details
the experimental evaluation of the obtained LSTM neural networks in the SCADA system
and formulates possible protection mechanisms against cyber-attacks. Finally, Section 5
concludes the article.

2. Laboratory Process Control Network

To perform tests using algorithms considered in this paper, a laboratory process control
network was designed and implemented. This is a controlled part of industrial reality,
mainly focused on the industrial network’s OT and control network layers. This network
environment was prepared with a few assumptions in mind. First, it should allow testing of
a range of standard network protocols in the industry. Second, it should consist of various
processes (fast and slow, simple and complex, stable and unstable, binary and continuous).
Third, it should be implemented with the best industrial practices in mind.

Figure 1 depicts the laboratory process control network, which consists of several
control processes, namely: a heating-cooling test stand (slow, simple, stable, continuous pro-
cess) [58], MPS Festo stand (fast, complex, stable, binary process) [59–61], and a magnetic
levitation (MAGLEV) process using INTECO (quick, simple, unstable, continuous pro-
cess) [62,63]. Out of those, only the magnetic levitation process is considered in this paper.
The following programmable logic controllers (PLCs) manage these processes: Mitsubishi
Electric FX5, Mitsubishi Electric iQ-R, and Siemens S7-1200. In addition, each PLC was
connected to a corresponding human–machine interface (HMI) display. All these network
devices were connected to a simple switch that directed communication from a specific part
of the network to the main managed switch. This network includes two SCADA systems:
SCADA WinCC RT and SCADA MAPS; which were installed and run on separate PCs.

This paper considers a section of the whole workspace, namely the MAGLEV section,
including the main managed switch, which connects all the simple switches in the network.
In Figure 2, a photo shows the MAGLEV and heating–cooling sections of the laboratory
workspace. The Mitsubishi iQ-R Series PLC on the left side of the photo is connected via an
Inteco Power Unit to the MAGLEV, visible on the right side. The overall data flow of this
part of the network is depicted in Figure 3. The HMI displays were not crucial in terms
of this research, yet they are included for the sake of completeness. The control algorithm
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for the MAGLEV system consists of a PID controller with a precisely calibrated function
for transforming raw measurements (voltage based on the amount of light received by the
light sensor) into the actual distance of the levitating ball from the electromagnet.

Figure 1. Schematic representation of connections within the laboratory control network.

Figure 2. Photo showing MAGLEV and heating–cooling sections of the workspace, with the main
managed switch.



Sensors 2023, 23, 6778 6 of 17

Figure 3. Schematic view of the data flow and protocols used in the considered part of the
laboratory workspace.

The main communication route is between iQ-R and SCADA MAPS. The communi-
cation between the iQ-R and the MAGLEV process is based on pulse width modulation
(PWM), to control the top coils’ power and used to pull the metal ball towards the coil,
and analog signals, to measure the ball’s position. Therefore, this cannot be utilized to
perform an attack. On the other hand, the communication with SCADA goes through a
main managed switch and therefore is a good candidate for such an attack. The data sent
between those two units only consist of requests for values of iQ-R registers. The SCADA
system requests a few variables: the ball position, set-point value (calculated by the PLC),
and the width of the PWM, i.e., common control signals. No additional information about
the controller parameters was considered in this scenario.

The part of the laboratory workspace considered here allows testing the vulnerability
of selected communication protocols. Here, we focused on the SLMP protocol, which
allows communication between PLCs and the SCADA MAPS system.

It should be noted that, even though we consider SCADA MAPS in this workspace the
SCADA of choice, in the end, we created an implementation of the SCADA system because
of the inaccuracies of the SCADA MAPS. Mainly, the communication period was incon-
sistent, which caused confusing errors during the validation stages of the models. Next,
despite being responded to, many messages were ignored and displayed as nonexistent,
thus creating an even more confusing picture of the experiment results. The main job of
the SCADA finally used in this paper was to send periodic requests for the values of some
registers and store their values in files. Those files could be further displayed.

3. LSTM Neural Networks for SCADA System Operator Deception
3.1. Architecture of the LSTM Neural Network

The considered LSTM network has one hidden layer of nN neurons. Let u and y stand
for the process input and output signals, respectively, while k denotes the discrete time, i.e.,
k = 0, 1, 2, . . . For time series prediction, the input vector of the network is

x(k) = [y(k − 1) . . . y(k − nA)]
T (1)

where nA is an integer number. Alternatively, when the process’s set point is considered,
the input vector is

x(k) =
[
y(k − 1) . . . y(k − nA) ySP(k)

]T
(2)

Each LSTM neuron, often called a cell, consists of four gates: forget gate f , cell
candidate gate g, input gate i, and output gate o. When the whole layer of LSTM containing
nN cells is discussed, the gates can be represented as vectors f , g, i, o, each of dimensionality
nN × 1. Weights related to the network input signals and past hidden state are denoted
as W and R, respectively. The bias vector is denoted as b. Subscripts f, g, i, and o inform
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about the relation between the gates and weights. The weight matrices of the whole LSTM
layer are

W =


Wi
Wf
Wg
Wo

, R =


Ri
Rf
Rg
Ro

, b =


bi
bf
bg
bo

 (3)

At the time instant k, the LSTM layer first performs all gate computations

i(k) =σ

(
Wix(k) + Rih(k − 1) + bi

)
(4)

f (k) =σ

(
Wfx(k) + Rfh(k − 1) + bf

)
(5)

g(k) = tanh
(

Wgx(k) + Rgh(k − 1) + bg

)
(6)

o(k) =σ

(
Wox(k) + Roh(k − 1) + bo

)
(7)

Next, the current cell state is calculated

c(k) = f (k) ◦ c(k − 1) + i(k) ◦ g(k) (8)

where ◦ denotes the Hadamard product. Finally, the hidden state of the LSTM layer can
be computed:

h(k) = o(k) ◦ tanh(c(k)) (9)

The hidden state of the LSTM layer then enters a linear (fully-connected) layer. The
linear layer has its own weight vector Wy and scalar bias by. The output of the whole LSTM
network at the time instant k can be computed as

yLSTM(k) = Wyh(k) + by (10)

Figure 4 shows the overall structure of the neural network used and the internal
configuration of the LSTM cell.

3.2. Data-Driven Training, Evaluation, and Structure Selection of the LSTM Neural Network

The data set used for LSTM training and validation was obtained from the Laboratory
Process Control Network. The data were collected using a custom-designed Proxy program,
which was assumed to be placed between the PLC and SCADA software (Figure 5). The
Proxy works in one of two modes: transparent or active. When in the transparent mode,
the Proxy transmits messages from SCADA right to the PLC and all messages (including
responses for SCADA requests) from PLC to SCADA. In this mode, the Proxy is used to
listen and gather data that will later be used to train the LSTM model. The active mode
hijacks the communication between the SCADA and PLC. The Proxy in this mode acts as a
PLC and responds to the SCADA with forged signals, using a trained LSTM model, but it
can also attack the PLC. This approach guarantees consistency between the data used for
training and the environment in which the forgery attack is performed.

LSTM models were trained in MATLAB on a PC with Nvidia GeForce 970 GTX GPU,
Intel i5-3450 CPU, and 16 GB of RAM. We used the Adam optimization algorithm, with a
learning rate 0.001, a maximum number of 500 training epochs, and sequence padding-left
direction enabled.
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LSTM cell 1

LSTM cell 2

LSTM cell

+

LSTM
layer

fully connected
layer

input
 layer

+

Forget gate Input gate State candidate gate Output gate

+ + +bg + +

Figure 4. The overall structure of the neural network used (top), and the internal configuration of the
LSTM cell (bottom). Blue indicates the model’s internal weights, green the algebraic operations, and
purple and red the sigmoidal and hyperbolic tangent activation functions, respectively.

Figure 5. Schematic view of the data flow and protocols used in the considered part of the laboratory
workspace when the Proxy has hijacked the communication.

Training was performed for four categories of model:

1. Models whose objective is to approximate the dynamics of the process when a si-
nusoidal set-point signal of the output is used; these models utilize previous values
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of the output signals to define the input vector of the LSTM network (Equation (1)),
named hereafter LSTMsin;

2. Models whose objective is to approximate the dynamics of the process when a square
set-point signal of the output is used; these models utilize previous values of the
output signals to define the input vector of the LSTM network (Equation (1)), named
hereafter LSTMsq;

3. Models whose objective is to approximate the dynamics of the process when a sinu-
soidal set-point signal of the output is used; these models utilize previous values of
the output signals and the set-point signal to define the input vector of the LSTM
network (Equation (2)), named hereafter LSTMSP

sin;
4. Models whose objective is to approximate the dynamics of the process when a square

set-point signal of the output is used; these models utilize previous values of the
output signals and the set-point signal to define the input vector of the LSTM network
(Equation (2)), named hereafter LSTMSP

sq ;

The data set was collected from the laboratory stand. The data set was divided into
training and validation data, each containing 8000 data samples. The average sampling
time of the data equaled 100 ms. The procedure of training was as follows:

1. First, all the data collected from the network were transformed from hexadecimal to
decimal format and normalized. We transformed all the signals to be in a range from
0 to 1, except the set-point for the square signal, which was transformed to 1 and −1;

2. Models with nN = 2 neurons and nA = 1 were trained. For each configuration of
parameters, five models were trained;

3. The order of dynamics was increased to nA = 8 and nA = 3, and 10 new models
were trained;

4. Steps 2 and 3 were repeated for models with nN equal to 12, 16, 24, 32, and 64.

All models were then tested on a test data set. The mean squared error (MSE) was
used to measure the quality of the model.

MSE =
1
n

n

∑
k=1

(y(k)− yLSTM(k))2 (11)

where y(k) and yLSTM(k) stand for the data sample and the model output for the sampling
time k, respectively, and n = 8000 is the number of samples.

Table 1 presents the error of the best performing LSTM model for each neuron number
and the order of dynamics configuration for a sinusoidal ball movement. It can be seen that,
for both LSTMsin and LSTMSP

sin models, the error decreased as the number of neurons in the
network increased. In both cases, the models with 64 hidden neurons performed best. A
further increase in the number of neurons resulted in a more significant reduction in error;
however, this also increased the computational cost of the model. Therefore, we decided
that 64 neurons were sufficient for the case of a sinusoidal output signal. Let us discuss the
effect of changing the order of model dynamics. For LSTMsin models, the error increased
for higher orders of dynamics. However, for LSTMSP

sin models, the best modeling quality
was obtained for models with a dynamic order nA = 3. The LSTMSP

sin models provided
a better modeling quality compared to LSTMsin models. This is unsurprising, as LSTM
models are presented with a more difficult task, having to operate fully in recursive mode.
On the other hand, LSTMSP

sin models take the set-point of the process as an input signal of
the LSTM network, making it easier to match the frequency of the signal being modeled.

Table 2 shows the MSE of LSTM models for the square process output signal. For
LSTMsq models, a better modeling quality was provided by those with more neurons.
However, for LSTMSP

sq models, one of the simplest models with eight neurons had the
lowest error. The best models had a high order of dynamics, i.e., nA = 3. On the other hand,
for LSTMSP

sq models, there are often (e.g., for 12 or 24 neurons) cases where models with a
lower order of dynamics are better. Again, it can be observed that adding the set-point as
an input to the neural network significantly reduced the model errors.
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A comparison of the performance of selected models (marked in blue in the tables)
with the lowest error can be seen in Figure 6. In the case of LSTMsin models, the low MSE
values are misleading, i.e., the model output shifted in phase with respect to the data
after a short time. The LSTMSP

sin model did not have this disadvantage. In its case, the
model output was always well synchronized with the data. The outputs of the LSTMsq and
LSTMSP

sq models were very close to each other, which means that these models reproduced
the data well.
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Figure 6. Best performing model outputs compared to the data from the validation data set: LSTMsin

with nN = 64 and nA = 1 (top-left), LSTMSP
sin with nN = 64 and nA = 3 (top-right), LSTMsq with

nN = 64 and nA = 3 (bottom-left) and LSTMSP
sq with nN = 8 and nA = 3 (bottom-right).

Table 1. MSE errors for LSTM models for the sinusoidal set-point signal. The blue background
indicates the best-performing models of each type with the lowest error value.

LSTMsin LSTMSP
sin

nN nA = 1 nA = 2 nA = 3 nA = 1 nA = 2 nA = 3

8 2.1 × 10−1 8.5 × 10−3 6.3 × 10−4 4.6 × 10−4 8.5 × 10−4 2.5 × 10−4

12 1.0 × 10−3 5.1 × 10−4 2.3 × 10−1 4.7 × 10−4 7.5 × 10−4 1.9 × 10−4

16 6.5 × 10−4 1.6 × 10−3 7.6 × 10−4 4.7 × 10−4 2.9 × 10−4 2.0 × 10−4

24 1.1 × 10−2 5.8 × 10−3 5.9 × 10−4 3.8 × 10−4 1.7 × 10−4 2.3 × 10−4

32 6.2 × 10−4 5.6 × 10−4 1.1 × 10−2 2.4 × 10−4 2.0 × 10−4 1.8 × 10−4

64 0.00047 1.6 × 10−3 2.1 × 10−1 2.7 × 10−4 1.7 × 10−4 0.00013
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Table 2. MSE errors for LSTM models for the square set-point signal. The blue background indicates
the best-performing models of each type with the lowest error value.

LSTMsq LSTMSP
sq

nN nA = 1 nA = 2 nA = 3 nA = 1 nA = 2 nA = 3

8 2.5 × 10−1 2.8 × 10−1 1.6 × 10−1 1.0 × 10−3 9.4 × 10−4 0.00053
12 3.3 × 10−1 2.3 × 10−1 2.2 × 10−1 5.9 × 10−4 8.2 × 10−4 9.5 × 10−4

16 3.4 × 10−1 1.4 × 10−1 3.0 × 10−1 6.5 × 10−4 6.9 × 10−4 6.4 × 10−4

24 6.7 × 10−2 6.2 × 10−2 2.5 × 10−2 6.3 × 10−4 7.6 × 10−4 7.3 × 10−4

32 1.1 × 10−1 5.1 × 10−2 7.8 × 10−2 6.3 × 10−4 6.6 × 10−4 7.2 × 10−4

64 7.8 × 10−2 6.3 × 10−2 0.023 6.9 × 10−4 6.2 × 10−4 6.0 × 10−4

4. Experimental Evaluation of LSTM Neural Networks in the SCADA System

The four models with the best quality were tested experimentally. A Python script
read the data from the PLC and used LSTM models to generate output data, which were
then displayed in SCADA.

The results of the experiments are shown in Figure 7. The output of the LSTMsin model
reproduced the amplitude of the real signal well. However, it became out of sync with the
process output relatively quickly. The LSTMSP

sin model output was very well-fitted to the
real data from the PLC. The outputs of the LSTMsq and LSTMSP

sq models for the first 50 s
of the models’ operation were very similar to each other and well-fitted to the real signal.
However, Figure 8 shows the outputs of both models after 200 s of operation. Here, the
advantage of the LSTMSP

sq model is highlighted. This model was still in sync with the data
after this time, while the LSTMsq model had slightly shifted in phase.
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Figure 7. Best performing models working online, compared to real data collected from the PLC:
LSTMsin with nN = 64 and nA = 1 (top-left), LSTMSP

sin with nN = 64 and nA = 3 (top-right), LSTMsq

with nN = 64 and nA = 3 (bottom-left) and LSTMSP
sq with nN = 8 and nA = 3 (bottom-right).
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Figure 8. Comparison between the LSTMsq and LSTMSP
sq models working online vs. real data col-

lected from the PLC after 200 s of continuous operation.

4.1. Cyber-Attack Description

The attack conducted during this experiment took advantage of the fact that most PLC
devices do not offer reasonable authentication and authorization mechanisms. The most
common security control is based on the configured number of concurrent sessions be-
tween the SCADA system or master PLC and the victim PLC. When at least one configured
connection is not properly established, anybody with access to the industrial control system
network can connect to the PLC and manipulate its registers. There are at least a few situa-
tions in which the PLC does not utilize all configured connections; for example, an incorrect
configuration, change in the control process, temporal disconnection of engineering station,
and hostile activity, which actively disconnects the legitimate connections. Regardless of
the reason, all the described situations allow an attacker to control PLC registers.

Manipulation of PLC registers directly impacts the controlled MAGLEV process.
During the experiments using custom tools, we manipulated the following chosen registers:
D100, which contains the measured photodetector value corresponding to the ball position,
and D1002, which contains the value of the width of PWM in the range of 0 (electromagnet
constantly on) to 2000 (electromagnet constantly off). The custom tool connects to the
PLC using SLMP (seamless message protocol) and overwrites the chosen register with the
provided value as frequently as possible. Since these values are overwritten by the attacker
more frequently than by the controller, the normal activity of the ball is disturbed. In the
first case, the attack value 14,000 was written to the register D100. After a few seconds, the
ball started “shaking” and stuck to the magnet in a few tens of seconds. In the second case,
a value of 2000 was written to register D1002. After a while, the ball went out of the range
of the electromagnetic field of the electromagnet and dropped.

4.2. Protection (Precautions) against Cyber-Attacks

To avoid the discussed method of attack, one might want to consider simple software
protections. The main approach to prevent such attacks is introducing redundancy into the
system. Plain duplication of the communication channel used to obtain certain information
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might not be enough. Thus, it is encouraged to use different protocols or at least introduce
some easily revertible modifications of the original signal, e.g., using affine transformation
or delaying the signal. This approach would require modifications on both sides of the
communication, i.e., PLC and SCADA. One might also consider using communication
protocols that implement encryption; this would prevent intruders from accessing the data.

It is possible to modify only the SCADA system to detect malicious actions such as
those discussed in this paper. By constantly monitoring the control error, it is possible to
detect controlled signals going out of phase (assuming a periodical set-point value), as is the
case for models that do not use set-point values as inputs. It is also worth mentioning that
noise and disturbance influence the controlled variable, which is often difficult to model
without knowledge of the overall control process. Therefore, measuring the similarity of
the consecutive periods of periodic signals might suggest the occurrence of a third party in
the OT network. It would also be useful to implement anomaly detection algorithms or
even calculate certain signals’ statistic properties (such as variance, skewness, or kurtosis)
for the operator to observe, which would be useful for detecting unnatural behavior. As
the operator might not be able to detect small changes in the behavior of the plant, these
simple methods would amplify these kinds of observations for the operator.

Another useful approach would be forcing the SCADA system to periodically send
information to the PLC about certain measurements of key signals (e.g., mean, variation
in maximum and minimum values), which would then be calculated on the PLC side
and tested for discrepancies. A significant difference in results implies the presence of an
ill-intentioned entity in the communication.

There are other more obvious approaches to protecting an OT network. Utilizing
secure protocols inside the OT network or isolating the network from the rest of the world
are the most common ways to ensure secure data transfer. The challenge is to implement
this in a convenient manner and that provides sufficient security to protect against hackers.
The vulnerability of an OT network is often the result of human error. Therefore, security
measures must not hinder employees’ workflow. Otherwise, they might unknowingly
introduce holes in the security layer of the industrial network.

An interesting option is to use LSTM neural networks to establish a protection mecha-
nism against cyber-attacks [64–66]. LSTMs can learn the temporal behavior of time series
sequences. In the cited works, they helped to neutralize the corrupted measurements. As a
result, the process received corrected signals, which increased the overall performance.

5. Conclusions

This work studied the vulnerability of a network industrial control system to cyber-
attacks. The MAGLEV process was considered in our study. This process must be very
fast, unstable, and nonlinear, with a short sampling time. We used LSTM neural networks
to approximate the process dynamics. The model training, evaluation, and selection are
described. The model simulated the process, and the output signal was transmitted to
the SCADA system, to conceal the attack. We studied if, and to what extent, a cyber-
attack could cause disruptions in the process operation. For the considered MAGLEV
process, the LSTM networks enabled performing such cyber-attacks. Having completed
many experiments, we formulated possible protection methods against the considered type
of cyber-attacks.

It is necessary to emphasize that, in general, an LSTM neural network is a great
universal tool, capable of approximating the behavior of dynamical systems. On the other
hand, the training of LSTMs, network architecture selection, and network validation have
to be performed for specific laboratory processes. We plan to compare the efficiency of
different neural networks, e.g., gated recurrent units (GRUs).

It is worth underlining that the operator is often not an appropriate tool for data
analysis. Specifically, the more subtle the changes are, the more likely the operator will not
notice those changes. In addition, the SLMP protocol utilized in this paper is not sufficiently
secure, allowing the attacker to easily modify the values of signals visible in the SCADA on
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the fly and use them with malicious intent. Both conclusions can be further extrapolated
for other protocols, e.g., Modbus TCP, where the security concerns are not prioritized. This
paper emphasizes the lack of security in the OT network, relying on the protection provided
by network isolation from the outside world.
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53. Zarzycki, K.; Ławryńczuk, M. Advanced predictive control for GRU and LSTM networks. Inf. Sci. 2022, 616, 229–254. [CrossRef]
54. Jeon, B.K.; Kim, E.J. LSTM-based model predictive control for optimal temperature set-point planning. Sustainability

2021, 13, 894. [CrossRef]
55. Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary attention-based LSTM for time series prediction.

Knowl.-Based Syst. 2019, 181, 104785. [CrossRef]
56. Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat. Mech. Its Appl. 2019,

519, 127–139. [CrossRef]
57. Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019,

116, 237–245. [CrossRef] [PubMed]
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