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Abstract: Contemporary advancements in wearable equipment have generated interest in continu-
ously observing stress utilizing various physiological indicators. Early stress detection can improve
healthcare by lessening the negative effects of chronic stress. Machine learning (ML) methodologies
have been modified for healthcare equipment to monitor user health situations utilizing sufficient
user information. Nevertheless, more data are needed to make applying Artificial Intelligence (AI)
methodologies in the medical field easier. This research aimed to detect stress using a stacking
model based on machine learning algorithms using chest-based features from the Wearable Stress
and Affect Detection (WESAD) dataset. We converted this natural dataset into a convenient format
for the suggested model by performing data visualization and preprocessing using the RESP feature
and feature analysis using the Z-score, SelectKBest feature, the Synthetic Minority Over-Sampling
Technique (SMOTE), and normalization. The efficiency of the proposed model was estimated regard-
ing accuracy, precision, recall, and F1-score. The experimental outcome illustrated the efficacy of
the proposed stacking technique, achieving 0.99% accuracy. The results revealed that the proposed
stacking methodology performed better than traditional methodologies and previous studies.

Keywords: wearable sensor; machine learning; stress detection; chest feature; feature extraction;
feature selection

1. Introduction

In the current century, wearable equipment has gained importance. Wearable gadgets
such as smartwatches, eyeglasses, chest bands, prosthetics, and implants are placed on the
human body [1–4]. Wearable sensors have been used for many healthcare applications
such as human activity recognition, stress detection, cognitive health assessment, COVID-
19 detection, cardiovascular diseasedetection, human fall detection, Parkinson’s disease
detection, etc. [5–12]. Wearable technology is just one aspect of the larger Internet of Medical
Things (IoMT) ecosystem [13–18]. The IoMT incorporates different medical devices and
technologies that can connect online and gather and distribute data for medical purposes.
The IoMT includes stationary devices such as hospital screens and imaging equipment,
implantable cardiac and insulin pumps, and ambient devices such as smart beds and
detectors. Together, these devices collect and transmit data, which can be utilized to
monitor patients’ health, identify ailments, and design personalized treatment plans for
them [19–21]. With wearable technology, precise and durable data estimation is feasible,
and this information can be utilized to estimate different factors of human fitness, such as
stress status. By collecting information on irregular heartbeats, bedtime habits, and bodily
movements, wearable equipment can help individuals manage stress effectively [22–27].
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Stress-related health issues are becoming more prevalent worldwide and seriously impact
people’s mental health and quality of life [28]. Stress is a deadly disease that worsens several
dangerous conditions, such as diabetes, cardiovascular disease, and hypertension. The British
Health and Safety Executive reported that, in 2021–2022, stress was the main reason for 50%
of all occupational diseases [29]. Tension or a powerful sense of anxiety is a sign of distress,
a detrimental form of stress. Reduced performance and mental fogginess are side effects of
stress. Chronic or severe illnesses can also cause pain that is very difficult for the body and
brain to handle, leading to depression and other physical and mental health problems [22].
Short-term stress may not necessarily harm young and healthy people with an adequate
protection mechanism in place. Nevertheless, if the disturbing scenario is too often or intense,
this might increase the risk of producing pathological diseases associated with stress and
depression [30]. A stroke or cardiac arrest can be brought about by short-term stress. On
the other hand, long-term stress is known to increase the risk of serious conditions such as
coronary artery disease, high cholesterol, diabetes, and obesity [22]. Stress can have a major
harmful effect on physical and mental health if it persists. In the biomedical field, self-reported
surveys such as the Perceived Stress Scale (PSS) [31] and State-Trait Anxiety Inventory (STAI)
are used to measure the psychological perception of stress [32]. Observing physiological
responses to stress with detectors is another procedure to quantify the stress status. Pursuing
this technique daily for frequent assessment is impossible because it demands time.

Currently, a large number of people are experiencing stress for various reasons. Prob-
lems in one’s personal or professional life, an overwhelming workload at work or school,
and several other sources of worry are examples of these reasons. Long-term stress expo-
sure can cause severe mental diseases, persistent fatigue, decreased activity, a compromised
immune system, and chronic exhaustion. Such disorders can cause sufferers to lose their
effectiveness and become ill and even represent a moral and physical threat to others.
Employers, educators, coworkers, and friends must be aware of this problem because it
could lower productivity among employees and students and lead to a harmful predispo-
sition to other diseases Furthermore, treating such diseases later is more expensive than
diagnosing and treating them early. There still needs to be accurate and effective methods
for identifying stress. To address this issue, modern technologies such as sensors and
machine learning algorithms can save time, money, and human resources. For example,
an employer concerned about their employees’ performance should monitor their stress
levels, which can lead to reduced productivity and an increased probability of making
errors. Implementing machine learning can enhance the quality of diagnostic sensors while
reducing the costs of analyses since, with the help of ML, inexpensive and straightforward
sensors can outperform expensive ones. Furthermore, detecting overstressed individuals
has become highly relevant in light of recent tragic events around the globe.

1.1. Motivation

Healthcare is increasingly adopting AI techniques to improve diagnostics, monitoring,
and overall patient care. However, the success of AI algorithms heavily relies on the avail-
ability of high-quality and diverse datasets [20,33–35]. In the case of stress detection, access
to large-scale and labeled datasets is limited, which hinders the development and evaluation
of accurate AI models. Our study sought to contribute to the availability of such datasets
by utilizing the Wearable Stress and Affect Detection (WESAD) dataset. By conducting
experiments and analyzing this dataset, we aimed to provide valuable insights into stress
detection using chest-based features. The dataset consists of physiological signals, motion
sensors, and self-reported labels obtained from devices worn by participants in various
stress-inducing scenarios. By leveraging the WESAD dataset, we can explore the potential
of chest-based features in stress detection. These features include the heart rate, respiration,
and electrodermal activity, which are relevant indicators of the stress level. Through our
analysis, we aimed to uncover patterns, correlations, and discriminative features that can
aid in accurately detecting stress using AI methodologies. Different researchers have pro-
posed different techniques to predict stress, such as sensor-based approaches [36] and ML
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and DL approaches, such as KNNs, RF, Adaboost [37], and CNNs [38], but these studies
are limited in their performance. To address all these problems, this research proposes
an approach using a machine learning algorithm including logistic regression (LR), linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), and a stacking model
by applying chest features from the WESAD dataset.

1.2. Contribution

This study makes stress detection using chest-based data more precise and efficient.
The paper’s primary contributions and distinguishing characteristics are listed below:

• The research presents a stacking model based on three machine learning algorithms
(LR, LDA, and QDA) for predicting stress using data from chest-worn sensors.

• The WESAD dataset, which includes the five states of transitory, baseline, stress, amuse-
ment, and meditation, was turned into a suitable format for the proposed framework.
Next, we performed feature analysis and selected the optimal features based on statistical
measures.

• The observed outcome illustrated the efficacy of the proposed stacking technique,
achieving 0.99% accuracy. The results revealed that the proposed stacking methodol-
ogy performed better than traditional and previous studies.

1.3. Organization

Section 2 provides the most recent relevant research on wearable sensor-based method-
ologies, ML, and approaches in the healthcare industry. The proposed approach is discussed
in Section 3, which also addresses dataset visualization, data preprocessing, RESP features,
data collection, feature analysis (Z-score, feature selection, SMOTE, and normalization),
and machine learning algorithms. Section 4 describes the proposed approaches’ evaluation
measurements, results, and findings. Finally, Section 5 concludes the research work and
offers suggestions for future investigations.

2. Related Work

This section presents the background of previous state-of-the-art (SOTA) techniques
used to predict stress, such as wearable-sensor-based, machine learning, and deep learn-
ing approaches.

2.1. Wearable-Sensor-Based Methodologies

A major issue with ambient assisted living technologies is automated stress detection.
The authors of [36] discuss the findings of two studies that used a chest belt-mounted pace-
maker to identify stress. The device verification trial determined the sensor’s dependability
by comparing parameters recorded by the belt and heart rate data to data obtained by the
gold standard apparatus. They chose highly correlated, low average error data segments
of significant measurements of chest data for additional processing utilizing an explicit
synchronization and data cleaning technique. The clinical study’s strategy contained two
steps that lasted for 10 min: a palliative step and a mentally stressful stage. They created a
straightforward technique for identifying stress by operating three-time domain parts of the
heart rate motion. According to the results of two state-of-the-art methods used to analyze
the exact data, the strategy produced results with an accuracy, sensitivity, and specificity of
74.6, 75.0, and 74.2 percent, respectively. In article [39], the relationship between pain and
stress is discussed, as well as methods for measuring and identifying them with the aid of
diagnostic implants and worn sensors. Wearable sensors monitor physiological indications,
including pulse rates, neural actions, muscle movements, electrodermal activity, breathing
speeds, blood volume pulsation, and skin conductance. The authors aimed to develop a
wearable health service system technique for stress and pain inspection by examining the
wearable detectors used in healthcare equipment.

In [40], the authors present two experiments using a chest belt and a low-cost sensor
for stress detection. They measured students’ mental stress one week before an exam and
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while using the internet. The heart rate and different aspects of the belt were similar to those
examined during the device verification inspection, confirming the sensor reliability. Gold
standard instruments were used for this comparison. With simple synchronization and
data cleaning techniques, the authors chose extremely clustered, low-average information
elements with the required chest data time for further analysis. The study’s primary goal
was to examine tension throughout students’ college careers. Recruitment should take note
of the results of pressure testing or stressing the student. The proposed architecture in [23]
was established on attribute extraction from gyroscopic measurements and encourages
inexpensive wearable sensors. Heart rate variability (HRV) characteristics and cardiac
timing intervals comprise the feature space for assessing a disease’s severity. Modern
machine learning (ML) techniques divide severity levels into mild, moderate, and severe
categories. With an F1-score of 94.29 percent and an accuracy of 94.44 percent, Light
Gradient-Boosted Machine (Light GBM) performed the best. Moreover, evaluations based
on game theory were used to study the top attributes and how they generally affect
the severity level. The most typical characteristics of AS severity are the isovolumetric
contraction time (IVCT) and isovolumetric relaxation time (IVRT).

To further broaden our paper’s scope, we studied relevant works that have explored
similar areas in healthcare and AI. The authors of [41] addressed security and authentication
challenges in wireless medical sensor networks, which are relevant in ensuring the integrity
and confidentiality of data collected from wearable devices. In [42], the authors proposed a
fog computing architecture that leverages software-defined networking (SDN) to enable
efficient and secure data processing in healthcare applications. This work is relevant as
it highlights the importance of infrastructure and networking solutions to handle the
increasing volume of data generated by wearable devices and healthcare IoT systems.
The authors of [43] presented a knowledge-infused learning framework for cardiovascular
event diagnosis. Although the focus of this work is different, it showcases the potential
of AI techniques in healthcare and highlights the importance of developing accurate and
reliable models for medical diagnostics. Information security has received attention from
academic and industrial sectors for data prevention, integrity, and modification. Traditional
and mathematical security models address information-related challenges, although they
do not guarantee 100% data privacy. Computational intelligence is a powerful technology
that draws inspiration from biological evolution. It is an intelligent agent that recognizes
patterns in complicated and real-world contexts. Artificial neural networks, fuzzy logic,
evaluation computation, and hybrid methods are other subcategories of computational
intelligence. Each branch of computational intelligence was examined in [44] from the
cybersecurity perspective, along with their benefits and drawbacks.

2.2. Machine and Deep Learning Methodologies

Study [37] aimed to identify stress in individuals using machine learning techniques
to enhance their quality of life. The WESAD dataset, a publicly accessible multimodal
dataset, was utilized to access different ML methodologies for identifying individual stress
via ML methods such as k-NN, linear discriminant analysis, random forest, AdaBoost,
and Support Vector Machine. The random forest algorithm performed more adequately
than other algorithms to classify two and three categories, with values of 83.34 and 65.73
regarding the F1-score. In our comprehensive review, we focused on stress recognition
using wearable detectors and appropriate machine learning approaches. This analysis looks
at how stress can be detected using wearable detectors, photoplethysmography (PPG),
electrocardiograms (ECG), electroencephalograms (EEG), and other sensing devices in a
variety of situations, including driving, learning, and working [22].

We proposed an approach based on a convolutional neural network multi-level DNN
with hierarchical learning abilities. A hierarchy of networks is trained to use multivariate
time-series data from wrist-based and chest-based device bio-signals to create high-level
features for each bio-signal feature. The high-level features are incorporated into one
coherent presentation using a proposed model-level fusion technique, which divides the
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stress states into baseline, stress, and amusement categories. The WESAD dataset for
cognitive health is employed to assess the methodology, which corresponds well with
cutting-edge techniques and has an outstanding interpretation accurateness of 87.7% [38].
The author of this study designed a DNN strategy that comprises a multilayer perceptron
(MLP) neural network and a one-dimensional CNN. Deep neural networks can extract
features from raw data through the neural network’s layers without the need for manually
created features. To complete two tasks, the deep neural networks examined physiological
data obtained from wrist and chest sensors. Each neural network was developed to interpret
wrist or chest sensor data. The networks’ first objective was to distinguish between stressed
and non-stressed states in a binary classification for stress detection. The networks used a
three-class classification scheme in the second experiment to distinguish between baseline,
stressed, and amused conditions. The networks were prepared and evaluated using data
from earlier studies made publicly available.

Regarding the classification accuracy for binary and three-class classification, the
deep convolutional neural network achieved 99.80% and 99.55%, respectively. The deep
MLP neural network attained 99.65% and 98.38% accuracy rates for binary and three-class
classification, correspondingly [45]. The authors of [28] proposed a new wearable gadget
that concurrently estimates electroencephalograms (EEG) and electrocardiograms (ECG)
using a non-invasive method. This strategy combines an analog front end (AFE) with
a digital back end (DBE) processor based on machine learning to predict mental stress
utilizing just three electrodes. With the use of readily available commercial components,
a PCB prototype was created. The created prototype has a classification accuracy of
92.7%, a reasonable noise performance of 0.1 Vrms, and can forecast mental stress. The
suggested method is portable and straightforward to wear (behind the ear). For several
stress scenarios, including the Stroop Color and Word Test and the Arithmetic Test, data
were collected from 25 subjects. An external neural network (SNN) classifier categorized
the stress states using various EEG- and ECG-based feature combinations.

The authors of [21] presented a thorough study on stress detection, beginning with an
initial investigation including a population of frail older adults with mild cognitive impair-
ment (MCI) who took part in mental and motor rehabilitation sessions, were fitted with
wearable physiological sensors, and were given a smartphone application for physiological
tracking. Data were gathered using replies received during therapy sessions to determine
how physical activity favors cognitive training. Machine learning classifiers were used
for the prediction of stress utilizing real-world data. In [46], the authors used a machine
learning algorithm to diagnose depression, anxiety, and stress by gathering data using
questionnaires from employed and unemployed people from different countries. Five
distinct ML algorithms were used to predict the occurrence of anxiety, sadness, and stress
on various severity levels. These algorithms are extremely accurate; thus, they are well
suited to forecasting psychological issues. Classes were determined to be imbalanced in
the confusion matrix after using various approaches. To help choose the random forest
classifier as the highest accuracy model among the five applied algorithms, the F1-score
metric was included. The authors of [47] suggested SELF-CARE, a wrist-based stress
detection technique that uses context-aware selective sensor fusion and dynamic sensor
data-driven adaptation. The proposed approach learns to change the fused sensors in the
context of the system using motion, enhancing the performance while preserving energy.
In the publicly accessible WESAD dataset, SELF-CARE offers a cutting-edge performance,
with accuracy scores for the three-class and two-class classification problems of 86.34% and
94.12%, respectively.

3. Proposed Model

The steps of the proposed approach are described in this section. Machine learning al-
gorithms are utilized for chest-feature-based stress prediction. The proposed methodology
is assessed on the following evaluation metrics: precision, accuracy, recall, and F1-score.
The research was validated on Anaconda using jupyter notebook and Python language.
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Figure 1 illustrates the steps of the proposed work individually. Firstly, we used the publicly
available WEASD dataset and performed exploratory data analysis steps for data visual-
ization and preprocessing to convert raw data into a helpful format. RESP was utilized
to extract useful features, and after extracting them, we generated 28 data frames from 14
subjects. In the data preprocessing steps, first, we applied the Z-score to remove outliers
from the dataset. Then, the feature selection step was carried out using the SelectKBest
technique for selecting features. At last, SMOTE was applied for imbalanced datasets
and normalization was applied to scale the feature values in a specified range. The first
ML classifier (LR, LDA, and QDA) was individually applied to the preprocessed dataset.
Then, a stacking technique based on RF, LR, LDA, and QDA was applied to improve the
performance.

Figure 1. Proposed framework overview for stress detection.

3.1. Dataset Preliminaries

This research utilized a dataset available on the public UCI machine learning repository,
which was proposed in [48]. The Wearable Stress and Affect Detection (WESAD) dataset is
widely used in stress detection. It consists of physiological signals, motion sensors, and
self-reported labels collected from wearable devices worn by participants in controlled
experiments. Our study specifically focuses on the chest-based features available in the
WESAD dataset. These features include heart rate, respiration, and electrodermal activity.
These physiological signals have been widely studied in the context of stress detection
and have shown promise in accurately capturing stress-related responses in the body. The
heart rate provides information about the cardiovascular stress response, while respiration
patterns can indicate changes in the autonomic nervous system. The electrodermal activity,
measured through skin conductance, reflects the electrical properties of the skin and is
known to be sensitive to emotional arousal, including stress.

A RespiBAN professional chest-worn device was used for data collection. The RespiBAN
has sensors for measuring ACC and RESP and can serve as an intersection for up to four
other modalities. The four analog ports record the ECG, EDA, EMG, and TEMP. At 700 Hz,
all signals are captured. The RespiBAN covers the subject’s chest. A respiratory inductive
plethysmograph detector is employed to document the RESP. The usual three-point ECG
is used to record the ECG data. The EDA signal is captured on the rectus abdominis, and
the TEMP sensor is positioned on the sternum to permit the subject to move as much as
possible. The upper trapezius muscle’s EMG data are logged on both sides of the spine.
The collected data are kept locally and then moved to a computer for additional processing
after the experimentation to prevent wireless packet loss. These were the steps performed
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in [48] to collect data. This research uses this dataset to detect stress using the RespiBAN
chest sensor device data.

Since we have the raw data from the chest sensor, we created a feature to obtain
valuable data. To this end, we used EDA, EMG, and TEMP columns from the chest sensor’s
raw data. To divide the raw signals into one-minute windows for this feature generation
procedure, we employed a sliding window with a window shift of 0.25 s (except for EMG
data, which was processed with a 5 s window). We started with the TEMP data, representing
temperature in degrees Celsius. We produced several fundamental characteristics for this
column, such as the mean value, standard deviation, dynamic range, and slope for each
window.

Next was the EMG data, which contained electromyography readings calculated in
mV. As stated, a unique 5 s processing window was used for this feature. The mean value,
standard deviation, and dynamic range for each window were generated, along with the
same characteristics as the temperature column. The EDA data, or electrodermal activity
as measured in S, were processed last. Using the raw data, we calculated each window’s
mean value, standard deviation, dynamic range, and slope. We divided EDA into SCL and
SCR, which we found after performing some investigations. The Skin Conductance Level
(SCL) and Skin Conductance Responses (SCRs), caused by sympathetic neural activity, are
vital components of the EDA complex. Hence, we generated mean and standard deviation
features for SCL and SCR components. The number of peaks for each window is another
intriguing feature we evaluated for the SCR component. Figure 2 illustrates the features
extracted from the EDA raw data, and Figure 3 illustrates the SCR peak data detection.
The additional column from the raw data is called ACC, which contains the accelerometer
data utilized to characterize the movement. We created the following characteristics from
this data using ACC data, such as Max|ACC|, 3D means, and 3D standard deviation
for all axes. The absolute integral depicts movement on all axes and in three dimensions.
This was generated within a window of 5 s. The window shift remained constant at 0.25 s.
Electrocardiography data in the dataset are represented in the ECG column, measured in
mV. To add behavioral heart features, we generated the following attributes: heart rate
mean values, standard deviation, maximum and minimum values for every window, NN50
feature, RMSSD feature, average and standard deviation values of distance among peaks
and energy in diverse frequency bands, and rate feature.

Figure 2. Extracting SCR and SCL from EDA raw data.
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Figure 3. SCR data peak detection.

From a non-specialist in life sciences point of view, this feature describes different
biological heart effects, so we accept this data as they are. Window parameters were
standard. Here, to find distances between peaks, we used the find_peaks algorithm to find
the peaks and used the FFT transform of diff(diff(peaks_places)) to generate feature energy
in the different frequency bands. We smoothed the plot with the savior filter and used a
lowpass filter.

3.2. RESP Features

Respiration (RESP) features were produced to understand the effect of stress on the
breathing process of a patient. The features are mean and std inhalation (I) duration; max
amplitude, mean, and std exhalation (E) duration; and max amplitude, E ratio, mean, and
standard deviation values of analog of volume and respiration rate. To generate these,
we used the standard window parameters described above. To determine the duration of
breathing, we used:

• The find_peaks mechanism. It gives very good results, but sometimes there were
several non-detected peaks.

• As a solution to this problem, we proposed an algorithm called find_duration, which
finds the duration only in places where real respiration is detected without error.

• After this algorithm usage, the amplitude can be easily determined.
• As a volume analog, we used the absolute integral of RESP sensor values.

3.3. Data Collection

In this research, we focus on chest sensor data, generally the features extracted from
chest sensor data with some adaptations made based on the raw data parameters such as
the sampling frequency. After extracting the features, we generated 28 data frames from 14
subjects for the chest-based dataset.

3.4. Feature Analysis

Further, we created a feature analysis function that creates binary target values and
builds density distribution functions. We used it to analyze features and understand which
ones can be dropped before fitting. We analyzed data from one subject and had great
results. We could separate stress states and calmness with an accuracy of about 100% for a
particular subject. Moreover, after analysis (density plots), the below features cannot help
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separate these classes. Thus, we decided to drop them. We determined that there are too
many data for fitting. Thus, we decided to make a large test dataset to make fitting faster.

3.4.1. Z-Score Method

The Z-score method is a commonly used statistical technique for identifying and
removing outliers from a dataset. It is based on standard deviation and measures how
far away every data attribute is from the mean regarding the standard deviation [49]. In
our scenario, outliers were removed from the dataset if determined to be data entry errors
or anomalies, and the outliers were replaced with missing values (NaN) to retain the
dataset’s length and structure but exclude extreme values from the analysis. The outliers
were replaced with more reasonable values based on domain knowledge or advanced
imputation techniques if the outliers represented genuine data points.

3.4.2. Feature Selection Using SelectKBest Method

The feature selection strategy called the SelectKBest approach was used to pick the
K-best features from a dataset using statistical criteria. It evaluates the association between
every feature and the target variable and assigns a score to every feature. The feature is
often considered for the target variable, resulting in a higher score [50]. In our scenario,
we assume that DataFrame X contains the features and a numpy array or pandas Series y
contains the target variable. The score_func parameter is set to f_classif, which is appro-
priate for classification tasks. After fitting the selector to the data, the transform method
transforms the dataset X to include only the selected features. Then, we accessed the indices
of the selected features using get_support(indices=True) and retrieved their names from
the original feature set. The number of features chosen, i.e., 10, determines the value of k.

3.4.3. Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE is a popular technique used in machine learning to address class imbalance
problems in classification tasks [51]. It is specifically made to deal with imbalanced datasets
where the majority class has a disproportionately small number of instances compared to
the minority class [52]. In our scenario, X represents the feature matrix and y represents the
target variable. The fit_resample method performs SMOTE oversampling, and it returns the
resampled feature matrix X_resampled and the corresponding target variable y_resampled.

3.4.4. Normalization

Normalization, or feature scaling, is a preprocessing approach utilized in ML to adjust
different features or variables to a similar scale [53–55]. It is performed to ensure that no
particular feature dominates the learning algorithm due to its larger magnitude or unit
of measurement. Normalization typically involves transforming the values of numerical
features to a standard scale, usually ranging between 0 and 1 or −1 and 1. There are several
standard methods for normalization; in this research, we utilized Min-Max normalization
or rescaling. This method scales the feature values to a specified range, often between 0
and 1. The formula for Min-Max scaling is illustrated in Equation (1):

xnormalized =
(x−min(x))

(max(y)−min(y))
(1)

By employing these techniques, we aim to preprocess the data, extract relevant features,
handle class imbalance, and normalize the data for subsequent analysis and modeling. Each
technique was chosen based on its suitability for stress detection, the previous literature on
stress-related features, and best practices in data preprocessing and machine learning. These
methods enhance our stress detection models’ accuracy, interpretability, and robustness.
Then, we split the dataset into training validation and testing sets.
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3.5. Machine Learning Classifiers

Three ML classifiers, such as LR, LDA, QDA, and one ensemble stacking model, are
used to predict stress problems using chest-based sensor data.

Logistic Regression: Logistic regression is a statistical analytical method that utilizes
prior dataset observations to forecast a binary output, such as yes or no. A logistic regression
algorithm constructs predictions regarding a dependent data variable by examining the
correlation among one or more independent variables that are already present [56].

Linear and Quadratic Discriminant Analysis: Linear discriminant analysis (LDA) is a
technique for reducing dimensionality. It is a pre-processing phase in machine learning
and feature classification applications [57]. LDA is employed when a linear border among
algorithms is essential, and QDA is utilized to determine a non-linear boundary among
algorithms. When the feedback categories are different, and the distribution of X = x for each
class is typical, LDA and QDA perform similarly. Stacking: A stacking classifier is used to
leverage the strengths of different models and improve the overall prediction performance.
It can help confound the restrictions of separate models and deliver more authentic and
strong predictions. Stacking is a flexible and powerful technique but it requires careful
consideration of a model, feature engineering, and avoiding overfitting. It can be a practical
approach for improving the classification performance when used appropriately [58]. In
this experiment, we used a stacking classifier by combining the predictions of multiple
base classifiers and another classifier, referred to as the final_estimator, to make the final
prediction. The following base classifiers and final estimator are used:

• Quadratic Discriminant Analysis (QDA): Quadratic discriminant analysis is a classifi-
cation algorithm that assumes each class follows a quadratic distribution. It estimates
class boundaries based on the quadratic discriminant function.

• Linear Discriminant Analysis (LDA): Linear discriminant analysis is a classification
algorithm that assumes each class follows a Gaussian distribution. It calculates the
optimal linear discriminant functions to separate the classes.

• Logistic Regression (LR): The classification procedure known as logistic regression
uses the logistic function to model the connections among the input variables and
their possibility of belonging to a certain class.

• Random Forest: Random forest is an ensemble learning method for making predictions
incorporating numerous decision trees. The final forecast is obtained by voting after
each tree in the forest has been trained using a random portion of the training data.

The choice of the stacking model in our proposed approach is based on its potential
to improve the overall performance and robustness of the stress detection system. The
stacking model is an ensemble learning technique that combines multiple base models to
make predictions. It aggregates the predictions from different models, effectively leveraging
the strengths of each model. By combining the outputs of multiple models, the stacking
model aims to capture diverse perspectives and improve the overall predictive power.

Algorithm 1 describes the method of predicting stress using the chest sensor dataset.
The input is the dataset and the output is the model performance. The algorithm consists of
several steps, such as data visualization (Dv) to visualize the data to gain insights into their
structure and relationships. Data preprocessing (Dp) is performed to clean and transform
the data to make them suitable for modeling. After that, the RESP feature (R f ) step involves
extracting features from the data related to respiratory behavior. Feature analysis (FA) is
performed, in which the following steps are carried out: Z_Score Method, SelectKBest
Method, SMOTE for balancing data, and standard scaler normalization. The dataset is split
into training and testing sets. Four classifiers are trained on the training set: LR, LDA, QDA,
and the stacking model. The classifiers are evaluated on the testing set using evaluation
metrics. The algorithm returns the best results from the evaluation of the classifiers.
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Algorithm 1 Algorithm for Stress Prediction.

1: Input: Chest Sensor Dataset Cds
2: Output: Model Performance Mp
3: Dv ←Data Visualization
4: Dp ←Data Preprocessing
5: R f ←RESP Features
6: DC ←Data Collection
7: FA ←Features Analysis
8: Z_s← Z_Score Method
9: F_s← SelectKBest Method

10: S← SMOTE for balancing data
11: ←Min_Max Scalar
12: xtrain, xtest, , ytrain, ytest {Train Test split}
13: Classi f iersML
14: LR←Logistic Regression
15: LDA←Linear Discriminant Analysis
16: QDA←Quadratic Discriminant Analysis
17: Stacking←Stacking Ensemble Model
18: E_m← Accuracy, Precision, Recall, F1_Score {Evaluation metrics}
19: Return← Best Results

4. Experimental Results and Discussion

This research validation uses the WESAD dataset accessible at the public UCI machine
learning archive. This section explains the evaluation measurements used for the experiment
result and model discussion. It also provides feature extraction, feature analysis, and feature
selection techniques on the used dataset. It applies the stacking technique by combining three
machine learning algorithms to improve the model’s performance.

4.1. Evaluation Metrics

The experiment evaluation is examined using accuracy (A), F1-score (F1), recall (R),
and precision (P) measurements. These evaluation measurements estimate how sufficiently
the proposed approach performs. The percentages of false positives (FP), true positives
(TP), and false negatives (FN) are calculated to evaluate the proposed model’s precision.
The accuracy estimate is represented in Equation (2). It measures the actual positives as
a percentage of all positive data and is sometimes referred to as a value that is greatly
anticipated. The precision rate is shown in Equation (3). Sensitivity, the probability of
prediction, and the possibility of a true positive represent the ratio of real positives to TP
and FN in a dataset. Equation (4) shows the recall rate. The F1-score is calculated as the
weighted average of recall and precision. Equation (5) provides the F1-score.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TN + FN
(4)

F1-score = 2× Precision + Recall
Precision + Recall

(5)

Table 1 illustrates the outcome of a proposed model, including all evaluation metrics
for every model. The models evaluated are LR, LDA, QDA, and stacking. LR attained
an accuracy of 0.978, a precision of 0.998, a recall of 0.975, and an F1-score of 0.986. LDA
attained an accuracy of 0.955, a precision of 0.999, a recall of 0.945, and an F1-score of
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0.971. QDA attained an accuracy of 0.978, a precision of 0.998, a recall of 0.975, and an
F1-score of 0.986. Stacking attained an accuracy of 0.997, a precision of 0.999, a recall of
0.997, and an F1-score of 0.998. These results suggest that all models perform well, but their
performances differ. LR, QDA, and stacking have similar scores, with a high accuracy,
precision, recall, and F1-score. LDA has slightly lower scores, indicating a slight deviation
from perfect predictions compared to the other models.

Table 1. Proposed model result: accuracy—A; precision—P; recall—R; F1-score—F1.

Model A% P% R% F1%

LR 0.978 0.998 0.975 0.986
LDA 0.955 0.999 0.945 0.971
QDA 0.978 0.998 0.975 0.986

Stacking Model 0.997 0.999 0.997 0.998

A confusion matrix (CM) defines how sufficiently a classification algorithm performs.
A CM illustrates and aggregates a classification algorithm’s performance. Figure 4 shows
the CM of the LR algorithm of the proposed model. It shows that if the TP and TN values
are greater than the FP and FN values, the performance of the proposed model improves,
and the model performs well on the used dataset. Figure 5 illustrates the proposed model’s
recursive operating characteristics (ROC) graph. The model outperforms, with an area of
the ROC curve of 0.997%.

Figure 4. Confusion matrix of logistic regression.
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Figure 5. ROC curve of logistic regression.

Figure 6 shows the CM of the LDA algorithm of the proposed approach. It shows that
if the TP and TN values are more significant than false positive FP and negative FN values,
the interpretation of the proposed approach improves, and the model performs well on the
used dataset. Figure 7 illustrates the proposed model’s ROC graph. The area of the ROC
curve is 0.999%, which shows the model performed well.

Figure 6. Confusion matrix of LDA.
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Figure 7. ROC curve of LDA.

Figure 8 shows the confusion matrix of the QDA algorithm of the proposed model.
It shows that if the TP and TN values are more significant than the FP and FN values,
the interpretation of the proposed approach improves, and the model performs well on the
used dataset. Figure 9 illustrates the proposed model’s ROC graph. The area of the ROC
curve is 0.997%, which shows the model performed well.

Figure 8. Confusion matrix of QDA.
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Figure 9. ROC curve of QDA.

Figure 10 shows the confusion matrix of the stacking algorithm of the proposed model.
It shows that if the TP and TN values are more significant than the FP and FN values,
the interpretation of the proposed model improves, and the model performs well on the
used dataset. Figure 11 illustrates the proposed model’s ROC graph. The area of the ROC
curve is 0.998%, which shows the model performed well.

Figure 10. Confusion matrix of stacking.
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Figure 11. ROC curve of stacking.

Table 2 compares the proposed approach with existing approaches in stress detection
using physiological signals. We compared the A% and F1% of different models on the
WESAD dataset. As cited in the table, three existing approaches have been evaluated
and compared with the proposed approach. Study [28] achieved an accuracy of 92.7%
using an SNN model. In study [59], the authors attained an accuracy of 85.7% using a
random forest (RF) model. Another study [38] achieved an accuracy of 87.7% using a CNN
model, and in [60], the authors attained an accuracy of 96.26% using an ANN model. In
comparison, the proposed approach achieved an impressive accuracy of 99.7% and an
F1-score of 99.8% using a stacking model. These results further demonstrate the superiority
of the approach in accurately detecting stress using the WESAD dataset.

Table 2. Comparative analysis of the proposed approach with existing approaches

Ref Dataset Model Accuracy F1-Score

[28] WESAD SNN 92.7 -
[59] WESAD RF 85.7 -
[38] WESAD CNN 87.7 -
[60] WESAD ANN 96.26 -

Proposed
approach WESAD Stacking model 99.7 99.8

The suggested method employs a stacking model with an F1-score of 0.998 and an
accuracy of 0.997 to identify stress. The outcomes demonstrate that the suggested strategy
performs better than the current approaches regarding accuracy and F1 score.

4.2. Discussion

To evaluate the performance of our stress detection model and mitigate the risk of
overfitting, we adopt a cross-validation approach. Specifically, we employ k-fold cross-
validation, dividing the dataset into k subsets or folds. The model is trained on k − 1
folds and validated on the remaining folds. This process is repeated k times, ensuring
each fold serves as the training and validation set. The performance metrics, including
accuracy, precision, recall, and F1-score, were calculated by averaging the results across all
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folds. By employing cross-validation, we can assess the model’s performance on multiple
independent subsets of the data, reducing the likelihood of overfitting and providing a
more robust estimation of its effectiveness.

To demonstrate the superiority of our method, we focused on the following aspects:

• Accuracy and performance: we compared our stress detection model’s accuracy,
precision, recall, and F1-score with those reported in previous studies.

• Generalizability: We analyzed the generalizability of our model by considering the
diversity and size of the dataset used compared to previous studies. A more extensive
and diverse dataset can lead to improved generalization capabilities, enabling our
model to perform well on unseen data.

• Efficiency: We assessed our method’s computational efficiency and resource require-
ments compared to traditional or previous AI-based approaches. This analysis demon-
strated the practicality and scalability of our proposed method in real-world healthcare
settings.

By conducting a thorough comparative analysis, we aim to highlight the strengths
and advantages of our proposed method over traditional and previous studies. This will
reinforce the significance and novelty of our approach to stress detection and contribute to
the existing body of knowledge in the field.

5. Conclusions

In this research, we proposed chest-feature-based stress prediction on the WESAD
dataset. The proposed model accurately determined stress using chest features from the
provided data because of two reasons: we dropped fewer critical features and applied
feature analysis, which included Z-score, feature selection, SMOTE, and normalization.
The stacking model performs well with all machine learning classifiers, and the highest
performance achieved regarding accuracy is 0.997%. The results for the chest set are better
than for the wrist one. However, wrist sensors can be more easily integrated into real-life
scenarios. We conclude that the proposed model can be applicable in everyday life and very
useful in detecting stress states. Using this approach, we concluded that ML models could
effectively define humans’ psychological and physiological states using data obtained from
physio sensors. Our model correctly generated features from raw data, and after correctly
selecting features, a suitable ML model can give a fairly good result. A disease is easier
to treat the earlier it is identified. Medical professionals can detect stress more quickly
and accurately with the help of the proposed method, which can spot these changes in
people prematurely. However, it is essential to note that the proposed approach has only
been assessed on the WESAD dataset and may not generalize to other datasets. Thus,
the proposed approach will be evaluated on different datasets to determine the model’s
generalizability, and a deep learning algorithm will be applied to the WEASD dataset.
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