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Abstract: To solve the problem that the common long-tailed classification method does not use the
semantic features of the original label text of the image, and the difference between the classification
accuracy of most classes and minority classes are large, the long-tailed image classification method
based on enhanced contrast visual language trains the head class and tail class samples separately,
uses text image to pre-train the information, and uses the enhanced momentum contrastive loss
function and RandAugment enhancement to improve the learning of tail class samples. On the
ImageNet-LT long-tailed dataset, the enhanced contrasting visual language-based long-tailed image
classification method has improved all class accuracy, tail class accuracy, middle class accuracy, and
the F1 value by 3.4%, 7.6%, 3.5%, and 11.2%, respectively, compared to the BALLAD method. The
difference in accuracy between the head class and tail class is reduced by 1.6% compared to the
BALLAD method. The results of three comparative experiments indicate that the long-tailed image
classification method based on enhanced contrastive visual language has improved the performance
of tail classes and reduced the accuracy difference between the majority and minority classes.

Keywords: long-tailed image classification; contrastive learning; data augmentation

1. Introduction

Image classification [1] is the earliest application of machine learning in the field
of computer vision, and is the foundation of other visual tasks such as object detection
and instance segmentation. Due to the rich semantic information contained in images
(such as multiple targets, scenes, and behaviors), the characteristics closest to human
perception and expression ability, and the gradual optimization of the performance and
cost of visual sensors (mainly cameras), image classification and its derived detection,
segmentation and other visual algorithms are gradually being applied in fields such as
healthcare, transportation, and signal processing [2]. However, in the application process,
due to the unique nature of the actual environment, some difficult to solve problems are
gradually encountered.

In image classification tasks, input data are manually collected and annotated, and
through human intervention, the amount of data in each category are balanced as much as
possible, with no significant difference in sample size among different categories. The man-
ually balanced dataset simplifies the requirements for algorithm robustness; but with the
gradual increase in the focus categories, maintaining the balance among various categories
will bring exponential growth in acquisition costs. For example, if an animal classification
dataset is to be built, it is easier to collect millions of pictures from common data such as
cats and dogs. However, considering the balance of the dataset, it is also necessary to collect
the same amount of samples for rare animals such as snow leopards. With the increase
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in the rarity of the category, the collection volume tends to show exponential growth, as
shown in Figure 1.
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recognition problems into visual language matching problems. After pre-training, model 
training is conducted separately for the head class and tail class, which can improve the 
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In practical applications, such as facial recognition, species classification, autonomous
driving, medical diagnosis, drone detection, and other fields, there is a problem of long-
tailed class imbalance [3]. For example, for autonomous driving, the data on normal
driving will account for the vast majority, while there are very little data on actual abnormal
situations/car accident risks. For medical diagnosis, the number of people with specific
diseases is also extremely uneven compared to the normal population. However, this type
of imbalance problem often makes the training of deep neural networks very difficult.
Classification and recognition systems that directly use long-tailed distribution data for
training often tend to lean towards the head class data, making them insensitive to tail
class features during prediction and affecting the correct judgment of the system [3]. In
traditional methods, a series of common methods to mitigate performance degradation
caused by long-tailed distribution data are based on categories re-balancing strategy, in-
cluding re-sampling training data and re-weighting to redesign the loss function [3]. These
methods can effectively reduce the bias of the model to the head class in the training process,
thus producing a more accurate classification decision boundary. However, because the
distribution of the original data is unbalanced, and the over parameterized deep networks
are easy to fit to this composite distribution, they often face the risk of tail class overfitting
and head class under-fitting.

Given that the problem of class imbalance in long-tailed distribution datasets is very
widespread in practical tasks, it is crucial to train high-performance network models from
many images that follow the long-tailed distribution. Moreover, the difference in class
distribution between training and testing data will greatly limit the practical application
of neural networks. This research topic has important practical significance and is an
important paradigm for promoting the implementation of deep neural networks in model
implementation. How to effectively utilize long-tailed data to train a balanced classifier
is a key issue. From a practical implementation perspective, this study will improve
the speed of data collection and reduce collection costs. This article explores effective
contrastive learning strategies to learn better image representations from imbalanced data,
in order to better apply them to long-tailed image classification. We hope to provide
better development ideas for the application of image classification in today’s gradually
developing image technology. The ECVL method proposed in this article utilizes text label
information of images for pre-training to assist in image classification, transforming image
recognition problems into visual language matching problems. After pre-training, model
training is conducted separately for the head class and tail class, which can improve the
performance of the tail class without sacrificing the performance of the head class.
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2. Related Work

The research contents of this paper is long-tailed distribution image classification.
Long-tailed image classification methods mainly include data re-sampling, data re-weighting,
data augmentation, transfer learning, and ensemble learning. Table 1 shows the advantages
and disadvantages of mainstream long-tailed classification methods.

Table 1. Long-tailed image classification methods.

Method Advantages Limitations

Data Re-Sampling To some extent, it can reduce the imbalance
between head and tail classes.

Causes overfitting of the tail class.
Causes underfitting of the head class.

Data Re-Weighting Assigning weights to different classes and
aggravating the learning of tail class.

It is difficult to choose appropriate weights for
each class.

There may be big differences for different
long-tailed datasets.

Data Augmentation The tail data are extend by data augmentation. Inability to introduce new effective samples.

Transfer Learning Transfer the knowledge of head class to tail class.
Requiring a more complex model or module
design, which can make the model difficult

to train.

Ensemble Learning Multi-expert model ensembling. Expert model ensemble requires more
computational resources.

2.1. Data Re-Sampling

Data re-sampling solves the problem of long-tailed distribution image classification
from the data level. Re-sampling is the most widely used method [4,5] in processing
long-tailed distribution image classification in depth learning, mainly including over-
sampling [6,7], under-sampling [8–10] and mixed sampling [11,12].

The oversampling method mainly reduces the imbalance between the head class
and the tail class by increasing the number of samples of the tail class [6,7]. Inspired by
this, Gupta et al., proposed the repeated factor sampling method [13], which performs
a re-balancing operation on the training data by increasing the sampling frequency of
the tail image. Peng et al., proposed the soft box sampling method [14], which utilizes
class perception sampling to calculate the replication factor for each image based on the
distribution of labels, and replicate the images according to the specified number of times
to solve the problem of class imbalance. Hu et al., designed an instance level class balancing
scheme [15] to balance instance level samples of original images. The balanced samples
are learned to use meta-modules, transferring knowledge from the data-rich header to the
data poor tail. In 2020, Wu et al., proposed non maximum suppression re-sampling [16],
which adaptive adjusts the threshold for non-maximum suppression based on the label
frequencies of different classes, in order to retain more candidate target classes from the tail
class and balance the data distribution by suppressing candidate target classes from the
head class. According to the principle of the oversampling method, this method simply
repeats the positive example, which will cause overemphasis on the positive example, and
it is easy to over fit the positive example. In 2022, Park et al., proposed a oversampling
method based on feature dictionary [6], and built a feature dictionary through a pre-
trained feature extractor. The method of synthesizing samples based on feature dictionaries
enriches the diversity of minority class data by fine-tuning classifiers. In 2023, Li et al.,
proposed some oversampling based on subspaces [7]. This method believes that each type
of sample is formed by common and unique features, and these features can be extracted
through subspace. In order to obtain balanced data, map images belonging to minority
categories are oversampling to more accurately describe minority categories. Balanced data
are obtained by restoring the generated subspace product to the original space.

Compared with the oversampling method, the under-sampling method reduces the
imbalance between the head class and the tail class by reducing the number of samples
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of the head class [8–10]. In 2020, the bilateral branch network (BBN) [17] developed
conventional learning branches and re-balanced branches, using a new bilateral sampling
strategy to address class imbalance issues. Uniform sampling was applied to simulate
the original long-tailed training for conventional branches, and a reverse sampler was
applied to sample more tail class samples for re-balanced branches to improve tail class
performance. In 2021, Lee et al., proposed a framework for classifying unbalanced data
using undersampling and convolutional neural network [8], created a balanced training
set through under-sampling, and then used convolutional neural network for training.
In 2021, Zang et al., proposed a feature and sampling adaptive strategy [18], which used
model classification loss to adjust the sampling rates of different classes on the validation
set, thereby sampling more tail class samples with insufficient representation. In 2022,
Lehmann et al., proposed a subclass based under-sampling method [9], which selects
samples from all subclasses of a class for under-sampling, and identifies subclasses by
clustering the advanced features of the CNN model. In 2023, Farshidvard et al., proposed
a method based on under-sampling and ensemble [10], which divides most classes into
clusters, so that there are no minority class samples in the majority samples of each cluster,
while controlling the size of each cluster.

Mixed sampling [11,12] is a method of combining oversampling and under-sampling
to achieve sample balance. In 2020, Ding et al., proposed a KA integration method of
under-sampling and oversampling [11], under-sampling the majority of classes through
the kernel based adaptive synthesis method, and oversampling the minority classes at
the same time, generating a set of balanced datasets to train the corresponding classifiers
separately, and the final results will be voted by all these trained classifiers. By combining
under-sampling with oversampling in this way, KA ensemble is good at solving the class
imbalance problem with large imbalance rate [11]. In 2022, EF Swana et al., studied the
use of a Naïve Bayes classifier, support vector machine, and k-nearest neighbors together
with synthetic minority oversampling technique, under-sampling, and the combination of
these two re-sampling techniques for fault classification with simulation and experimental
imbalanced data.

Re-sampling is the most common method to solve the problem of long-tailed distri-
bution image classification. However, these classic methods generally have poor results.
For example, in the case of Oversampling of tail classes, it may lead to overfitting of tail
classes [6,7], and if there are errors or noises in the samples of tail classes, oversampling
may exacerbate these problems. Under-sampling may lead to insufficient learning of head
classes [8–10] and may result in the loss of valuable data in the head classes. For extremely
imbalanced long-tailed data, under-sampling methods often lose a large amount of in-
formation due to the significant difference in data volume between the head class and
tail class.

2.2. Data Re-Weighting

The data re-weighting strategy aims to minimize the total cost of the classifier, and
solves the problem of imbalanced data classification by adjusting the loss values of different
classes during training and increasing the attention of minority class samples during
model learning.

In 2017, Lin et al., proposed focal loss [19]. During training, this loss function can
automatically reduce the weight of the head class, making the model focus on learning
the tail class. In 2017, Hermans et al., proposed the triplet loss function [20], and used
the Gradient descent to train samples with small differences. In 2019, class balanced loss
(CB) [21] introduced the concept of effective sample size, which alleviated the problem of
class imbalance by forcing a class balance re-weighting term that is inversely proportional to
the number of effective samples in the class. In 2019, Cao et al., proposed label-distribution-
aware margin loss (LDAM) [22], which involves the model learning the initial feature
representation before re-weighting. In 2020, the distribution balance loss [23] was alleviated
by a new tolerant regularization method to alleviate gradient over suppression. At the same
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time, it also evaluates the difference between the expected sampling frequency and the
actual sampling frequency for each class, and then uses the quotient of these two frequencies
to recalculate the weighted loss values for different classes. In 2020, equalization loss [24]
proposed to directly reduce the weight of loss values for tail class samples when the tail
class samples are negative sample pairs for a large number of head class samples. In
2021, equalization loss v2 [25] extended equalization loss by introducing a new gradient
re-weighting mechanism that dynamically increases the weight of positive gradients and
decreases the weight of negative gradients for model training on each subtask. Seesaw
loss [26] re-balances the positive and negative gradients of each class using mitigation
and compensation factors. LADE [27] introduces label distribution decoupling loss to
disentangle the learning model from the long-tailed training distribution, and then adapts
the model to any test class distribution when the test label frequency is available.

Balanced meta-softmax [28], optimizing sample distribution by adjusting the model
on the validation set. The progressive margin loss function [29] uses two margin items
to adjust the classification margin of long-tailed learning. Sequential margins extract
discrimination features and maintain class order relationships. The variational margin
gradually suppresses the head class and handles class imbalance in long-tailed training
samples. The adversarial robust long-tailed classification method [30] re-balances data
through a scale invariant classifier and boundary adjustments during the inference process.

Although the data re-weighting method alleviates the imbalance in gradient propor-
tion caused by long-tailed distribution, for some extreme cases, such as when the sample
proportion of tail categories is very small, the recognition accuracy of tail classes is still at a
low level.

2.3. Data Augmentation

Data augmentation aims to utilize a series of data augmentation techniques to enhance
the size and quality of the dataset [31,32] for model training. In 2021, Zhang et al., proposed
a data augmentation method based on neighborhood risk minimization [33], which helps
correct overconfidence in the model. In the decoupling training scheme, this method
has a positive impact on representation learning and a negative or negligible impact on
classification learning. Based on these observations, data mixup is used in the decoupling
training scheme to enhance representation learning.

In addition, the Remix method also adopts a method for long-tailed learning and
introduces a re-balancing hybrid enhancement method to enhance tail classes. In 2021,
Li et al., proposed Meta semantic augmentation (MetaSAug) based on meta learning [34],
using a variant of implicit semantic data augmentation (ISDA) [35] to enhance tail classes.
ISDA obtains semantic direction by estimating the covariance matrix of sample features,
and translates deep features along multiple semantic meaningful directions to generate
a diverse enhancement samples. However, due to insufficient tail class samples, it is
impossible to estimate the covariance matrix of tail class. To solve this problem, MetaSAug
explores meta learning to guide the learning of each class’s covariance matrix. In this
way, the covariance matrix of tails can be estimated more accurately, thus generating
rich tail class feature information. Although data augmentation methods enhance the
diversity of training samples, they are prone to introducing noise and ambiguity during
the training process.

2.4. Transfer Learning

Transfer learning is to transfer knowledge from the source domain to enhance model
training in the target domain. The source domain is a different domain from the test sample,
but it has rich supervisory information. The target domain is the domain where the test
sample is located, with no labels or only a few labels. There are mainly four transfer learning
schemes in the deep learning processing of long-tailed distribution image classification,
namely, head-to-tail knowledge transfer, model pre-training, knowledge distillation and
self-training.
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The knowledge transfers from beginning to end is to transfer the knowledge of the
head class to the tail class to enhance model performance. Yin et al., proposed feature
transfer learning (FTL) [36], which uses the intra-class variance knowledge of the head class
to enhance the characteristics of the tail class samples, so that the tail classes features have
higher intra-class variance, so that the tail class gets better performance. The LEAP [37]
method proposed by Liu et al., constructs a “feature cloud” for each class by adding tail class
samples with certain interference in the feature space, seeking to transfer the knowledge of
the head class feature cloud to enhance the intra-class variation in the tail class feature cloud.
This method effectively alleviates the problem of inter class feature variance distortion.
The online feature enhancement method [38] uses class activation mapping to decouple
sample features into specific class features and uncertain class features, and combines the
class specific features of the tail class samples with the class unknown features of the head
class samples to enhance the tail class. Then, using all enhanced and original features, the
model classifier is fine-tuned using a re-balancing sampler to achieve better long-tailed
learning performance.

Model pre-training is one of the commonly used methods for deep learning model
training. Domain-specific transfer learning [39] uses all long-tailed samples to pre-train
the model, and then fine tune the model on the training subset of classes’ balances. Slowly
transfer the learned features to the tail class to achieve a more balanced performance
among all classes. In addition, the self-supervised pre-training method [40] first uses
self-supervised learning (such as comparative learning [41] or rotation prediction [42]) for
model pre-training, and then carries out standard training on long-tailed data. This scheme
is also used to process long-tailed data with noise labels [43]. The proposal of the visual
and language pre-training dataset (Conceptual 12 M [44]) has promoted the development
of visual language models in the field of long-tailed recognition.

Knowledge distillation is the training of student models using the output of well-
trained teacher models. The learning from multiple experts (LFME) method [45] divides
the entire long-tailed distribution dataset into several subsets with less imbalanced classes,
and train multiple experts with different sample subsets. Based on these experts, the
LFME method utilizes adaptive knowledge distillation methods and selects difficult course
examples to train a unified student model. The routing diversity distribution-aware experts
(RIDE) [46] introduces a knowledge distillation method on the basis of a multi-expert
framework to reduce the parameters of the multi-expert model by learning a student net-
work model with fewer experts. The self-supervised distillation method [42] has invented
a new self-distillation scheme to enhance decoupling training. The decoupling training
scheme trains a calibration model based on supervised and self-supervised information,
and then uses the calibration model to generate soft labels for all samples. Afterwards, a
new student model is extracted using the generated soft labels and the original long-tailed
labels, and finally a new classifier fine-tuning stage is entered. In addition, the distillation
virtual instance method [47] uses a class equilibrium model as the teacher model to solve
the long-tailed classification problem.

The purpose of self-training is to learn well-performing models from some labeled
samples and numerous unlabeled samples. The Class balancing self-training (CReST)
method [48] studied self-training in long-tailed classification and found that the supervised
model has high classification accuracy for tail classes. Based on this discovery, CReST
proposes to select more tail class samples for online pseudo labeling in each iteration,
enabling the retrained model to achieve better performance on tail classes. The MosaicOS
method [49] pre-trains the model using scene centered images labeled in the original detec-
tion dataset. The pre-trained model is fine-tuned in two stages: first, the pseudo labeled
object centered image is fine-tuned, and then the original labeled scene centered image
is fine-tuned, which can alleviate the negative impact of data differences and effectively
improve long-tailed learning performance.

Due to the introduction of additional knowledge, the transfer learning method im-
proves the performance of the tail class without sacrificing the performance of the head
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class, but the performance improvement is not obvious when the difference between the
head class and the tail class is large. The lack of sufficient tail class samples is one of the
key problems of long-tail learning, and the related methods of transfer learning to deserve
further exploration.

2.5. Ensemble Learning

The method based on ensemble learning solves the learning problem of long-tailed
distribution image by strategically generating and combining multiple network modules
(multiple experts). Long-tailed multi-label visual recognition method [50] explored a
bilateral branch network solution to long-tailed multi-label classification, used the sigmoid
cross-entropy loss function to train each branch for multi-label classification, and forced
the use of logit consistency loss to improve the consistency of the two branches.

The all complete experts (ACE) method [51] divides all classes into several subsets:
one subset contains all classes, one contains intermediate and tail classes, and the other
only has tail classes. ACE train multiple experts with different class subsets, and uses
distributed adaptive optimizers to adjust the learning rate of different experts. In 2022,
the ResLT [52] method proposed by Cui et al., also had an idea similar to ACE. The Test
time aggregating diverse experts (TADE) [53] explores multiple expert schemes to handle
long-tailed recognition problems, where the distribution of test classes can be uniform or
long-tailed. TADE provides two solutions: one is a diverse expert learning strategy that can
train experts with different class distributions based on the characteristics of long-tailed
distribution datasets. The second is the testing time expert aggregation strategy, which
can use self-supervised methods to aggregate multiple experts to process data of various
unknown test distributions. The methods based on ensemble learning usually achieve
better performance on the head and tail classes. However, such methods often result in
higher computational costs due to the use of multiple experts.

3. Method

Real data often follow a long-tailed distribution, with the head class dominating the
training and the tail class having only a few samples, which is a major challenge in the field
of image classification. The existing methods either use manually balanced datasets (such
as ImageNet) or develop more robust algorithms to process data, such as class re-balancing
strategies and network module improvements.

Although the above methods are effective for long-tailed distribution datasets, they
sacrifice the performance of the head class at different levels. To address these limita-
tions, researchers have turned to exploring new network architecture training paradigms.
Long-tailed classification models typically include two key parts: feature extractors and
classifiers. For each component, there are corresponding methods, either designing better
classifiers [37,54], or learning reliable representations [55,56]. In terms of the new training
framework, existing work attempts to divide one stage of training into two stages. For
example, the learning process of decoupling training method [57] is decoupled into repre-
sentation learning and classifier training. In addition, the ensemble learning scheme [51,53]
first learns multiple experts with different data subsets, and then combines them to deal
with the long-tailed distribution image classification problems. However, these methods
all use a limited set of predefined labels to train the model, ignoring the availability of
semantic feature information in the original label text of the image. After research, it was
found that previous work was most limits to a predetermined approach when dealing with
imbalanced datasets, which relied entirely on visual models and completely ignored the
semantic features of the original label text rich in the image itself. This may be a promising
solution to impose additional supervision on insufficient data sources.

The large-scale visual-language pre-training model provides a new approach for image
classification. Through open vocabulary supervision, pre-trained visual-language models
can learn powerful multi-modal representations (input information can be expressed in
multiple ways). Utilize semantic similarity between visual input and text input to transform
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visual recognition into a visual-language matching problem. Comparative visual language
models such as CLIP [58] and ALIGN [59] provide new ideas for long-tailed classification
tasks. The feature extractors of these models integrate image and text modalities, focusing
on learning feature matching between different modalities. They have strong robustness,
but lack the ability to model complex interactions between images and text.

Due to the significant difference in classification accuracy between majority and
minority classes in commonly used long-tailed classification algorithms, the failure to utilize
the semantic features of the original image label text, and the inability of existing contrastive
visual-language models to model complex interactions between images and text, this paper
proposes an enhanced contrastive visual language long-tailed image classification algorithm
(ECVL). The algorithm uses a two-stage training method, designs the loss function for
text and image retrieval, respectively, uses enhanced momentum to compare the loss
function to measure the learning degree of samples, and applies random enhancement to
the categories with insufficient learning degree to further strengthen the learning of the
model for minority samples.

3.1. The Overall Framework

Similar to common contrastive visual-language models, the ECVL long-tailed image
classification algorithm uses a two-stage training approach to transform visual recognition
into a visual-language matching problem through similarity between visual and text inputs.
The first stage mainly uses the visual features of the image and the semantic features
of the original label text to train for most categories. The second stage first uses class
balance for a few categories, and then uses linear adapters to carry out differentiated
training. Finally, use the enhancement momentum to compare the loss function to measure
the memory of the model for samples. For samples with insufficient memory, use the
RandAugment [60] to select random enhancement methods. Enhancing breadth can further
enrich feature representation.

3.2. Contrasting Visual-Language Pre-Training Model

Compare visual language models with a dual encoder architecture, including a lan-
guage encoder Lenc and a visual encoder Venc. Given an input image I, use Venc extracts
the visual features of image I using the equation shown in (1). Similarly, use Lenc encodes
the input text sequence T as its corresponding text feature, as shown in the Equation (2).

fv = Venc(I) ∈ Rdv (1)

fl = Lenc(T) ∈ Rdl (2)

After extracting the features of each modality, use two transformation matrices
Wv ∈ Rdv×d and Wl ∈ Rd1×d project the original visual and textual features into a shared
embedding space, where v and u are d-dimensional normalized vectors, as shown in
Equation (3).

v =
W>v fv

‖W>v fv ‖
, u =

W>l fl

‖W>l fl ‖
(3)

In the pre-training stage, for text–image pairs in a batch, the training goal is to shorten
the distance between the same category and different categories, Lv→l for text retrieval,
Ll→v for image retrieval, where τ indicates that the temperature exceeds the parameter,
and τ represents the number of text–image pairs in a batch. Lv→l and Ll→v are as shown
in Equations (4) and (5).

Lv→l = −
1
N ∑N

i log
exp
(
v>i ui/τ

)
∑N

j=1 exp
(
v>i uj/τ

) (4)
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Ll→v = − 1
N ∑N

i log
exp
(
u>i vi/τ

)
∑N

j=1 exp
(
u>i vj/τ

) (5)

By converting the category labels of an image into a text sequence of “A photo of a
{Class}”, the matching score between the target image and the text sequence of all categories
can be obtained. The category with the highest score is selected as the final predicted
category. The normalized test image features are represented as v, and the normalized text
features are represented as {u1, · · · , uK}. Therefore, the category probability of the test
image is shown in Equations (5) and (6), where pi represents the probability of class i, and
K represents the total number of candidate classes. Finally, the text label with the highest
probability will be selected as the prediction result.

pi =
exp
(
v>ui

)
/τ

∑K
j=1 exp

(
v>uj

)
/τ

(6)

3.3. Balanced Linear Adapters

The performance of contrastive visual-language models on the head and tail classes
is balanced, while traditional contrastive learning methods such as PaCo [61] have lower
performance on the tail classes due to a lack of training samples. Inspired by the zero-shot
classification ability of visual-language comparison models, improvements were made
on the basis of CLIP. The training of long-tailed data is divided into two stages. The first
stage fully utilizes existing training data and ensures the performance of most categories,
while the second stage focuses on improving the learning ability of a few categories. These
two stages aim at the long-tailed and balance training samples, respectively, and refine the
comparison loss function.

According to the research results proposed by Gururangan [62] et al., in Phase I,
model pre-training with domain adaptation and task adaptation can greatly improve the
performance of the target NLP task. Similarly, this applies equally to image classification
tasks. In stage one, pre-training using the contrastive visual-language backbone model on
the long-tailed target dataset is also beneficial for learning most class samples, making full
use of available training data. Since the input of the model in Phase I is to process image
category labels into text sequences, the contrastive loss function used in the pre-training is
Equation (4). The parameters of the text encoder and image encoder are updated instantly
during training. After stage one training, most classes usually achieve good results, while
minority class samples require stage two balance training. The processing of the stage
model is shown in Figure 2.
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Due to the insufficient sample size and limited data for the tail category, direct training
on the backbone in Phrase II will result in overfitting. Therefore, in this stage, pre-training
is not conducted on the backbone, but instead, linear adapters and enhancements are used
to optimize the visual language representation of a few category samples for momentum
contrast loss. As shown in Figure 3, the processing of the semantic features of the original
label text is the same as that of Stage I. Assuming the original image feature is f , the weight
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matrix of the linear adapter is W ∈ Rd×d. The offset is Rd, and the processed image features
can be expressed as Equation (7).

f ? = λ · ReLU
(

W> f + b
)
LDCVL + (1− λ) f (7)

where λ, the residual factor, is used to dynamically combine the image features after
fine-tuning in the second stage with the original image features in the first stage.
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The enhanced momentum contrastive loss function is used to measure the learning of
the model for samples. Assuming xi is the training sample on the long-tailed dataset, xi
The comparison loss is expressed as Li. {Li,0, . . . , Li,t, . . . , Li,T} represents the tracking loss
value Li among T Epochs. Based on this, define the moving average momentum loss, as
shown in Equation (8).

Lm
i,0 = Li,0,Lm

i,t = βLm
i,t−1 + (1− β)Li,t (8)

The β is a hyperparameter that represents the smoothness of the loss. After training
T Epochs using the above moving average momentum loss, the set of momentum losses
for each sample can be obtained as

{
Lm

0,t, . . . ,Lm
i,t, . . . ,Lm

N,t

}
, where N is the number of

training samples in the dataset. Finally, the definition of momentum loss is normalized as
follows, as shown in Equation (9):

Mi,t =
1
2

 Lm
i,t −

−
Lt

m

max{| Lm
i,t −

−
Lt

m
|}

i=0,...,N

+ 1

 (9)

where
−
Lt

m
represents the average momentum loss of the t Epoch. The range of Mi nor-

malized values is [0, 1], with an average value of 0.5, reflecting the model’s level of sample
memory. To promote model learning, use Mi to control the occurrence and intensity of
enhancement indicators. The specific approach follows RandAugment [61], randomly
selecting k types of enhancements and using probability Mi and intensity [0, Mi] apply
each enhancement. Assuming that the enhancement set defined by RandAugment is
A =

(
A1, . . . , Aj, . . . , AK

)
, where K is the enhancement amount, k enhancements are ap-

plied in each step. On this basis, define a memory enhancement function, as shown in
Equation (10).

Ψ(xi; A, Mi) = a1(xi) . . . ak(xi),

aj(xi) =

{
Aj(xi; Miζ)

xi

u ∼ U (0, 1)&u < Mi
other

(10)

where ζ sampling is from uniformly distributed U (0, 1). Aj(xi; Miζ) represent xi undergoes
the j enhancement with a strength of Miζ. Apply the selected k enhancements in sequence
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in A. For simplicity, use Ψ(xi) to represent Ψ(xi; A, Mi). In this paper, the enhanced
momentum loss function is shown in Equation (11).

LDCVL =
1
N ∑N

i −log
exp
(

f (Ψ(xi))
> f (Ψ(x+i ))

τ

)
Σx′i∈X′ exp

(
f (Ψ(xi))> f (Ψ(x′i))

τ

) (11)

where X′ represents X− ∪
{

x+i
}

, xi and x+i represents two views of a sample, x′i ∈ X− is
a view of other samples. Intuitively, the enhanced momentum contrastive Loss function
is used to measure the memory of the model for the samples, and adaptively allocate
appropriate enhanced strength for the samples with insufficient memory.

In the training process of stage 2, to avoid the model deviating from the head class,
a class balance sampling strategy [8] is still used to construct a balanced training sample
set. Assuming there are K classes in the target dataset to form a total of N training samples.
The number of training samples for class j is expressed as nj. Then, use Equation (12) to
represent N.

N = ∑K
j=1 nj (12)

Assuming that classes are sorted in descending order, the long-tailed distribution
means ni ≥ nj (i < j and n1 � nK). For class balanced sampling, the probability of
sampling each data point from class j is defined as qj = 1/K. In other words, to construct a
balanced training sample set, first select a class from K candidate objects, and then sample
a data point from the selected class. Finally, through stage two, use Lv→l to fine tune the
balanced training data.

3.4. Algorithm Description

Based on the introduction of the ECVL long-tailed image classification algorithm in the
previous text, this section mainly introduces the training process of the long-tailed image
classification algorithm based on enhanced contrastive visual language in two different
stages: stage one and stage two, as shown in Algorithms 1 and 2.

Algorithm 1 is the training process for model stage one, which simultaneously trains
the visual and language branches of the visual language model. In each Epoch, it is pre-
ferred to input images and corresponding category text information; Afterwards, the visual
features of the image and the semantic features of the original label text are extracted using
Equations (1) and (2), respectively. Additionally, then use Lv→l to perform text retrieval
using Ll→v to perform image retrieval to obtain associated image and text information.
Finally, use Equation (6) to predict the image category, and evaluate the prediction results
using evaluation indicators after the classification is completed.

Algorithm 1: Phrase I

input: Iinput = {images, labels}, Tinput = {texts, labels}
output: modelweight

1: for epoch = 1 to max_epoch do
2: T = Encode(labels, text)
3: I = Encode(labels, images)
4: train(model, I)
5: Eval(model, images, labels)
6: Logits(I, T)
7: pthepoch = {weight}
8: end for

Algorithm 2 is the training process for model stage 2. The model first balances a few
types of samples, and then fine tunes the linear adapter. After fine tuning, it uses the
enhanced momentum loss function described according to Equation (11) to evaluate the
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sample learning situation. For samples with insufficient representation of learning features,
RA random enhayncement is used. Finally, the features learned in these two stages are
dynamically fused and output.

Algorithm 2: Phrase II

input: Iinput = {images, labels}, Tinput = {texts, labels}, modelstage1
output: weight

1: model = load(best_model)
2: for epoch = 1 to max_epoch do
3: if epoch >= 2 then
4: I = Rebalance(Momentum)
5: end if
6: Momentum = model(I, labels, epoch)
7: train(model, I)
8: eval(model, images, labels)
9: Logit(model, I, T)
10: pthepoch = {weight}
11: end for

4. Experiments

The ECVL algorithm takes 229 s to infer 100 images on a single NVIDIA A100 40 G
GPU. In order to verify the performance of the proposed ECVL long-tailed image classifi-
cation algorithm, experiments were carried out on three common long-tailed distribution
datasets CIFAR100-LT, Places-LT and ImageNet-LT to analyze the performance of this
algorithm, and ablation experiments were conducted to prove the role of enhanced mo-
mentum in comparison with the loss function and random enhancement. This section
may be divided by subheadings. It should provide a concise and precise description of the
experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.

4.1. Long-Tailed Image Datasets

The dataset used in the comparative experiment of this paper is a common dataset
in the field of long-tailed image classification, including CIFAR100-LT [27], Places-LT [63],
and ImageNet-LT [63]. The composition of each dataset is introduced below.

4.1.1. CIFAR100-LT

CIFAR100-LT [27] is the dataset obtained by long-tailed of the dataset CIFAR100. It is
created by reducing the number of training samples of each class through the exponential
function, and the test set remains unchanged.

4.1.2. Places-LT

Places-LT [63] is a dataset obtained by long-tailed transformation based on the Places [55]
dataset. The Places dataset contains 10 million images classified by scene, and the label of
the sample represents the meaning of the scene. It is currently the largest scene dataset in
the world with the largest sample size, as shown in Figure 2. The long-tailed rate of the
training set in the Places-LT dataset is 996, and the number of categories is 365. The total
sample size in the training set is 62,500, and the sample size in the test set is 7300. The
category with the largest sample size in the training set is 4980, while the category with
the smallest sample size is 5. The ratio of the maximum to minimum sample size is 996,
making it the dataset with the largest long-tailed rate used in this article.

4.1.3. ImageNet-LT

ImageNet-LT [63] was obtained through the long-tailed ImageNet dataset, with a total
of 1000 categories. The total number of samples in the dataset exceeds 186 K, with 116 K
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training samples, 20 K validation samples, and 50 K testing samples. In ImageNet-LT,
the long-tailed rate in the training set is 256, the maximum class sample size is 1280, and
the minimum class sample size is 5. This dataset simulates the distribution of long-tailed
data commonly found in real life. The data in the training set are divided into three parts.
The header category contains categories with a sample size greater than 100, the middle
category contains categories with a sample size greater than 20 but less than 100, and the
tail category contains categories with a sample size smaller than 20.

4.2. Experimental Design and Validation

All experiments in this article are based on Python implementation, version 1.7.1.
The server system used in the experiment is Ubuntu 20.04, CUDA version 10.1, and the
AdamW optimizer and 300 Epochs are used to train the model. The experiment was trained
on a NVIDIA A100 40 G × 8 GPU device. The configuration details of the experimental
environment are shown in Table 2.

Table 2. Experimental environment.

Name Model/Parameter

CPU Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz
GPU NVIDIA A100 40 G × 8

Memory 128 G
Hard disk 1 T

Operating system Ubuntu20.04
CUDA CUDA Version 10.1

Deep learning framework Pytorch 1.7.1
Development language Python 3.7

4.2.1. Experimental Results and Analysis of CIFAR100-LT

In this experiment, the backbone network used by ECVL was ResNet-50, and the
experiment was conducted on the long-tailed distribution dataset CIFAR100-LT. The exper-
imental results are shown in Table 3. The enhanced contrastive visual language long-tailed
classification algorithm proposed in this paper has an accuracy of 20.5% and 17.2% higher
in tail categories than RIDE [46] and TADE [53], and an accuracy of 6.7% and 6.0% higher in
all categories compared to RIDE [46] and TADE [53], respectively. The F1 values are 14.3%
and 11.8% higher than RIDE [46] and TADE [53], respectively. ECVL improves the accuracy
difference between majority and minority classes, not only improving the performance
of majority classes but also improving the recognition accuracy of minority classes. It
also proves that using the semantic features of the original label text as supplementary
information for classification is helpful in improving the performance of the model.

Table 3. Experimental results of ECVL on CIFAR100-LT.

Model Backbone
Accuracy

F1
Head Medium Tail All

OLTR [63] ResNet-32 61.8% 41.4% 17.6% 41.2% 52.3%
LDAM [22] ResNet-32 61.5% 41.7% 20.2% 42.0% 52.9%

cRT [4] ResNet-32 64.0% 44.8% 18.1% 43.3% 51.9%
RIDE [46] ResNet-32 69.3% 49.3% 26.0% 49.1% 57.3%
TADE [53] ResNet-32 65.4% 49.3% 29.3% 49.8% 58.8%

BALLAD [64] ResNet-50 62.4% 52.3% 38.2% 51.6% 62.1%
ECVL ResNet-50 65.0% 57.2% 46.5% 55.8% 70.6%

4.2.2. Experimental Results and Analysis of ImageNet-LT

In this experiment, the comparative experimental results are shown in Table 4. Com-
pared with the long-tailed image classification algorithm that only uses contrastive learning,
the enhanced contrastive visual language proposed in this paper has an accuracy of 29.2%
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higher in tail classes than PaCo [61], 13.6% higher in all classes than PaCo [61], and a
F1 value of 14.9% higher than PaCo [61]. The accuracy of CWTA in tail classes is 7.9%
higher than that of BALLAD [64], 3.4% higher in all classes, and 11.2% higher in F1 values
than BALLAD [64]. This not only proves that the proposed enhanced momentum con-
trastive loss function is more effective than only using contrast loss, but also proves that
using text–image pairs for pre-training is helpful for improving model performance.

Table 4. Experimental results of ECVL on ImageNet-LT.

Model Backbone
Accuracy

F1
Head Medium Tail All

OLTR [63] ResNeXt-50 43.2% 35.1% 18.5% 35.6% 47.6%
cRT [4] ResNeXt-50 61.8% 46.2% 27.4% 49.6% 53.7%

LWS [4]
ResNeXt-152 62.2% 50.1% 35.8% 52.8% -
ResNeXt-50 60.2% 47.2% 30.3% 49.9% 50.6%

ResLT [52] ResNeXt-152 63.5% 50.4% 34.2% 53.3% -
ResNeXt-50 63.0% 50.5% 35.5% 52.9% 55.2%

Balanced Softmax [28]
ResNeXt-101 63.3% 53.3% 40.3% 55.1% -

ResNet-50 66.7% 52.9% 33.0% 55.0% -

PaCo [61]
ResNeXt-50 67.7% 53.8% 34.2% 56.2% -
ResNet-50 65.0% 55.7% 38.2% 57.0% 62.3%

BALLAD [64]
ResNeXt-50 67.5% 56.9% 36.7% 58.2% -
ResNet-50 71.0% 66.3% 59.5% 67.2% 66.0%

ECVL ResNet-50 73.2% 69.8% 67.4% 70.6% 77.2%

4.2.3. Experimental Results and Analysis of Places-LT

In this experiment, the ECVL algorithm uses ResNet-50 as the backbone network
and conducts experiments on the long-tailed distribution dataset Places-LT. The compar-
ative experimental results are shown in Table 5. Compared with the long-tailed image
classification algorithm that only uses contrastive learning, the ECVL long-tailed image
classification algorithm has an accuracy of 10.1% higher on tail classes than PaCo [61],
an accuracy of 6.0% higher on all classes than PaCo [61], and an F1 value of 7.3% higher
than PaCo [61]; Compared with the comparative visual language model BALLAD [64], the
accuracy on the tail class is improved by 1.3%. The experiment shows that the enhanced
momentum contrastive loss function in ECVL is more effective than only using the contrast
loss function, and it is helpful to train the model by randomly enhancing the samples with
insufficient learning after processing the enhanced momentum contrast loss function.

Table 5. Experimental results of ECVL on Places-LT.

Model Backbone
Accuracy

F1
Head Medium Tail All

OLTR [63] ResNet-152 44.7% 37.0% 25.3% 35.9% 46.4%
cRT [4] ResNet-152 42.0% 37.6% 24.9% 36.7% 45.5%
LWS [4] ResNet-152 40.6% 39.1% 28.6% 37.6% 46.2%

ResLT [52] ResNet-152 39.8% 43.6% 31.4% 39.8% 51.2%
PaCo [61] ResNet-50 37.5% 47.2% 33.9% 41.2% 52.3%

BALLAD [64] ResNet-50 46.7% 48.0% 42.7% 46.5% 56.8%
ResNet-101 48.0% 48.6% 46.0% 47.9% -
ViT-B/16 49.3% 50.2% 48.4% 49.5% -

ECVL ResNet-50 48.6% 48.3% 44.0% 47.2% 59.6%

4.3. Experimental Design and Validation

The ECVL long-tailed image classification algorithm proposed in this paper uses the
visual characteristics of the image itself and the semantic characteristics of the original label
text, the enhanced momentum contrastive loss function and RandAugment to complete
the long-tailed classification, and performs well on the public long-tailed dataset. In order
to verify the effectiveness of enhanced momentum vs. the loss function and random
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enhancement in the model, this section conducts ablation experimental analysis on them on
different public long-tailed distribution datasets, and the experimental results are shown in
Tables 6–8.

Table 6. Ablation experiment of ECVL on CIFAR100-LT.

Module
Accuracy

F1
Head Medium Tail All

no momentum contrast loss + no random augment 62.4% 52.3% 38.2% 51.6% 62.1%
momentum contrast loss 62.5% 53.3% 40.1% 52.4% 65.8%

momentum contrast loss + random augment 65.0% 57.2% 46.5% 55.8% 70.6%

Table 7. Ablation experiment of ECVL on ImageNet-LT.

Module
Accuracy

F1
Head Medium Tail All

no momentum contrast loss + no random augment 71.0% 66.3% 59.5% 67.2% 66.0%
momentum contrast loss 72.5% 68.7% 63.2% 69.4% 70.8%

momentum contrast loss + random augment 73.2% 69.9% 67.4% 70.6% 77.2%

Table 8. Ablation experiment of ECVL on Places-LT.

Module
Accuracy

F1
Head Medium Tail All

no momentum contrast loss + no random augment 46.7% 48.0% 42.7% 46.2% 56.8%
momentum contrast loss 47.0% 47.5% 43.2% 46.5% 58.3%

momentum contrast loss + random augment 48.6% 48.3% 44.0% 47.2% 59.6%

On CIFAR100-LT, the difference in classification accuracy between most categories
and minority categories decreased by 1.8% compared with only using enhanced momen-
tum to compare the loss function and neither using enhanced momentum to compare the
loss function nor using random enhancement; With the enhanced momentum contrastive
loss function and the random enhancement module, the classification accuracy of most
categories and minority categories increased by 2.5% and 3.4%, respectively, than without
the random enhancement module. On ImageNet-LT, compared with using only the en-
hanced momentum contrastive loss function module and neither the enhanced momentum
contrastive loss function nor the random enhancement module, the difference between the
classification accuracy of most classes and minority classes decreased by 0.7%; compared
with the loss function and the random enhancement module with enhanced momentum,
the classification accuracy of most categories and minority categories increased by 0.7% and
1.2%, respectively. Through analysis, it is found that although the accuracy of all classes is
improved by not using the enhanced momentum contrastive loss function or the random
enhancement module, there is still a large difference in the accuracy difference between
the majority of categories and the minority in the final fine-tuning process; after adding
the enhanced momentum contrastive loss function, the accuracy difference between the
majority and minority classes has improved, but in some cases there is degradation (such
as Places-LT dataset). The enhanced momentum comparison between the loss function
and the random enhancement module can improve the overall accuracy and reduce the
accuracy difference between the majority and minority.

5. Conclusions

This article first analyzes the advantages and disadvantages of existing long-tailed
image classification methods, proposes a long-tailed classification algorithm based on
enhanced contrastive visual-language, and then elaborates on the algorithm framework,
algorithm design details, algorithm design process, and comparative experimental analysis.
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In addition, this article conducts comparative experiments and ablation research analysis
on three long-tailed datasets: CIFAR100-LT, ImageNet-LT, and Places-LT.

Compared with BALLAD method, ECVL on CIFAR100-LT reduces the difference
in classification accuracy between majority and minority classes by 5.7%, and increases
F1 by 8.5%. Compared with BALLAD, ECVL on ImageNet-LT reduces the difference in
classification accuracy between majority and minority classes by 1.7%, and increases F1 by
11.2%. Compared with BALLAD, the F1 of ECVL on Places-LT has increased by 5.8%. On
Places-LT, compared with using only the enhanced momentum contrastive loss function
module and neither the enhanced momentum contrastive loss function nor the random
enhancement module, the difference in classification accuracy between most classes and
minority classes decreased by 1.8%. Compared with the non-random enhancement module,
the accuracy rate of minority classification and F1 of the enhanced momentum contrastive
loss function and random enhancement module increased by 0.7% and 1.3%, respectively.
The classification accuracy, difference in accuracy between majority and minority categories,
F1, and convergence of the model in different quantity categories in the experiment have
demonstrated the effectiveness of the algorithm proposed in this paper.

The ECVL method can effectively improve the classification accuracy of tail classes
and reduce the difference in classification accuracy between head and tail classes. However,
due to the use of pre-training mechanisms, the computational complexity of this method is
slightly higher. In the future, improvements can be made in accuracy and complexity to
further improve the performance of long-tailed classification models.
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62. Gururangan, S.; Marasović, A.; Swayamdipta, S.; Lo, K.; Beltagy, I.; Downey, D.; Smith, N.A. Don’t Stop Pretraining: Adapt
Language Models to Domains and Tasks. arXiv 2020, arXiv:2004.10964.

63. Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; Yu, S.X. Large-scale long-tailed recognition in an open world. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2537–2546.

64. Ma, T.; Geng, S.; Wang, M.; Shao, J.; Lu, J.; Li, H.; Gao, P.; Qiao, Y. A Simple Long-Tailed Recognition Baseline via Vision-Language
Model. arXiv 2021, arXiv:2111.14745.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Work 
	Data Re-Sampling 
	Data Re-Weighting 
	Data Augmentation 
	Transfer Learning 
	Ensemble Learning 

	Method 
	The Overall Framework 
	Contrasting Visual-Language Pre-Training Model 
	Balanced Linear Adapters 
	Algorithm Description 

	Experiments 
	Long-Tailed Image Datasets 
	CIFAR100-LT 
	Places-LT 
	ImageNet-LT 

	Experimental Design and Validation 
	Experimental Results and Analysis of CIFAR100-LT 
	Experimental Results and Analysis of ImageNet-LT 
	Experimental Results and Analysis of Places-LT 

	Experimental Design and Validation 

	Conclusions 
	References

