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Abstract: Sound rendering is the process of determining the sound propagation path from an audio
source to a listener and generating 3D sound based on it. This task demands complex calculations,
including trigonometric functions. This paper presents hardware-based inverse cosine function
calculations using the table method and linear approximation. This approach maintains a high
accuracy while limiting hardware size for suitability in sound rendering applications. Consequently,
our proposed hardware-based inverse cosine calculation method is a valuable tool for achieving high
efficiency and accuracy in 3D sound rendering.

Keywords: trigonometric; inverse cosine function; hardware

1. Introduction

Trigonometric functions are fundamental components in various fields, such as 3D
graphics computing, digital signal processing, and communication systems. Implementing
these functions through software necessitates the execution of hundreds of general-purpose
instructions. Nevertheless, the hardware implementation of trigonometric functions is
favored because of its enhanced processing speed and reduced power consumption [1].
Given these benefits, hardware-based implementations of trigonometric functions have
garnered significant research attention and interest [2]. Typically, such research endeav-
ors aim to optimize trigonometric functions in multiple aspects, encompassing accuracy,
processing speed, memory efficiency, and hardware complexity [3–5].

Recently, burgeoning interest in blockchain, metaverse, extended reality (XR), vir-
tual reality (VR), and mixed reality (MR) has spurred research to augment realism and
immersion. While much of this research concentrates on visual components, high-quality
auditory elements are equally crucial for enhancing immersion in virtual environments or
multimedia applications [6].

Sound rendering, a technology that computes various physical properties such as
echo, refraction, and reflection alongside sensor-oriented information, is instrumental in
generating realistic 3D audio [7], requiring intricate calculations, including trigonometric
operations. In immersive environments like virtual reality, the role of sensors is particularly
crucial as they help provide an authentic and accurate experience by closely simulating
real-world acoustics. In the case of [8,9], the use of sensors for capturing hand movements
and controlling virtual objects showcases their significance in enhancing virtual experi-
ences. Meanwhile, ref. [10] highlights the diverse information provided by sensors, further
emphasizing their importance in various applications.

Sensors play an essential role in providing accurate data for sound rendering, which
demands intricate calculations, including trigonometric operations. In this context, sensors
are particularly prevalent in semiconductor devices, where they contribute to real-time data
acquisition and overall faster processing. The efficient implementation of such technologies
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is crucial for sensors, which are widely used in the semiconductor industry. By optimizing
trigonometric functions, it is possible to enhance the capabilities of these sensors, leading
to faster overall processing and improved performance in a wide range of applications.

Calculations for the inverse cosine function are vital to accurately represent physical
properties like diffraction, which significantly bolster realism [11]. Accurately imple-
menting trigonometric functions in hardware presents considerable challenges because
of the algorithmic complexity, leading to increased hardware size and implementation
difficulty [12]. Approaches based on the coordinate rotation digital computer (CORDIC)
algorithm [13,14], linear interpolation [15], and polynomial approximation [16] are used
to surmount these issues. Conventionally, these methods use table-based approximation
techniques that store pre-calculated values to streamline and expedite trigonometric func-
tion processing while maintaining high memory efficiency [17–20]. By integrating efficient
trigonometric function implementations with sensor technology, it is possible to achieve
faster overall processing, contributing to the enhancement of realism and immersion in
various applications.

In this paper, we present an efficient inverse cosine hardware architecture. Our
objective is to achieve hardware implementation with minimal errors and reasonable
hardware size by adopting a modified linear interpolation method based on the traditional
table-based interpolation technique. We propose a modified linear interpolation method
that accounts for the characteristics of the inverse cosine function graph by widening
partition sections in domains with small slopes and shortening them in domains with large
slopes.

This partitioning approach enables us to maintain low error across the entire domain
while preserving a small lookup table (LUT) size. The maximum error value of the proposed
inverse cosine hardware is less than 0.005, meeting the targeted error range. The proposed
architecture is designed to be compatible with the 24 bit floating-point format used in [21,22]
and can be applied with high precision. The proposed architecture has been verified
through synthesis for register-transfer level (RTL) and application-specific integrated circuit
(ASIC) evaluation.

The remainder of the paper is structured as follows. Section 2 describes the background
of the data format adopted in this paper and traditional approaches for implementing
trigonometric functions in hardware. Section 3 describes the proposed approximation
method and inverse cosine hardware, and Section 4 discusses the experimental environment
for hardware verification and error analysis under various conditions. Finally, Section 5
concludes the paper.

2. Background
2.1. Data Format

Figure 1 illustrates a 24 bit data format composed of a 1 bit sign segment, a 6 bit integer
segment, and a 17 bit fractional segment. This is the default data format in ray tracing
hardware [21] and sound rendering hardware [22] to reduce design complexity while
maintaining a high quality. Importantly, this 24 bit data format is also used as the input for
our proposed inverse cosine hardware, being received in a floating-point representation.
To keep in alignment with our objective of minimizing logic size, once received, the data
format is then converted to a fixed-point representation. Nonetheless, compared with a
32 bit precision, there is potential for diminished accuracy, although it is a trade-off we
consciously accepted in our design process to ensure a balance between performance and
complexity.

Figure 1. A 24 bit data format. This data format, in floating-point representation, is used as the input
for the inverse cosine hardware. After being received, the data format is converted to a fixed-point
representation, considering the minimization of logic size.
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Previous research [21] addressed this accuracy issue by devising designs that minimize
precision errors, resulting in the benchmark from [21] demonstrating no discernible visual
issues. Consequently, this study also adopts a 24 bit precision data format capable of
delivering high-quality outcomes using an appropriate design.

2.2. Linear Approximation for Trigonometric Functions

Figure 2 illustrates an example of linear interpolation. The function y = mx + b, derived
from linear interpolation in Section 3, can approximate the value of the original function
g(x). Thus, an approximation with a minimal error rate can be attained by appropriately
partitioning the domain of a given function and using linear interpolation.

Figure 2. An example of linear interpolation. The function g(x) is divided into three sections, each
representing the form of a linear equation.

An approximation method like linear interpolation for implementing trigonometric
functions offers several advantages [23]. First, it exhibits rapid processing speed. The com-
putation speed is significantly enhanced by storing precomputed trigonometric function
values in a table and using them for linear interpolation. Second, it consumes less memory.
The use of discretized function values for linear interpolation decreases overall memory
usage. Consequently, implementing trigonometric functions with linear interpolation is
advantageous in systems with limited memory, such as embedded systems.

2.3. Look-Up Table

The LUT method has been used extensively for calculating trigonometric functions [5,24,25].
This approach stores pre-calculated trigonometric function values in a table, facilitating
rapid access to these values. However, relying solely on the LUT method can produce
errors when the input value does not correspond to the discrete values in the table.

The LUT method is frequently combined with linear interpolation to address this
issue. Moreover, because the LUT method uses pre-calculated values, incorporating linear
interpolation does not considerably affect processing speed. Thus, the use of both linear
interpolation and the LUT method enables a high accuracy and swift processing speed. This
technique also reduces memory usage and hardware complexity, making it a traditionally
favored choice in trigonometric functions.

2.4. Applying Linear Interpolation and Lookup Table for the Inverse Cosine Function

Figure 3 illustrates the graph of Equation (1), representing the inverse cosine function
divided by PI. The range of the inverse cosine function spans [0, PI], while its domain is
[−1, 1]. Several assumptions are made in this study to facilitate hardware implementation.
First, the range is adjusted to [0, 1] by dividing the inverse cosine function by PI. Moreover,
the output value is considered solely for the domain [0, 1]. Given the graph’s symmetry
with respect to the coordinate (0, 1/2), output values for the domain [−1, 0] can be derived
by subtracting 1 from the output values for the domain [0, 1]. These assumptions streamline
hardware implementation without compromising accuracy.

y = acos(x)/π, (1)
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f(x)→ y = msx + bs, (s = 0, 1, 2, ~, k), (2)

Figure 3. The graph of the inverse cosine function divided by pi. It is noticeable that the range of the
original inverse cosine function, [0, pi], has been transformed to the range [0, 1].

Equation (2) defines the lines corresponding to each partition section ‘s’ when the
domain of the inverse cosine function is segmented into k sections for linear interpolation.
Given an arbitrary input value, the equation of the line corresponding to the partition
section encompassing the input value is constructed and used as the linear approximation
in Equation (1). The equation of a line can be defined using the gradient ms and bias bs in
Equation (2). Typically, ms and bs are pre-calculated and stored in the LUT, accessed based
on the input value.

Figure 4 illustrates an example of linear interpolation applied to the domain [0, 1] of
the inverse cosine function. The linear approximation error diminishes as the domain is
subdivided more precisely (as k increases), but the size of the LUT also expands. Conse-
quently, implementing a domain partitioning method optimized for targeted accuracy is
essential.

Figure 4. A schematic of dividing sections for the domain [0, 1].

3. Proposed Inverse Cosine Hardware

In this section, the methods applied to the proposed hardware are introduced.
Section 3.1 describes our design choices, Section 3.2 describes the LUT construction method
based on efficient domain partitioning, and Section 3.3 explains the structure and operation
of the proposed inverse cosine hardware.

3.1. Design Decisions

In this section, we describe some of the underlying goals that have influenced the
design decisions of the inverse cosine hardware architecture. These goals encompass pro-
cessing speed, memory efficiency, hardware complexity, and the minimization of arithmetic
units in trigonometric functions.

Processing Speed. Particularly in real-time systems, the temporal efficiency in task
completion is of utmost importance, emphasizing the objective of latency minimization.
Consequently, an increase in processing speed, achieved through a reduction in latency,
stands as a salient metric and a crucial target in the effective optimization and implementa-
tion of hardware.

Memory Efficiency. Improving memory efficiency means systems have been optimized
to use memory more effectively or to perform the same tasks with less memory. A common
element between the CORDIC algorithm and our proposed inverse cosine hardware is
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the trade-off that exists between the size of the lookup table (LUT) and the accuracy of
computations. An enhancement in memory efficiency can be ascribed to a situation where
the size of the LUT is diminished while simultaneously maintaining or augmenting the
accuracy of the calculations.

Hardware Complexity. The CORDIC algorithm holds a significant advantage of
simplicity in hardware implementation due to its reliance on elementary operations such as
basic addition, subtraction, and bit shift. However, an increase in accuracy might necessitate
the inclusion of complex multiplication or division operations, consequently escalating
the complexity of the hardware. This involves optimizing the hardware architecture to be
straightforward to implement and be devoid of convoluted operational expressions, all the
while not compromising on accuracy.

Minimizing Hardware Complexity. Hardware complexity is a function of various
parameters, including the number of operations, circuit size, power requirements, and
the intricacy of the overall design. Minimizing such complexity is essential for seamless
implementation and rapid operation. Nevertheless, potential limitations in terms of per-
formance or functionality must be considered, thereby emphasizing the significance of
striking a balance between hardware complexity and performance. In our manuscript,
we present an inverse cosine hardware that endeavors to minimize hardware complexity
without forfeiting accuracy.

Minimizing Arithmetic Units in Trigonometric Functions. In the architecture of our
proposed inverse cosine hardware, we have made concerted efforts to minimize the number
of arithmetic units employed. This design utilizes a LUT reference to yield the result with
merely a single multiplication and addition operation. The ability to maintain a high
accuracy with such rudimentary operations is perceived as a notable achievement.

3.2. Approximation Method for Inverse Cosine Function

The accuracy and size of the proposed inverse cosine hardware are contingent on
the total number of partitioned sections (k) and the partitioning approach. We propose a
domain partitioning method to minimize the size of the LUT while adhering to the desired
error range. The proposed method segments the main domain into multiple sub-domains
and partitions the sub-domains that do not meet the error range criteria. As the partitioning
process iterates, the error diminishes, and the degree of partitioning may vary according to
the targeted error range.

Figure 5 illustrates the inverse cosine function and the interval where the slope be-
comes markedly steep within the inverse cosine function. Figure 5 (right) is a magnification
of the domain [0.9, 1] from Figure 5 (left). The magnified graph includes a region where the
slope steepens significantly. In particular, within the domain [0.98, 1.00], the slope can be
observed to be very steep. The actual values of the gradient can be verified through Table 1.

Figure 5. (Left) Inverse cosine graph, and (Right) the inverse cosine graph in the section of the domain
[0.9, 1.00]; it can be observed that the slope dramatically increases as it surpasses approximately 0.99.
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Table 1. The gradient values of linear equations for each section divided by k in the domain [0, 1] of
the inverse cosine graph.

Divided Sections

k 1 2 3 - Second to
Last Section Last Section

Gradient

64 −0.31 −0.31 −0.31 - −1.50 −3.60
128 −0.31 −0.31 −0.31 - −2.11 −5.09
256 −0.31 −0.31 −0.31 - −2.98 −7.20
512 −0.31 −0.31 −0.31 - −4.22 −10.18

Table 1 presents the gradient values for sections 1–3, and the last two sections of the
partitioned intervals. Four cases were considered for the value of k: 64, 128, 256, and
512. In the gentle sections of the inverse cosine graph curve, namely sections 1–3, it can
be observed that the gradient values of the linear equations do not change even as the
value of k increases. On the contrary, in the steep sections of the graph curve, specifically
the last part of the divided sections, the gradient values of the linear equations differ
significantly depending on the value of k. This suggests that the graph curve is indeed
becoming sharply steep, and the common method for linear approximation in such cases is
to further sub-divide the domain.

Table 2 presents the number of LUT entries for various k values, indicating the LUT
size. For the inverse cosine, the main domain is the domain [0, 1]. Thus, ka represents
the partitioning number of the domain [0, 1], and kb refers to the partitioning number of
sub-domains with a sharp slope. In all three examples, the sub-domain division size is set
to be the same as when the main domain is divided into 213 sections. We establish the error
range as ‘less than 0.00125’, so the k value must be 213 or greater. Further explanation on
this is provided in Section 4.2 Error Analysis.

Table 2. Number of LUT entries according to k values.

ka for Domain [0, 1]
(Main Domain)

kb for Section with
Sharp Slope

(Sub-Domain)
Total Entries

(a) 24 29 527
(b) 25 28 287
(c) 27 (26) 26 (27) 191

Table 2 (a) corresponds to the case where the domain [0, 1] is divided into 24 sections,
and the sharp slope section (i.e., the section where errors occur) is further divided into
29 sub-sections. The number of LUT entries is 527. Table 2 (b) corresponds to the case
where the domain [0, 1] is divided into 25 sections, and the error section is divided into
28 sub-sections. The number of LUT entries is 287. Table 2 (c) corresponds to the case
where the domain [0, 1] is divided into 27 sections, and the error section is divided into 26

sub-sections. The number of LUT entries is 191. All three satisfy the error tolerance we set,
but there is a significant difference in the total number of LUT entries.

Figure 6 illustrates the partitioning method used in this study and the calculation
process for the reference address of the LUT given an input value. In this instance, the
partitioning method with the fewest LUT entries from Table 2 in row (c) was selected. There
are two approaches to partitioning the domain for C. The method presented in Figure 6
involves dividing the domain [0, 1] into 27 sections and then dividing the sub-section where
errors occur into 26 sections.
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Figure 6. Schematic of dividing sections for domain [0, 1]. The sections corresponding to the main
domain range from the 0th to the 128th x-coordinates. The sections that pertain to the sub-domain
are included within the 128th x-coordinate, which are divided into 64 parts.

Given an input value, the reference address in the LUT can be derived from the upper
13 fraction bits of the input value s in Equation (2). When the domain [0, 1] is divided
into 27 sections, the reference address for segments 0–127 can be obtained from the upper
7 bits of the input value’s fractional part. For instance, if the upper 7 bits are 0, the input
value belongs to Section 0; if the upper 7 bits are 126, the input value belongs to Section
126. Thus, if the upper 7 bits are 127, the input value’s reference address is encompassed
within sections 127–190, which are the segments produced by partitioning 27 sections into
26. In this case, the reference address can be determined by adding 127 and the lower 6 bits
of the input value’s fractional part.

There are two methods for constructing LUTs: one that generates multiple independent
LUTs for each divided section and another that combines them into a single unified LUT.
While the method of creating multiple LUTs offers certain advantages in terms of processing
speed, the unified single LUT method has benefits in reducing hardware size. Our objective
is to satisfy the predetermined error range while minimizing hardware size, so we have
opted for the unified single LUT approach.

3.3. Proposed Inverse Cosine Function Hardware

Figure 7 illustrates the overall architecture of the proposed inverse cosine hardware,
which comprises three stages in a pipelined design. The operational process proceeds as
follows. In the first stage, preprocessing is conducted, encompassing underflow/overflow
checks, data format conversion, and operations for LUT referencing. In the second stage, the
actual computation for the linear approximation in Equation (2) is executed, incorporating
a multiplier and an adder module. In the final stage, the output is derived through post-
processing, involving data format conversion and underflow/overflow check results.

The lookup tables (LUTs) for the gradient and bias are implemented as read-only
memory (ROM) in our proposed inverse cosine hardware. This decision is based on two
primary reasons. Firstly, once the partitioning scheme satisfies the target error value,
the gradient and bias, which constitute the linear equations for each divided section, are
pre-calculated. As these values are constant and do not change, implementing them in
ROM is appropriate. Secondly, our hardware is designed with the consideration of being
embedded into a sound rendering device. In such an environment, spatial efficiency and
power consumption become critical factors, and ROM fulfills these requirements.
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Figure 7. Block diagram of proposed inverse cosine hardware architecture.

The input for the proposed hardware is passed to the fixed-point formatting module
and the underflow/overflow module. The fixed-point formatting module converts the
input data format from the floating-point to fixed-point and transfers it to the multiplier
module. Moreover, the upper 13 bits of the converted fixed-point’s fractional part are
passed to the RefAddr module for calculating the reference address (Figure 6). The gradient
LUT and bias LUT output ‘ms’ and ‘bs’ values are based on the calculated reference location
from Equation (2). These ‘ms’ and ‘bs’ values are passed to the multiplier and adder
modules.

The multiplier module performs multiplication operations on the inputs received from
the fixed-point formatting module and gradient LUT and forwards the result to the adder
module. The adder module performs additional operations on the inputs received from the
multiplier module and bias LUT and transfers the result to the result formatting module.

The result formatting module outputs 0 if overflow occurs or 1 if underflow occurs
based on the signals received from the underflow/overflow check module. If neither
underflow nor overflow occurs, the value received from the adder module is converted to
a floating-point format and outputted.

4. Experiment
4.1. Experiment Environment

Figure 8 presents the experimental environment devised for the validation of the
proposed inverse cosine hardware. The flow of processing in this environment proceeds
as follows. Input data, encompassing all possible data expressible in 24 bit floating-point
format (0 × 0~0 × 3E0000) within the range of 0 to 1, are transmitted to software and
hardware components.
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Figure 8. An experimental environment for validation. It was composed of a software model based
on the C programming language and a hardware model based on Verilog HDL.

The software for validating the functionality of the inverse cosine function is comprised
of a C model and an emulator version. The C model utilizes the inverse cosine function
library provided by the C programming language. On the other hand, although the
emulator is based on the C language, it implements the inverse cosine function in a
hardware-like manner, reflecting the exact operations of the hardware.

The output values from the C model serve as a reference for the received inputs.
Consequently, the emulator’s output values are compared to these reference values to
calculate the error. The inverse cosine hardware, built using Verilog HDL based on Figure 7,
undergoes validation by comparing its output values with those of the emulator.

Adding to this, the primary purpose of the emulator, designed for the validation of the
proposed inverse cosine hardware, is to reflect the operations of the hardware as accurately
as possible and verify the accuracy of the output values through this reflection. During
this process, the error was calculated by comparing the output values of the emulator
with the inverse cosine function available in the standard library of the C language. This
approach aims to ensure the accuracy of the hardware while emphasizing the practicality
of hardware implementation.

4.2. Error Analysis

Section 3.2, “Approximation Method for Inverse Cosine Function,” discusses setting
the range for the predefined error value to be less than 0.00125. The inverse cosine hardware
we propose is designed to incorporate the diffraction characteristics [26] of sound rendering
hardware. The most crucial aspect of implementing the diffraction function is accurately
determining the diffraction path from the source to the listener. The set error range was
initially sufficiently small to prevent errors in identifying diffraction paths. However, we
identified corner cases where the error exceeds this range as we approach one, but we
have determined that this level of error does not interfere with the function of the sound
rendering hardware. As a result, we have adjusted the final error range to be less than 0.005.
This range can still be fine-tuned according to specific requirements or circumstances.
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Table 3 presents the F_Input, maximum error value (MEV), and reduction rate of MEV
for various k values. F_Input is the input value where the error initially occurs, and MEV is
the maximum error value. The reduction rate of MEV is the rate of decrease in MEV as k
doubles based on the MEV value at k = 64.

Table 3. Error analysis based on k.

k 64 128 256 512

F_input 0.9850 0.9926 0.9964 0.9983

Maximum Error Value 0.01405 0.0099 0.0070 0.0049

Reduction Rate of MEV Standard 70.764 70.747 70.659

As k doubles, the MEV value declines by approximately 70%. Based on this rate of
decrease, to meet our permissible initial error range (less than 0.00125), k must be at least
213, implying that the domain must be divided into 8192 sections. However, partitioning
the entire range into 8192 sections is inefficient as it necessitates a significantly large LUT
size.

Lower k values can be applied to domains with a gentle slope. Two partitioning
methods can be considered to minimize LUT size while satisfying the allowable error range
under the condition of dividing the domain into at least 213 sections. The first method
is to divide the domain [0, 1] into 26 sections and subdivide the last section (including
x-coordinate 1) into 27 sections. The second method is to divide the domain [0, 1] into 27

sections and then partition the last section into 26 sections.
Both methods are identical in that F_Input is included in the last section, and two

LUTs (gradient, bias LUT) have 191 entries. Consequently, regardless of the chosen method,
the size and error remain the same. In this study, we adopted the latter method for
implementation, and the number of LUT entries can be found in Table 1. The partitioning
method we used is illustrated in Figure 6.

4.3. ASIC Evaluation

Table 4 presents the synthesis results and resource utilization for the proposed inverse
cosine hardware. The Xilinx Alveo U250 Data Center accelerator card was used as the
synthesis target board, and the Vivado tool was used for synthesis.

Table 4. Resource utilization of proposed inverse cosine hardware.

LUT REGISTER BLOCK
MEMORY URAM

Used 224 58 0.5 0
Available 1,728,000 3,456,000 2688 1280

Utilization (%) 0.01 <0.01 0.02 0

For ASIC evaluation, 28-nanometer low-power process technology and a Synopsys
Design Compiler were used. The inverse cosine hardware was synthesized at a clock period
of 1.3 ns, corresponding to an operational frequency of 769 MHz. Table 5 presents the
ASIC evaluation results, including the global cell area and gate count. The total area of the
proposed hardware is approximately 2672 µm2, and the gate count is estimated at 7342.

Table 5. Area results according to the ASIC evaluation.

Total Area
(µm2) Gate Counts Operation

Frequency

Inverse Cosine
Hardware 2672.7 7342 769 Mhz
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5. Conclusions

In this paper, we proposed an efficient inverse cosine hardware architecture for sound
rendering hardware. We achieve a small hardware size with a minimal error by applying a
modified linear interpolation method based on the traditional table-based approach. The
proposed architecture is compatible with the 24 bit floating-point format used in previous
research and can also be applied to obtain a high precision. Furthermore, the inverse
cosine hardware was validated through RTL simulation and ASIC evaluation, and the
experimental results confirmed high accuracy and efficiency.

Our approach, based on the modified linear interpolation method, has achieved high
accuracy within a reasonable hardware size. By offering rapid processing through table
lookup instead of complex calculations, our proposed inverse cosine hardware, which has
been designed considering logic size and latency, is expected to contribute to enhancing
efficiency when embedded in resource-limited applications. The inverse cosine hardware
proposed in this paper is already being used in real-time for sound energy calculations in
sound rendering, dealing with various physical phenomena such as diffraction. Notably, it
has demonstrated that it can perform real-time operations without issue even in dynamic
scenes with numerous sound sources, handling up to 16 sources simultaneously.

In the future, there will be a need for more diverse research on bit precision and error
tolerance. Furthermore, while this study focused only on the inverse cosine function, there
is a need for efficient hardware architecture research on other mathematical functions as
well. Through this, it can develop into a more practical technology and provide improved
performance in sound rendering and other multimedia applications.
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