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Abstract: Six-generation (6G) networks will contain a higher density of users, base stations, and
communication equipment, which poses a significant challenge to secure communications and collab-
orations due to the complex network and environment as well as the number of resource-constraint
devices used. Trust evaluation is the basis for secure communications and collaborations, providing
an access criterion for interconnecting different nodes. Without a trust evaluation mechanism, the risk
of cyberattacks on 6G networks will be greatly increased, which will eventually lead to the failure of
network collaboration. For the sake of performing a comprehensive evaluation of nodes, this paper
proposes a novel multiple role fusion trust evaluation framework that integrates multiple role fusion
trust calculation and blockchain-based trust management. In order to take advantage of fused trust
values for trust prediction, a neural network fitting method is utilized in the paper. This work further
optimizes the traditional trust management framework and utilizes the optimized model for node
trust prediction to better increase the security of communication systems. The results show that
multiple role fusion has better stability than a single role evaluation network and better performance
in anomaly detection and evaluation accuracy.

Keywords: trust evaluation; multiple roles of nodes; blockchain; anomaly detection; neural network;
zero trust network access

1. Introduction

An upgraded version of 5G, 6G transmits data and signals via terrestrial wireless
devices and satellites, thus expanding the communication range and extending the network
to all corners of the globe [1–3]. Furthermore, 6G’s satellite network will greatly enhance
the transmission capability of connected devices and will be extremely transformative in
the fields of natural disaster prediction, satellite positioning, and autonomous driving.
However, the increased coverage of the 6G network will cause a proliferation of communi-
cation devices, and traditional network solutions authorized by implicit trust relationships
will be more vulnerable to cyberattacks [4,5], resulting in the leakage of important and
private data [6]. At the same time, with the explosive growth of user service demand,
how to utilize limited wireless resources to carry more wireless services has become a
challenging issue in 6G networks [7,8].

Zero Trust Network Access (ZTNA) assumes that all connected devices, users, and
applications within the network coverage are untrustworthy [9] and performs a real-time
authentication and trustworthy evaluation of the requested object before each authorized
access [10–12]. Each request is confirmed to be legitimate before access is granted to proceed.
Trust evaluation is a ZTNA [13,14]. Trust evaluation is performed by an independent group
of observation nodes to calculate trust values based on the performance of the observed
nodes while performing communication tasks. Once a malicious node launches an attack
behavior [15–17], the trust value will be anomalous, and the communication system can
detect the information about the attack behavior with the trust value [18–20].
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Trust evaluation can be added to a 6G network to secure the network environment, as
it is fair to all nodes in the network, and there is no privileged node. Each request of nodes
to access network resources is verified in real time by the trust evaluation system on their
trust values to ensure that the node is trustworthy before agreeing to the request. No matter
what role the malicious nodes utilize to lurk in the network, they will finally be detected
through real-time verification and evaluation. As a result, it is difficult to implement the
attack behavior under real-time trust evaluation mechanism.

Trust evaluation has been widely studied in the literature to optimize the network
structure and enhance network security. “A jury-based trust management mechanism in
distributed cognitive radio networks” proposes a jury-based trust management mechanism.
The “jury user” is designed to collaboratively examine the reputation of the cognitive user
in the network [21]. This approach utilizes cooperation and mutual supervision for trust
management to ensure the accuracy of trust values. “Enhancing Trust Management via
Blockchain in Social Internet of Things” and “A blockchain-based vehicle-trust management
framework under a crowdsourcing environment” both enhance trust management via
blockchain technology. The difference is that “Enhancing Trust Management via Blockchain
in Social Internet of Things” utilizes consortium blockchain [22], but “A blockchain-based
vehicle-trust management framework under a crowdsourcing environment” uses public
blockchain with an efficient consensus algorithm Zyzzyva [23].

By comparison, it was found that using blockchain technology for trust management
is an efficient approach. It is possible to accurately record the calculated fusion trust values
in real time by modifying the content of the smart contract. The two main features of
blockchain are decentralization and data immutability [24–26]. The ledger is no longer run
by a single center; each node owns a copy of the ledger, and the information in the ledger
is not allowed to be tampered with at will. Nodes only have the right to view transactions,
not modify them. If blockchain is used in trust management, this can protect the system
from a single point of attack to some extent, and also ensure transparency and reliability
in trust value management. Otherwise, blockchain is a mature technology that is simpler
to operate and can make the process of trust management easier by modifying consensus
algorithms [27,28] as well as smart contracts. These recorded trust values can end up being
used for anomaly detection as well as trust prediction.

Their models are complete and feasible, but the multiple roles of the nodes in the
network are not considered. If a node performs well in a network for a long time and
shows high competence, then it will be eligible to assume multiple roles, which ensures
trustworthiness and saves network resources. As the network scales up, the trend of
multiple roles for nodes is inevitable. Once a node has multiple roles, the single-dimensional
trust model will no longer be applicable. As the performance of different roles in performing
tasks is biased, it is not possible to generalize the overall trustworthiness of this node by
the trust value under only one role.

As a result, we propose a trust fusion evaluation mechanism to improve the evaluation
of communication nodes and provide a more comprehensive assessment of node behavior.
The main design idea of ZTNA is real-time verification and evaluation. In the system
we designed, all network nodes are assumed to be untrustworthy, and their trust level is
dynamically generated [29] based on the performance of the communicating nodes in the
communication task. The changes in the trust value under each role of a node are fused
and thus reflected in the fusion trust value. Any kind of attack committed by virtue of
a particular identity is immediately detected in the fusion trust value. Meanwhile, the
dynamically generated trust values are managed through blockchain technology, and these
recorded trust values can be applied to later anomaly detection and trust prediction, further
promoting the development of network security.

The fusion trust values calculated in real time can be used not only as criteria for access,
but also for trust prediction. By fitting numerous trust values generated under a node,
the trajectory of the trust value can be obtained, so that the behavior of the node can be
evaluated more effectively. By analyzing the trend of the trust change curve, potential risks
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of the system can also be detected to some extent for timely prevention. Neural network
fitting can theoretically fit a variety of curves. After training the model, the predicted trust
values, and the fitted trust curves, can be computed by simply using the single-dimensional
trust values of each role as a feature input. This method has a relatively high prediction
accuracy, and neural network fitting is already a mature technique.

In this paper, we aim to provide a more comprehensive and accurate evaluation of the
behavior of nodes. The evaluated trust values are also utilized to detect anomalies in the
whole system. The security and stability of the network are ensured by these two aspects.
The main contributions are summarized as follows:

• We propose an innovative fusion trust evaluation framework that can conduct a more
comprehensive and accurate trust calculation. This framework utilizes blockchain
technology to manage the trust value, and makes the management process more
transparent and reliable;

• We develop an algorithm for anomaly detection and a code framework for smart
contracts. Anomaly detection provides real-time testing of the system to ensure that
the network can operate properly. Smart contract code serves trust management,
which makes sure that trust management is carried out properly;

• We utilize software simulations to verify the feasibility of the proposed framework.
Meanwhile, we compare it with a single role evaluation system, and find its superiority
in terms of performance. A neural network fitting approach is also applied to trust
prediction and compared with conventional linear prediction.

The rest of the paper is organized as follows. The overall architecture of the proposed
model is presented in Section 2. Section 3 explains the details of trust calculation and the
anomaly detection algorithm. The approach for trust management and the corresponding
smart contract code framework are described in Section 4. Section 5 shows the simulation
results of this proposed framework. Section 6 is the conclusion of this paper.

2. System Design

The whole system is divided into two major parts: real-time fusion trust calculation
for multiple roles and trust management based on blockchain technology. As shown in
Figure 1, a single node has multiple roles (Role i1, Role i2, . . . ) in a network. Observation
nodes will calculate the trust value for all roles of the node.
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Figure 1. The proposed multiple role fusion-based evaluation and blockchain-enabled trust manage-
ment framework.

Once all observation trust values are reached, they are aggregated to generate a fusion
trust value. The fusion trust value contains the characteristics of the trust values under
each role. Ultimately, these trust values are managed by the blockchain. The figure also
demonstrates an attack carried out by a particular role.
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If we evaluate only one of the roles, the attack behavior of nodes cannot be detected in
time. Even if the attack is detected, it is also very difficult to determine the source of the
attack, as a node has many roles. Therefore, multiple role fusion evaluation is very critical.
Once the attack has occurred, the trust value under that role will be anomalous. Anomalies
in the trust value of any role will be reflected in the fused trust value, so we can quickly
detect the attack and which role it was initiated by.

Theoretically, the role of a node can be infinite. Under each different role, the definition
of trust and the way of trust calculation are different, so the complexity of analysis will
be greatly increased. In order to simplify the analysis, this paper focuses on constructing
a network model in which the communication layer and transaction layer collaborate to
carry out the analysis of trust fusion evaluation framework.

3. The Proposed Blockchain-Based Trust Evaluation Framework

This section focuses on the principle of the multiple role fusion trust evaluation
mechanism proposed in this paper. The two layers of the network, the communication
layer and the transaction layer, operate collaboratively to form a large network in which
the nodes have two roles. A set of independently evaluated node queues dynamically
generates trust values based on the completion of nodes performing network tasks. The
single-dimensional discrete trust values generated in real time are matched and fused to
form fusion trust values, which are recorded and managed through the blockchain.

3.1. Trust Calculation

The model consists of two layers: communication layer and transaction layer. The
tasks performed by the observed nodes in different layers are not the same. Naturally, trust
has different meanings on different layers. Therefore, trust needs to be defined separately
and cannot be defined by a single formula. Meanwhile, the trust value of each layer should
be fused, so the trust needs to be a dimensionless real number. The trust value defined in
this paper needs to satisfy the following conditions:

• Trust value ∈ [0, 1];
• Trust is a dimensionless number;
• There exists an inverse relationship between trust and loss of information/data;
• Each layer of trust is independent.

3.1.1. Communication Layer

The observed nodes forward the message from one user to another. In this process,
information will inevitably be lost, and transmission errors may occur. Part of the reason is
the effect of the transmission channel, and another part is the error in the forwarding of
information by the observed nodes. Message loss, which is caused by channel transmission,
is inevitable and ever-present. Due to the continuous development of communication
technology, the effect of the channel has become negligible, so the loss of information can
be approximated as being caused by the latter. Therefore, the reliability of the observed
node is measured based on the message loss rate. The greater the packet loss rate, the lower
the trust value will be.

We define a threshold of message loss rate (Rloss) as θ. The value of θ is 0.4. The
whole trust value distribution interval is divided into two parts, the part above θ we define
as high-risk interval, and the part below θ is defined as low devotion interval. Nodes
falling in the high-risk interval are likely to be malicious nodes (MN), and nodes falling
in the low-risk interval are likely to be normal nodes (NN). NN does not lose information
intentionally when executing the communication task, so the probability that Rloss of NN is
distributed at a certain value µ, and we can assume that Rloss of NN obeys the Gaussian
distribution. MN will intentionally lose a large amount of information, thus hindering the
normal execution of the communication task. Therefore, we assume a small interval [α, β]
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in which Rloss of MN is uniformly distributed. The probability density function of Rloss is
shown below:

f (Rloss) =

 1√
2πσ

e−
(Rloss−µ)2

2σ2 Rloss < θ
1

β−α Rloss ∈ [α, β], α > θ−, β < θ− + θ∆

(1)

where σ represents variance, and µ is the mean value of Rloss. θ− →1, θ∆ →0.
The value of Rloss is the ratio of the amount of forwarded messages loss to the amount

of original messages: 
Rloss =

−∑N
i=1 Kilog2P(ϕi)+∑N

i=1 Kijlog2P(ϕi)

∑N
i=1 Kilog2P(ϕi)

∑N
i=1 Ki = N

∑N
i=1 P(ϕi) = 1

(2)

assume that the information source is a discrete source consisting of N symbols. The
number of occurrences of each symbol ϕi is Ki, and the probability of occurrence is P(ϕi).
Kij represents the number of each symbol left after the forwarding process.

The trust value of the communication layer TC is defined as:

TC = (1− |Rloss − µ|
µ

)× sgn(θ − Rloss) (3)

where Tc means the degree of deviation of Rloss from µ. The greater the degree of deviation,
the worse the node performs the communication task and therefore the lower the trust
value will be. Meanwhile, if Rloss < θ, then the value of trust will be reduced to zero.

3.1.2. Transaction Layer

The definition of trust value at the transaction layer is very similar to the definition of
trust value in the communication layer. The probability density function of Rloss complies
with Equation (1). A transaction data contains Mi indicators, such as item name, price,
transaction number, transaction status, etc. Different transactions have different indicators.
The number of data generated per transaction is N. Then, the total amount of data for the
transaction D0 is:

D0 = ∑N
i=1 Mi (4)

The loss rate of data Rdloss is the ratio of the amount of data loss to the amount of
original data:

Rdloss =
D0 −∑N

i=1 Mij

D0
(5)

where Mij is the data recorded from D0.
The trust value of the transaction layer TT is:

TT = (1− |Rdloss − µT |
µT

)× sgn(θ − Rdloss) (6)

3.1.3. Fusion Trust

The fusion trust value must be able to reflect the change in trust at both the communi-
cation and transaction layers. That means the communication layer and transaction layer
trust values become the two characteristics of the fused trust value:

T = f (TC, TT) (7)
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To simplify the analysis, we assume that the three variables obey a linear relationship:{
T = aTC + bTT
a + b = 1

(8)

where a and b are weighted values of two single-layer trust values. The sum of a and b is 1,
thus ensuring that the fusion trust value ranges between 0 and 1.

3.2. Fusion-Based Trust Anomaly Detection Algorithm

This section explains how the fusion trust evaluation proposed in this paper can be
used for trust anomaly detection to detect the occurrence of an attack and the source of the
attack on time. The notations used in anomaly detection algorithm and their corresponding
meanings are shown in Table 1.

Table 1. Notation table.

Notation Meaning

∆T The amount of change in the trust value.
µ∗ A fixed value of trust.
ρ Trust threshold for anomaly detection.

ΩHR The high-risk interval.
ΩLR The low-risk interval.
Tn The fusion trust value at the nth iteration.
ζ i List of stored fusion trust values tagged with serial number i.
ηi

t The token that needs to be returned is tagged with detection time t.
ξt List of stored abnormal fusion trust values tagged with detection time t.
$R

S List of detection results. R: abnormal or not, S: source of anomaly.
S2 Measuring the degree of deviation between normal trust value and µ∗.
ςt Status flag for the end of anomaly detection.

NT Fusion trust values which are determined to be normal.

We use the amount of change in the trust value (∆T) as an indicator for anomaly
detection. When NN performs a normal network task, the trust value fluctuates up and
down in small increments around a fixed value (µ∗). If the change in trust value is very
drastic and exceeds a certain acceptable threshold (ρ), then an anomaly can be considered
to have occurred. According to the formula presented in Section 3.1, we can obtain ∆T in
the abnormal state:

a(1− |Rloss−µ|
µ ) + b |rdloss−µT |−|Rdloss−µT |

µT
Rloss ∈ ΩHR, Rdloss ∈ ΩLR

b(1− |Rdloss−µ|
µ ) + a |rloss−µT |−|Rloss−µT |

µT
Rdloss ∈ ΩHR, Rloss ∈ ΩLR

a(1− |Rloss−µ|
µ ) + b(1− |Rdloss−µ|

µ ) Rloss ∈ ΩHR, Rdloss ∈ ΩHR

a |rloss−µT |−|Rloss−µT |
µT

+ b |rdloss−µT |−|Rdloss−µT |
µT

Rloss ∈ ΩLR, Rdloss ∈ ΩLR

(9)

after calculating the value of ∆T, we just need to compare this value with ρ to evaluate the
behavior of the node.

The source of the anomaly can be found by comparing the value obtained by ∂T
∂a −

∂∆T
∂a

and ∂T
∂b −

∂∆T
∂b . The value of ∂T

∂a −
∂∆T
∂a and ∂T

∂b −
∂∆T
∂b are shown in Table 2. As long as the

value is 0, it means that there is an anomaly in that layer. × means that the result is an
arbitrary real number that is not 0.
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Table 2. The value of ∂T
∂a −

∂∆T
∂a and ∂T

∂b −
∂∆T
∂b .

∂T
∂a
− ∂∆T

∂a
∂T
∂b
− ∂∆T

∂b
Conclusion

0 0 Both layers are abnormal.
0 × Communication layer is abnormal.
× 0 Transaction layer is abnormal.
× × Both layers are normal.

The core idea of anomaly detection algorithm in this model is to loop through the trust
value of the previous iteration and the adjacent trust value to determine the state of the
difference. Algorithm 1 shows the fusion-based trust anomaly detection algorithm.

Algorithm 1: Fusion-based trust anomaly detection algorithm.

Input:ζ i, ρ, µ∗
Output:ηi

t, $R
S , ςt, S2

begin
1: detection system is ready
2: returnηi

t
3: for n = 1: length(ζ i)
4: Tn = ζ i(n), Tn+1 = ζ i(n + 1)
5: ∆T = Tn − Tn+1
6: if ∆T < ρ then
7: be considered normal
8: else
9: Tn+1 is added to ξt(n)
10: end for
11: foreach T in ξt(n)
12: if ∂Tn

∂a −
∂∆T
∂a = 0, ∂Tn

∂b −
∂∆T
∂b 6= 0

13: anomaly source is in communication layer
14: elseif ∂Tn

∂a −
∂∆T
∂a 6= 0, ∂Tn

∂b −
∂∆T
∂b = 0

15: anomaly source is in transaction layer
16: elseif ∂Tn

∂a −
∂∆T
∂a = 0, ∂Tn

∂b −
∂∆T
∂b = 0

17: anomaly source is in both layers
18: return $R

S
19: end for
20: S2 = 1

n−1 ∑n
i=1(NTi − µ∗)

2

21: return S2, ςt
end

The steps involved in the algorithm are shown below:

Step 1: Get fusion trust values Tn and Tn+1 from ζ i. After the acquisition is complete, to
ensure repeat detection, it needs to be marked with ηi

t and returned to the trust
manager to indicate that the fusion trust value at that time has been received for
detection.

Step 2: Calculate ∆T = Tn − Tn+1. The value of ∆T is compared with ρ. If ∆T is less than
the threshold, it can be considered normal. If the value is greater than the threshold,
it can be considered to have a high probability of an abnormal condition. The
filtered trust values with a high probability of anomalies are stored in a list ξt.

Step 3: Calculate ∂Tn
∂a −

∂∆T
∂a and ∂Tn

∂b −
∂∆T
∂b . If the value is 0, then it is assumed that an

abnormal condition has occurred at that layer. After all the fusion trust values have
been detected, a list $R

S storing the detection results is returned.
Step 4: Calculate the deviation of all trust values (S2) judged as normal from the theoretical

trust value of the system. The value of S2 provides a comprehensive measure of
the stability of nodes performing communication tasks.
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Step 5: When the exception detection is complete, an end flag ςt is returned. All stored
lists (ζ i, ξt, $R

S ) will be cleared for the next round of detection.

4. Blockchain-Based Trust Management

In this section, we present the trust management part of the fusion trust evaluation
model proposed in this paper. Trust management is implemented mainly by using a
smart contract on the blockchain. The trust values recorded in the block are managed by
modifying the smart contract.

We chose consortium blockchain as a tool for trust management due to its advantages
in data storage. Consortium blockchain is jointly maintained by multiple organizations
involved, and they share resources and responsibilities to ensure the stability and reliability
of the whole system. In the consortium blockchain, smart contracts perform various
operations automatically and transparently, and each participant can view and verify the
data at any time. This transparency increases the trustworthiness of the entire system and
reduces the risk of fraud and manipulation. If the consortium blockchain [30,31] is applied
to the model proposed in this paper, then it can make the record of the trust value of each
round more accurate and ensure the openness and transparency of the fusion trust record.

Hyperledger Fabric is a consortium blockchain [32,33]. The sample network of Fabric is
shown in Figure 2. This network is constructed by an organization of R1, R2, and R3. The
configuration of the network is preserved in C1. O is a sorting service node that was first
defined in the sample network. CA1, CA2, and CA3 are Certificate Authorities belonging to
R1, R2, and R3, respectively. Certificate Authorities (CA) [34] assign certificate X.509, which
can be used to identify components belonging to the organizations R1, R2, and R3. The
alliances R1, R2, and R3 have formed to add a channel to this network. Peers P1 and P2
are fundamental elements of the network, carrying copies of ledgers L1, L2, and chaincode
(contains smart contract S1, S2). With this channel, the App can access the ledger by invoking
chaincode. By understanding the architecture of the entire network, it is possible to understand
how the chaincode functions in the network. First, we need to write a smart contract [35] as
an organizer of the network. Then, package the smart contracts in the form of chaincode, and
install the package on peers. Next, only when all organizations in the alliance have approved
the chaincode definition can the chaincode be committed to the channel. Finally, the App can
invoke chaincode to have access to the context of ledger. Most of the steps can be done on the
fabric platform by calling the relevant commands directly.
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Trust management mainly uses smart contracts to invoke the ledger and record the
fusion trust values into the ledger. When the fusion trust values need to be retrieved for
data processing, the smart contract also needs to be invoked to get the ledger information.
The details of the smart contract are shown in Algorithm 2.
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Algorithm 2: Trust Management Based on Smart Contract.

Input: Fusion trust
Output: Ledger
begin
1: % InitTrust: Initialize the ledger and assign initial values to the trust values.
2: define a structure Trust containing N,id1,id2,t,trust1,trust2
3: Assign an initial value to each structure element
4: % CreateTrust: Set a new trust record.
5: Define a newly written trust value
6: Check if the trust value is repeated
7: if not repeated then
8: return ctx.GetStub().PutState(N,id1,id2,t,trust1,trust2)
9: end if
10: % ReadTrust: Read a trust record.
11: ctx.GetStub().GetState(N,id1,id2,t,trust1,trust2)
12: % UpdateTrust: Update the trust value.
13: Change the value of trust
14: Check if the trust value is repeated
15: if not repeated then
16: return ctx.GetStub().PutState(N,id1,id2,t,trust1,trust2)
17: end if
18: % DeleteTrust: Delete a trust record.
19: return ctx.GetStub().DelState(N,id1,id2,t,trust1,trust2)
end

Within Hyperledger Fabric, a high-level Application Programming Interface (API) is
provided. When using the contract API, each chaincode function that is called is passed a
transaction context “ctx”, from which you can get the chaincode stub (GetStub()), which
has functions to access the ledger (e.g., GetState()) and make requests to update the ledger
(e.g., PutState()).

In Hyperledger Fabric, the chaincode can only function if it is deployed to the channel.
The steps for deploying a chaincode are shown below:

• Package the smart contract. Package smart contract into chaincode before it can be
installed on peers;

• Install the chaincode package. After packaging the smart contract, we can install the
chaincode on our peers. The chaincode needs to be installed on every peer that will
endorse a transaction;

• Approve a chaincode definition. After installing the chaincode package, we need
to approve a chaincode definition for the organizations. The definition includes the
important parameters of chaincode governance such as the name, version, and the
chaincode endorsement policy;

• Commit the chaincode definition to the channel. After a sufficient number of orga-
nizations have approved a chaincode definition, one organization can commit the
chaincode definition to the channel. If a majority of channel members have approved
the definition, the commit transaction will be successful and the parameters agreed to
in the chaincode definition will be implemented on the channel;

• Invoke the chaincode. After the chaincode definition has been committed to a channel,
the chaincode will start on the peers joined to the channel where the chaincode was
installed. The chaincode is now ready to be invoked by client applications.

5. Results

This section will show the superiority of the proposed scheme in this paper by compar-
ing it with traditional trust management models, and show how neural networks achieve
trust prediction compared to linear weighted trust prediction.
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5.1. Performance of Fusion Trust Evaluation

The accuracy of attack detection is defined as the ratio of the number of attacks detected
by the system to the total number of attacks. The accuracy of the two-dimensional fusion trust
evaluation network in detecting attack behavior is compared with that of the single dimension
trust evaluation network. As shown in Figure 3, with the increasing evaluation process, the
prediction rate of the two-dimension fusion network is stable at around 0.725, which is higher
than either the transaction or communication layers. The accuracy of attack prediction for
communication layer and transaction layer single-dimension trust is very close.
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model in detecting malicious behavior.

It is possible that a malicious node with multiple roles will not use all of them to carry
out an attack, but only one role to implement the attack. The layer of the network that
is not under attack will naturally consider the node a good node, but the two-dimension
fusion network captures the behavior of the node under all roles.

If the observed node is good, its behavior will be relatively stable in the absence of
accidents. Therefore, the trust value will fluctuate up and down around a fixed value. We
test the degree of fluctuation of the trust value calculated by the two-dimension fusion
network and the single dimension network with respect to a fixed value to measure
the stability of the two kinds of systems. As shown in Figure 4, the volatility of a two-
dimension fusion network is smaller than that of a single dimension network, which means
the multiple role fusion framework is more stable.
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With the increasing evaluation process, two-dimension fusion networks tend to grow
more flatly in volatility than single dimension networks. The communication layer and
transaction layer have almost the same fluctuation curve.

5.2. Performance of Trust Prediction

We used 500 data points for the training of the neural network. The trust value of the
communication layer and the trust value of the transaction layer were two dimensions of
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the input data, respectively. The 500 data points were divided in a 5:1:1 ratio into training
data, validation data, and test data. The hidden neurons were 10. The error histogram is
shown in Figure 5. The error distribution was between −0.08021 and 0.1005.
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Figure 5. The error histogram of neural network shows the error distribution of training and
validation data.

Figure 6 shows the Mean Square Error (MSE) after the neural network prediction
and the linear network prediction. MSE measures the extent to which the predicted value
matches the true value. MSE is calculated using the formula 1

n ∑n
i=1
(
Ti − T̂i

)2
. Ti is the

real trust value, T̂i is the predicted value. We calculated the MSE of the neural network
prediction as well as linear network prediction. It can be seen that the MSE of the neural
network prediction was significantly smaller than that of the linear network. That is, the
trust value predicted by the neural network was closer to the true trust value of the nodes.
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6. Conclusions

In this paper, we proposed a multiple role evaluation fusion-based trust management
framework for blockchain-enabled wireless communication system, which is in line with
the ZTNA design philosophy and can be applied to improve the security of 6G. This
framework performs a comprehensive evaluation of the nodes, uses blockchain for trust
value management, and finally uses neural network fitting for trust value prediction.
Compared with the traditional model, we made three optimizations to the single-dimension
trust evaluation model, aiming to increase the security and reliability of communication
and also make the common trust mechanism better.
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