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Abstract: Accurate knowledge of the rotor position is essential for the control of brushless DC
motors (BLDCM). Any deviation in this identification can cause fluctuations in motor current and
torque, increase noise, and lead to reduced motor efficiency. This paper focused on a BLDCM
equipped with a three-phase binary Hall sensor. Based on the principle of minimum deviation, this
paper estimated the relative installation offset between the Hall sensors. It also provided a clear
method for ideal phase commutation position recognition and eliminated the Hall sensor installation
position deviation. The proposed pre-calibration method identified and eliminated the offset of the
permanent magnet poles, the delay time caused by the Hall signal conditioning circuit, and the offset
of the sensor signal identification due to armature response under different loads. Based on the pre-
calibration results, a correction strategy for correcting the rotor position information of BLDCMs was
proposed. This paper presented a self-adaptive position information prediction algorithm based on
the Sage–Husa method. This filters out rotor position information deviations that are not eliminated
in pre-calibration. Experimental results on a hydrogen circulation pump motor showed that, after
the pre-calibration method was adopted, the Mean Square Error (MSE) of motor speed fluctuations
decreased by 92.0%, motor vibration was significantly reduced, average phase current decreased
by 62.8%, and the efficiency of the hydrogen circulation pump system was significantly improved.
Compared to the traditional KF prediction algorithm, the Sage–Husa adaptive position information
prediction algorithm reduced the speed fluctuation during the uniform speed operation stage and
speed adjustment stage, the speed curve overshoot, and the commutation time deviation throughout
the process by 44.8%, 56.0%, 54.9%, and 14.7%, respectively. This indicates a higher disturbance
rejection ability and a more accurate and stable prediction of the commutation moment.

Keywords: binary hall sensor; brushless DC motors; deviation correction; pre-calibration; Sage–Husa

1. Introduction

The potential of hydrogen fuel cells as an alternative energy source to internal combus-
tion engines is increasingly being recognized, prompting a surge of research in this field [1].
Consequently, certain automakers have highlighted the hydrogen circulation pump, an
integral component of the hydrogen fuel cell subsystem, as a significant area for in-depth
study [2]. Owing to their superior power density, compact design, and impressive dynamic
performance, brushless DC motors (BLDCM) are frequently selected as actuators within
hydrogen circulation structures in a variety of vehicle control systems. When compared to
other types of BLDCMs used in vehicular applications, those implemented within hydrogen
fuel cell systems are marked by their high-speed operation and stable working attributes.

Inaccurate positional signals can lead to fluctuations in current torque, negatively
impacting motor efficiency and generating mechanical vibrations and noise [3]. Therefore,
obtaining accurate rotor position information is paramount for controlling BLDCMs. There
are generally two methods for collecting this information through different algorithms:
1. Sensorless Algorithm: This includes techniques such as the back electromotive force
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method (BEFM), freewheeling diode method, inductance method, flux linkage observation
method, and state observer method [4,5]. The essence of these methods is to detect physical
quantities like voltage, current, and BEFM during motor operation and to estimate the
rotor position information based on these motor parameters. However, these methods are
influenced by factors such as changes in motor parameters, motor temperature, and any
non-linear characteristics of the drive system [6], making it challenging to achieve control
over the full range of motor speeds using only one algorithm [7]; 2. Position Sensor Method:
This method involves using a position sensor to provide rotor position information. Com-
mon sensors include photoelectric encoders, rotary transformers, induction synchronizers,
and linear or switchable Hall effect sensors. Although photoelectric encoders, rotary trans-
formers, and induction synchronizers can directly provide rotor position information with
high accuracy, they increase the cost and complexity of the system, reduce system stability
and reliability, and have high environmental requirements [8,9]. Linear Hall effect sensors
provide analog signals corresponding to the rotor position, but the signal contains harmon-
ics, making it difficult to accurately determine the position information [10]. Binary Hall
effect sensors can provide discrete position signals based on the edge features of the signal.
With the appropriate estimation algorithm, accurate rotor position information that meets
precision requirements can be obtained [11]. Therefore, some hydrogen circulation pumps
are equipped with binary Hall effect sensors as the primary means of obtaining position
information in their BLDCM systems.

Indeed, during long-term motor operation, the motor windings and other compo-
nents may experience changes in their characteristics [12]. Temperature fluctuations and
magnetic saturation are two factors that can cause motor parameters to deviate from their
constant values [13]. These changes can impact the performance and efficiency of the motor.
Additionally, the installation of position sensors may not be perfect, leading to unavoidable
deviations between the actual and ideal sensor positions. These deviations can result in
deviations that might affect the motor’s stable operation.

In a BLDCM, the accurate determination of rotor position information by binary Hall
sensors can be affected by three primary types of factors: Type I: These factors include
deviations and interference signals linked to the system itself, such as those arising from
inaccuracies during the Hall sensor’s installation, deviations resulting from the uneven
demagnetization of the permanent magnet, and those induced by changes in the motor’s
parameters due to long-term operation. These deviations remain constant in size and
direction, assuming identical testing conditions, and can be determined through theoretical
analysis [14]; Type II: These factors involve separable interferences in the time domain that
can be filtered out directly using time windows. While essential, these interferences are
not the focus of this paper and thus will not be discussed in detail; Type III: These factors
involve interferences that coexist with the sensor characteristic signals. They are difficult to
discern in the time domain due to their random nature.

This paper’s main focus lies in discussing rotor position deviations and interference
in the Hall sensor signal, considering the condition, “the 3-phase Hall sensors function
normally”. The analysis did not consider situations where “certain phases or multi-phase
hall sensors do not have signal output [15]”. Deviations and interferences under these
conditions, hence, were not accounted for in this study.

As we dug deeper into the research by various experts in the field, it was clear that
different strategies have been proposed to address deviations and errors introduced by the
Hall sensor installation, demagnetization of permanent magnets, and motor parameters’
changes due to prolonged operation. Ritik Agarwal [16] developed a motor model using
Simulink to determine if there exists an offset of the position sensor and quadrature error
of the permanent magnet in a permanent magnet synchronous motor (PMSM) used in
an elevator scheme with a 4-phase HALL sensor. The model explores the influence of
sensor mounting deviation and the quadrature deviation of the permanent magnet on the
motor control parameters. Eleven characteristic parameters were chosen as indicators to
evaluate deviations. Mengji Zhao [17] discussed that, when controlling a PMSM using
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position information from 3-phase Hall sensors with positional deviation, the motor’s phase
current waveform might showcase certain harmonic orders. To resolve this, a Luenberger
observer was designed to rectify the sensor’s positional deviation. The effectiveness of this
method was validated at a lower speed of 1200 rpm. Joon Sung Park [18], in his approach,
calculated the angle difference between the edges of the 3-phase Hall sensor signals to
gauge the relative positional deviation. Using the direct detection method of terminal
voltage, the zero-crossing point of the BEMF was obtained. This point was delayed by
30 electrical degrees and compared with the Hall sensor signal’s edge, providing an estimate
of the Hall sensor’s installation position deviation. The data were used to correct the
3-Hall sensor installation position. Dimitrios A [19] performed experimental research to
investigate how an increasing relative positional deviation in the B-phase of the Hall sensor
could impact motor bus current. This issue was addressed by utilizing the third-order
harmonic characteristic of the bus current to portray the deviation amplitude and estimate
the positional deviation. Hyun-Soo Seol [20] introduced an additional magnetic ring with
a gap into a BLDCM, which was equipped with a three-phase Hall sensor, to simulate
changes in the uniformity of the motor’s permanent magnets’ magnetic flux density. A
two-dimensional finite element analysis was used to gauge the impact of the gap size on
the permanent magnet rotor’s magnetic field distribution. Based on this, the Hall sensor
deviation for different levels of magnetic flux density uniformity was determined and a
corresponding deviation correction strategy was conceptualized. Liu Gang [21] tackled
the problem of relative positional deviation between Hall sensors by performing a Fourier
transform on the Hall sensor position signal. High-frequency interferences were filtered
out, resulting in an improvement in the position signal’s estimation accuracy.

The referenced literature extensively investigated errors introduced by inherent system
deviation, such as Hall sensor installation offsets, demagnetization of permanent magnets,
and changes in motor parameters due to prolonged operation. Yet, several issues continue
to prevail:

1. Empirical theory suggests that the theoretical commutation point lies 30◦ past the zero
crossing of the back electromotive force (BEMF). This same postulation can be utilized
to estimate deviations in the installation position of Hall sensors. Nevertheless, real-
world deployments reveal that fluctuations in rotational speed cause inaccuracies in
the estimation of this 30◦ electrical angle, thereby undermining the precision of the
inferred sensor installation position deviations;

2. In the process of estimating deviations in the Hall sensor installation positions, signals
obtained from actual measurements often necessitate filtering through Fourier series,
making computational procedures appreciably sophisticated and difficult to directly
implement during standard motor operation;

3. In the context of a brushless DC motor in a hydrogen circulation pump typically
operating at rated rotational speeds well exceeding 8000 rpm, it becomes essential to
analyze certain deviations that could be overlooked at lower speeds.

Therefore, a comprehensive analysis of the deviations in the installation position
of the three-phase Hall sensors, pole displacement, the delay inaccuracies induced by
the Hall signal conditioning circuit, and the Hall sensor signal displacement spurred by
armature reaction is imperative. Further, the substitution of the conventional terminal
voltage method with the Line-BEMF method will facilitate a superior approximation of
sensor installation position deviations.

Random disturbances intertwined with sensor signals are challenging to separate
directly in the time domain, which affects the acquisition of rotor position information [22].
Therefore, it is necessary to employ effective measures to suppress noise in the rotor position
information and obtain accurate position data. Corresponding algorithms primarily include
the sliding mode observer, extended Kalman filter, Luenberger observer, artificial neural
networks, and fuzzy logic [23,24].

Peter Billeschou [25] meticulously engineered a torque observer predicated on Luen-
berger’s principles, simulating the generation of phase current noise by instigating load
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oscillations on the output shaft of a brushless direct current motor (BLDCM). The empirical
evidence underscores the observer’s stability in estimation and its swift responsiveness to
torque fluctuations. Jose-Carlos Gamazo-Real [26] employed a pair of tri-layered neural
networks to estimate the rotor position and velocity of a BLDCM, wherein the phase re-
sistance and inductance remained elusive. The efficacy and alacrity of the neural network
methodology were juxtaposed with those of the sliding mode observer and the extended
Kalman filter. The findings illuminated the neural network method’s superiority in terms
of efficacy and speed. Xinyue Li [27] proposed a Kalman-based motor parameter identifica-
tion methodology that takes into account the influence of the voltage source inverter (VSI)
on the performance degradation of the VSI and the alterations in motor parameters due
to the protracted operation of the BLDCM system. The experimental results reveal that,
compared with the Kalman motor parameter identification method that disregards the VSI
influence and the traditional motor parameter identification method, the Kalman-based
method is more precise. Aishwarya Apte [28] designed a two-tiered observer comprising
a sliding mode observer (SMO) and a disturbance observer (DO) to estimate the speed
and torque of a motor, respectively. The reference value for the observer system equation’s
parameter was procured through table lookup predicated on the motor’s real-time operat-
ing conditions. This value was utilized to enhance the convergence speed of the cascaded
observer. Experimental results indicate that the proposed observer controller significantly
ameliorates the motor’s dynamic performance compared to the proportional-integral (PI)
controller. Furthermore, owing to the characteristics of the SMO and DO, the algorithm
operates with remarkable speed and simplicity.

In practical applications, motor parameters evolve over time, necessitating corre-
sponding adjustments to certain system model parameters within the observer. Some
researchers opt for an adaptive filtering method based on the Kalman filter [29] to suppress
the noise in the rotor position signal. The adaptive filter, while filtering measured data,
concurrently estimates some system model parameters, utilizing limited, indirect, and noisy
measurements to infer information that is challenging to measure or ascertain directly [30].
The adaptive filtering method further encompasses the output error method, innovation
method, Sage–Husa method [31], strong tracking filtering method, and adaptive robust
and second-order [32] mutual difference method [31], among others. These methods have
been effectively employed in the engineering field. Provided that all parameters of each
predictive algorithm are optimized, the choice of any one would suffice. However, in the
face of uncertain parameters and persistent random errors that are difficult to filter out, the
Sage–Husa method emerges as a commendable choice. It estimates positional information
while simultaneously estimating system noise expectation q, system noise variance Q,
measurement noise expectation r, and measurement noise variance R, thereby accelerating
the estimation speed while minimizing estimation fluctuations [33].

Given the characteristic of the Sage–Husa method, where the accuracy of historical
information directly influences the precision of the prediction, it is crucial to minimize
any bias in the historical data to ensure more accurate prediction results. Therefore, one
approach could be to first use pre-calibration to correct the sensor position information,
and then employ the predictive algorithm to obtain accurate motor commutation position
information. This process would help to ensure that the Sage–Husa method has the most
accurate data from which to make its predictions, thereby improving the overall accuracy
of the system.

The implementation of pre-calibrated corrections substantially mitigates bus cur-
rent and rotational speed fluctuations in electric motors, which arise from various phase
shift deviations, consequently enhancing motor efficiency. By incorporating the Sage–
Husa method into the motor control system, an innovative algorithm for predicting phase
shift information, capable of tracking multi-system noise parameters, has been proposed.
Compared to traditional forecasting techniques, this approach exhibits superior resis-
tance to disturbances, ensuring more precise and stable predictions for the moment of
phase transition.
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This paper ventured into an in-depth investigation of the brushless DC motor utilized
in a hydrogen circulation pump, equipped with a quintessential binary Hall sensor. The
remainder of this paper is organized as follows: The notorious issues of sensor installation
deviation, characteristic of three-phased Hall sensors, magnetic pole displacement, delay
aberrations owing to the Hall signal conditioning circuitry, and the Hall sensor signal
deflections consequent to the armature reaction were all embraced within the ambit of this
study. Intrinsic examinations of these deviations and their rectification methodologies were
performed. The Line-BEMF method served as a conduit for the identification and calibration
of whimsical sensor installation deviations. Concurrently, pre-calibration protocols were
established for the other residual deviations (Section 2). Subsequently, the system model for
the brushless DC motor utilized in the hydrogen circulation pump was constructed. The
avant-garde Sage–Husa algorithm was incorporated into the phase-prediction facet of the
DC motor (Section 3). Our terminus lies at the exposition of the pre-calibration experiment
and the revelation of the comparative experimental outcomes standing at the juncture of
the Sage–Husa paradigm and the conventional forecasting algorithms (Section 4).

2. Pre-Calibration of Rotor Position Signal Deviation

In a BLDCM system equipped with a three-phase binary Hall sensor, the most fun-
damental control approach entails utilizing all Hall sensor edges as motor commutation
indicators to govern motor operation. These discrete signals encompass a myriad of system
deviation s and disturbances, chiefly comprising Hall sensor installation position devia-
tions, magnetic pole offsets, armature reaction-induced Hall sensor signal shifts, and signal
conditioning circuit delays. Through pre-calibration, pertinent offsets are duly rectified.

Upon the uniform operation of the BLDCM, if the three-phase Hall sensors are installed
with an electrical angular disparity of 120 degrees, the phase variance of the respective Hall
signals ideally also amounts to 120 degrees, with a duty ratio for Hall sensor signals at 50%.
Consequently, the curve for positional estimation obtained therefrom is a linear function
of constant gradient. Figure 1 schematically illustrates the phase relationship of the Hall
sensor signal edges with deviations and ideal conditions, as well as the angular position
estimation results.

In Figure 1, Xr and X f denote the ascendant and descendent demarcations of the
Hall sensor signal exhibiting deviation, where ‘X’ could signify A, B, or C, representing
the pertinent parameters of the three phases of the BLDCM. X

′
r and X

′
f symbolize the

ascendant and descendent edges of the archetypal Hall sensor signals. The electrical
angles of the skewed ascendant and descendent demarcations are designated as θX−r and
θX− f , respectively. Conversely, the ideal electrical angles of these edges are denoted as
θ
′
X−r and θ

′
X− f . The electrical angular disparity between the biased edges and the ideal

edges is represented as ϕX−r = θX−r − θ
′
X−r and ϕX− f = θX− f − θ

′
X− f . The projected

rotor position signal is computed by preserving solely the 0th and 1st-order of Taylor series
expansions, whilst presupposing a current rotational velocity congruent to the preceding
stage’s mean velocity.

2.1. Relative Position Deviation between Hall Sensors

Presuming an absence of eccentricity discrepancies in the three-phase Hall sensor’s
implementation, solely non-uniform distribution remains. To assess the sensor’s installation
deviation, we posit a sextet of equidistant demarcations throughout an electrical angle cycle.
These conjectural boundaries are ascertained by minimizing the cumulative squared phase
disparity between each sensor’s periphery. Disregarding extraneous factors and assuming
ϕX = ϕX−r = ϕX− f , the interspacing amid the ascending borders of Hall sensor phases
difference between A-phase with B-phase and B-phase with C-phase may be deduced via
the subsequent calculation:{

θ
′
B−r − θ

′
A−r = (θB−r − θA−r) + ϕA − ϕB = 2π/3

θ
′
A−r − θ

′
C−r = (θA−r − θC−r) + ϕC − ϕA = 2π/3

(1)
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The aggregate squared deviation can be denoted as S = ϕ2
A + ϕ2

B + ϕ2
C. Upon attaining

the minimum value for this summation, we observe δS/δϕA = 0. Incorporating this
outcome into Equation (1) and postulating that the phase deviation between respective
edges are ϕminX , a positive deviation signifies a measurement signal edge trailing the ideal
boundary. Consequently, the following relationship emerges:

ϕminA = (2θA−r − θB−r − θC−r)/3
ϕminB = (2θB−r − θA−r − θC−r − 2π)/3
ϕminC = (2θC−r − θA−r − θB−r + 2π)/3

(2)

From this analysis emerges an optimal location for the hypothetical dividing line,
evaluated further by the relative positioning deviations ϕminX along each sensor edge. At
this juncture, should an absolute positional deviation be discerned for any phase Hall
sensor signal edge, it can conceivably provide an estimate for the installation deviations of
each sensor edge.

2.2. Absolute Position Deviation of the Hall Sensor

The juncture of commutation within the two-phase conduction control paradigm of
the brushless direct current motor (BLDCM) epitomizes the optimal boundary of the Hall
sensor signal. Assuming a negligible impact from cogging, magnetic saturation, eddy
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currents, and hysteresis losses, and in the absence of armature reaction, it becomes feasible
to evaluate the commutation point through a sensorless position-estimating algorithm,
thereby obtaining an impartial measurement. This estimation, when contrasted with the
Hall signal, facilitates the discernment of the positional discrepancy in the installation of
each sensor edge. To achieve this, we have chosen to utilize the Line-back electromotive
force (Line-BEMF) algorithm. Comprehensive elucidation of the algorithm is available in
reference [34]: eAB

eBC
eCA

 =

 eA − eB
eB − eC
eC − eA

 =

 uA − uB
uB − uC
uC − uA

−
 RA −RB 0

0 RB −RC
−RA 0 RC

 iA
iB
iC

−
 LMA −LMB 0

0 LMB −LMC
−LMA 0 LMC

p

 iA
iB
iC

 (3)

where uX represents the voltage of each individual phase with respect to the ground, eX
denotes the BEMF voltage of phase X, and eXY signifies the Line-BEMF voltage between
phases X and Y (where X, Y ∈ {A, B, C} and X 6= Y), LMX corresponds to the equivalent
inductance of the stator coils for each phase. This specific value is derived from the disparity
between the self-inductance and mutual inductance of the phase in question. Additionally,
iX serves as the phase current, RX is the resistance attributed to each phase, and p embodies
the differential operator.

Presuming that the ascending edge of Hall A-phase functions as the reference bound-
ary and that the proximate zero-crossing point of the BEMF aligns with the zero-crossing
juncture of the descending eBC segment, the phase discrepancy between these occurrences
epitomizes the absolute position deviation of Hall A-phase’s rising edge. Throughout
the conversion from A-phase and C-phase conduction to the AB two-phase conduction,
A represents the non-switching phase, B signifies the phase to be conducted, and C denotes
the phase to be terminated. As the switching point nears, the current remains unaltered,
implying that p(iC) ≈ 0. The induced current in phase B approximates zero, namely iB ≈ 0,
thereby simplifying the equation as follows:

eBC = uB − uC − RBiB (4)

The phase angle corresponding to the zero-crossing juncture of eBC‘s falling segment
is designated as θLEMF. The installation position deviation of Hall sensor A-phase rising
edges comprises two components: the first entails the relative positional deviation, while
the second involves the dividing line’s deviation, ascertainable through the phase difference
between the corresponding dividing line of the Hall sensor A-phase rising edge and θLEMF.
Let ϕPosX−r and ϕPosX− f represent the installation deviations of the rising and falling edges,
respectively. The deviation constitutes the disparity between the sensor edges’ angle and
the ideal commutation angle, calculable via Equation (5).

ϕPosA−r = θA−r − θLEMF
ϕPosB−r = ϕminB + ϕPosA−r − ϕminA
ϕPosC−r = ϕminC + ϕPosA−r − ϕminA

(5)

Upon solely accounting for the installation deviation of the Hall sensor, three correction
values for the installation deviation associated with the falling edges, denoted as ϕPosX− f ,
can be procured through the relationship ϕPosX−r = ϕPosX− f .

2.3. Deviation of Permanent Magnet Poles

Hall sensor signals are intrinsically linked to the motor rotor’s magnetic field. Inconsis-
tencies in the permanent magnet’s remanence, installation angle deviation of the magnetic
pole pieces, or rotor eccentricity can result in deviations of the permanent magnet poles. For
a BLDCM operating at a steady speed, a phase difference exists between the three-phase
Hall sensor signals under steady-state operation, though the signal characteristics remain
consistent. Considering a 2-pole BLDCM, the ideal phase difference between each pole is
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90◦ in mechanical angle. The magnetic pole deviation and motor magnetic pole schematic
can be deduced by utilizing any one of the Hall sensor signals, as illustrated in Figure 2.
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Envisioning a 360-degree mechanical angle as one complete cycle, two rising edges
and two falling edges transpire within a single cycle, and the angular disparity between
adjacent edges is π/2 in the absence of magnetic pole deviation. Employing Hall signal
A-phase as an exemplar, with the rising edge corresponding to magnetic pole N1 as the
cycle’s inception and the motor rotating in a clockwise direction, the edges are denoted
as θN1−r, θN1− f , θN2−r, and θN2− f , respectively. Assuming no relative deviation exists
between the N1 magnetic pole and the ideal position, the phase differences between the
other three edges and the ideal edges are ϕN1− f , ϕN2−r, and ϕN2−r, respectively:

ϕN1− f = π/2 + θN1−r − θN1− f
ϕN2−r = π + θN1−r − θN2−r
ϕN2− f = 3π/2 + θN1−r − θN2− f

(6)

The absolute deviation of reference magnetic pole N1 has been pre-calibrated as men-
tioned earlier, allowing for the calculation of the remaining magnetic pole offsets. Taking
into account the inconsistencies in the residual magnetism of permanent magnets, the
angular deviation of the motor’s magnetic pole installation, and the rotor eccentricity,
which primarily affects the motor’s slot torque with minimal impact on load torque charac-
teristics, the presence of fan load can further mitigate the influence of slot torque on motor
performance. Consequently, in practical applications, the evaluation of speed fluctuations
induced by magnetic pole offsets should be considered. If the effect is negligible or torque
ripples introduced by the offsets can be overlooked, the impact of this deviation may
be disregarded.

2.4. Sensor Deviation Introduced by Armature Response

The magnetic field in BLDCM is subject to a myriad of factors, encompassing the per-
formance of the permanent magnetic material, the magnetization technique of the magnetic
pole, the dimensions and form of the pole shoe, the air gap’s length, and the armature’s
axial extension. By amalgamating the armature reaction magnetic field with the primary
magnetic pole field, the air gap magnetic field is derived. The progressive augmentation of
the motor armature magnetic field in response to escalating loads necessitates careful con-
sideration. Concurrently, an indeterminate displacement arises between the sensor signal
edges and the theoretical commutation position. The erratic distribution of the actual rotor
magnetic field further complicates the direct calculation of the Hall sensor’s offset under
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the influence of the armature reaction via theoretical analysis. In this context, calibration
serves to acquire the correction value of the offset under varying current conditions.

Owing to the presence of specific rotor position discrepancies in the position data
extracted from the sensorless approach, in light of the armature reaction, a magneto-electric
position sensor was elected for rotor position identification. Under constant speed condi-
tions, diverse rotor currents were employed to ascertain the rising and falling edge offset
angles of the Hall sensor signal across an array of operational circumstances. A regression
analysis facilitated the derivation of the relationship curve between the average phase
current, denoted as I, and the offset angle, delineated by θOFS−rise(I) and θOFS− f all(I).

2.5. Hall Signal Conditioning Circuit Delay

Output signals from Hall sensors necessitate filtration and conversion to facilitate
interpretation by microprocessors. Depicted in Figure 3a, a typical signal conditioning
circuit incorporates signal pull-up, passive RC filtering, and signal voltage regulation.
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Figure 3. Schematic diagram of the Hall signal conditioning circuit (a) and the signal before and after
conditioning circuit (b).

In Figure 3a, R1 signifies the sensor’s output impedance, R2 denotes the pull-up
resistor, R3 corresponds to the limiting resistor, R4 represents the voltage divider resistor
and the input impedance of the microprocessor capture port, and C1 is the filter capacitor.
As the Hall sensor signal transitions from high to low, the frequency response of the
RC circuit is characterized by τC1 = (R1 + R3) ∗ C1. In contrast, when the Hall sensor
signal shifts from low to high, the associated frequency edge is marked by τC2 = R2 ∗ C1,
exhibiting a higher value than τC1. The Hall signal is approximated as a sequence of
square wave signals replete with abundant high-order harmonics. Owing to the presence
of filtering capacitors, the various harmonics display corresponding delays, which escalate
as the rotational speed increases. The θCKT−Rise(n) and θCKT−Fall(n) curves delineate the
relationship between the delay angle and rotational speed post-calibration. Figure 3b
portrays the Hall signals before and after conditioning during motor operation.

2.6. Integration of Various Position Information Deviation Correction Strategies

In practice, each sensor signal discrepancy is individually calibrated during the offline
phase or throughout motor initialization, subsequently being supplied to the controller for
rectification during motor operation. The calibration procedure is illustrated in Figure 4.
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1. Calibration of magnetic pole offset: this discrepancy can be executed at varying
velocities, and the acquired measurements may be subjected to arithmetic mean
computation. As the speed diminishes, the influence exerted by the load decreases.
Consequently, the measurement outcomes can be weighted and averaged based on
the motor’s velocity;

2. Calibration of relative position discrepancy between the three-phase Hall sensors: this
discrepancy can be calibrated during each initialization. Either rising or falling edges
can be chosen and the corrective value can be ascertained based on Equation (2);

3. Calibration of absolute position discrepancy: this discrepancy can be identified by se-
lecting an edge and the nearest Line-BEMF zero-crossing point. Utilizing Equation (4),
the requisite terminal voltage and real-time phase current signals can be measured.
According to Equation (5), the absolute position discrepancy correction value for each
edge can be computed;

4. Calibration of signal conditioning circuit delay: this discrepancy necessitates a com-
parison between each Hall signal prior to and following conditioning, which can
be calibrated during an offline phase without load. At disparate speeds, the edge
delays of the signal conditioning circuit can be statistically procured based on the
microprocessor input capture threshold;

5. Calibration of Hall sensor signal offset induced by armature reaction: this discrepancy
can solely be calibrated during an offline phase with a typical load. By orchestrating
motor operation experiments under varying loads and amalgamating them with the
previously acquired signal conditioning circuit delay, this offset can be ascertained.
Given that the load torque of the hydrogen circulation pump is directly proportional
to the square of the motor load and velocity, while the current corresponds directly to
the motor output torque. Consequently, the relationship between the rotational speed
and the discrepancy introduced by the armature reaction can be utilized in lieu of the
association between the average phase current and the discrepancy induced by the
armature reaction.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24 
 

 

of the signal conditioning circuit can be statistically procured based on the micropro-
cessor input capture threshold; 

5. Calibration of Hall sensor signal offset induced by armature reaction: this discrep-
ancy can solely be calibrated during an offline phase with a typical load. By orches-
trating motor operation experiments under varying loads and amalgamating them 
with the previously acquired signal conditioning circuit delay, this offset can be as-
certained. Given that the load torque of the hydrogen circulation pump is directly 
proportional to the square of the motor load and velocity, while the current corre-
sponds directly to the motor output torque. Consequently, the relationship between 
the rotational speed and the discrepancy introduced by the armature reaction can be 
utilized in lieu of the association between the average phase current and the discrep-
ancy induced by the armature reaction. 

 
Figure 4. The flowchart for the integration of Hall sensor signal deviation correction strategies. 

3. Prediction Algorithm of Rotor Position Information Based on Sage–Husa Method 
During the motor’s operation, interference signals are intermingled with the Hall 

sensor signals, exhibiting a certain degree of randomness and posing difficulty in direct 
separation within the time domain. Hence, drawing upon the Sage–Husa approach, a mo-
tor commutation position prediction algorithm was devised to anticipate and track the 
commutation location, subsequently executing commutation in accordance with the pre-
dicted outcomes. For the hydrogen circulation pump-driven motor, the load can be ap-
proximated as a fan, with the resistance torque being proportional to the square of the 
electrical angular velocity. 

2
0 0

0

= / 2t t
t

θ θ ω ε
ω ω ε
 + +


= +
, (7) 

where ω  denotes the electrical angular velocity, ε  signifies the rotor angular accelera-
tion, θ  represents the rotor electrical angle, and the subscript 0 indicates the initial value 
of the corresponding variable. The mechanical equation of motion for the motor is pro-
vided as follows: 

d
d e LJ J T T f
t
ωε ω= = − − , (8) 

Figure 4. The flowchart for the integration of Hall sensor signal deviation correction strategies.



Sensors 2023, 23, 6604 11 of 22

3. Prediction Algorithm of Rotor Position Information Based on Sage–Husa Method

During the motor’s operation, interference signals are intermingled with the Hall
sensor signals, exhibiting a certain degree of randomness and posing difficulty in direct
separation within the time domain. Hence, drawing upon the Sage–Husa approach, a
motor commutation position prediction algorithm was devised to anticipate and track
the commutation location, subsequently executing commutation in accordance with the
predicted outcomes. For the hydrogen circulation pump-driven motor, the load can be
approximated as a fan, with the resistance torque being proportional to the square of the
electrical angular velocity. {

θ = θ0 + ω0t + εt2/2
ω = ω0 + εt

(7)

where ω denotes the electrical angular velocity, ε signifies the rotor angular acceleration, θ
represents the rotor electrical angle, and the subscript 0 indicates the initial value of the
corresponding variable. The mechanical equation of motion for the motor is provided
as follows:

Jε = J
dω

dt
= Te − TL − f ω (8)

where J denotes the rotational inertia, Te represents the electromagnetic torque, which
can be expressed as the product of torque coefficient KT(n) and average current I. KT(n)
can be regarded as a coefficient related to velocity, thereby facilitating equation correction
under specific operating conditions. Furthermore, TL represents the load torque, which
can be described as M(n) ·ω2, where M(n) signifies the propeller characteristic coefficient
associated with motor speed n. Given that motor speed does not experience abrupt
changes, the average angular velocity ω over a certain period can replace ω. f is the
friction coefficient of the motion system; however, as the friction resistance of the motor is
significantly smaller than the fan resistance within the hydrogen pump’s normal working
speed range, it can be disregarded. If one commutation represents the commencement of a
cycle, the motor’s motion state during a cycle can be denoted by X(k + 1). Subsequently,
the systematic equation X(k) = [ωk, θk, Ik]

T can be derived from Equations (7) and (8):

ωk+1
θk+1
Ik+1

 =


1 0 KT(n)

J ∆T

∆T 1 KT(n)
2J ∆T2

0 0 1


ωk

θk
Ik

−
∆T

∆T2

2
0

M(n)(ω)2

J
+ Wk (9)

Given that ∆T represents the sampling interval, Ik denotes the mean phase
current value within the most recent sampling interval, and Wk signifies the system noise
matrix, we postulate that the system noise exhibits the properties of colored noise. The
motor system is furnished with a trio of Hall sensors and three-phase current sensors,
strategically positioned at 120◦ intervals, thereby facilitating the formulation of an
observational equation:

Zk =

[
ωk
Ik

]
=

[
1 0 0
0 0 1

]ωk
θk
Ik

+ Vk (10)

where Zk signifies the observation at cycle k. Vk represents the measurement noise matrix, it
is further assumed that the measurement noise exhibits the characteristics of colored noise.

Assuming that the colored noise Wk and Vk can be expressed as the sum of white noise
and an offset, the system noise Wk has an offset qk and variance Qk, while the observation
noise Vk has an offset rk and variance Rk, with both noises being uncorrelated. The statistical
characteristics of the noise can be represented as E[WkWT

j ] = Qkδkj, E[VkVT
j ] = Rkδkj,

E[Wk] = qk, E[Vk] = rk, and E[WkVT
j ] = 0, where δkj denotes the impulse, and. Referring
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to the relevant equations presented in literature [35], the filtering equations can then be
formulated as follows:

X̂k,k−1 = Φk,k−1X̂k−1 + q̂k−1

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Q̂k−1

Z̃k = Zk − HkX̂k,k−1 − r̂k

X̂k = X̂k,k−1 + Pk,k−1HT
k [HkPk,k−1HT

k + R̂k]
−1Z̃k

Pk = [I − Kk Hk]Pk,k−1

(11)

In these equations, any variable A with an added superscript, Â, denotes the esti-
mated value of that variable; Kk represents the Kalman gain coefficient, which serves as
a transitional variable; Pk,k−1 is the posterior error covariance at the optimal estimation
during cycle k; Pk refers to the prior error covariance during cycle k at the optimal esti-
mation; and Z̃k signifies the residual (residue). To simplify the equations, let X(k) = Xk,
X(k + 1, k) = Xk+1,k, Z(k + 1, k) = Zk+1,k, P(k

∣∣k− 1) = Pk,k−1 , and P(k|k) = Pk .
Under the fulfillment of the following two conditions:

1. The system matrix is fully controllable and fully observable, ultimately leading the
system to a stable state, satisfying lim

k→∞
Pk → P .

2. The white noise components of the observations at each moment are uncorrelated,
which is satisfied when C(i) = E[(Zk,k−1 − rk)(ZT

k−i,k−i−1 − rk−i)] = 0, (0 < i < k),
the equations are given as:

r̂k+1 = (1− dk)r̂k + dk(Zk+1 − Hk+1,kX̂k+1,k)

R̂k+1 = (1− dk)R̂k + dk(Z̃k+1Z̃T
k+1 − Hk+1,kPk+1,k HT

k+1)

q̂k+1 = (1− dk)q̂k + dk(X̂k+1 −Φk+1,kX̂k)

Q̂k+1 = (1− dk)Q̂k + dk(Kk+1Z̃k+1Z̃T
k+1KT

k+1 + Pk+1 −Φk+1,kPkΦT
k+1,k)

dk = (1− b)/(1− bk+1), 0 < b < 1

(12)

Theoretically, the Sage–Husa method is capable of estimating the expectation of system
noise q, the variance of system noise Q, the expectation of measurement noise r, and the
variance of measurement noise R. However, in practical applications, accurately tracking
all four parameters concurrently proves to be arduous, potentially leading to imprecise or
even divergent outcomes [36]. Furthermore, discerning the source of the deviation between
the predicted state variable and the actual observed variable value, whether it arises from
system or measurement noise, poses a significant challenge. Concurrent adjustment of
multiple parameters may also diminish the algorithm’s robustness [37]. According to
findings presented in reference [38], the error spectrum resulting from adaptively adjusting
Q alone exhibits a flatter profile compared to simultaneous adjustment of both Q and R.

Considering that system noise typically varies with changes in application scenarios
and environmental temperature, accurately obtaining Q can be difficult. Owing to these
random factors, it is reasonable to assume that the initial value of the system error offset
q0 is approximately zero. Measurement noise, on the other hand, is generally a statistical
parameter that can be calculated based on the corresponding measurement errors of the
observed system signals. Hence, the present study intended to conduct theoretical analyses
of the sensor variance for measurement noise variance R and measurement noise offset r,
determining reference values for the initial noise parameters. Subsequently, an adaptive
algorithm was employed to track Q. Once the value of Q stabilized after multiple tracking
attempts, R, r, and q were tracked sequentially.

Assuming that the noise affecting rotational speed and current exhibits an uncorre-
lated, biased Gaussian distribution, let RA represent the variance of the rotational speed
observation ω, and RB denote the variance of the average current observation I. By utilizing
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the average angular velocity ω obtained within the sampling interval, the primary sources
of error, such as installation inaccuracies and conditioning circuit delays, were accounted
for and have been addressed through pre-calibration. Consequently, the initial value of RA
could be set to zero. Current values were obtained through current sensors, and the average
value within a single phase-switching interval was considered. Digital filtering was applied
to the data before averaging. The initial value of the measurement noise variance for the
predictive algorithm could be set to R0= diag(0 , RI), where RI represents the error of the
current sensor. Additionally, since the measurement noise being considered was random
noise, the initial value of r could be set to zero.

4. Experiment and Discussion
4.1. Introduction of the Experimental Bench and Motor Control System

Experimental confirmation was undertaken on a specialized centrifugal hydrogen
circulation pump testing apparatus. This apparatus primarily consisted of a BLDCM
system, a controller, various sensors, and a power supply system, as well as a signal
observation and data collection system. The BLDCM system operated at a rated voltage
of 80 V, with an expected rotational speed of 15,000 RPM. It comprised a motor with two
poles and an estimated phase resistance of 65.5 ohms, complemented by a three-phase
Hall position sensor. The control system was bifurcated into two integral sections—the
control board and the drive board. The control circuit featured an MC9S12XEP100 as its
main chipset, and the drive circuit utilized an IR2108. The driver switch tube employed
was an IPB200N25N3. To circumvent cumulative thermal damage to the controller by
the full-bridge circuit, a corresponding heat sink was creatively designed. The system
was equipped with a magnetic electrical sensor (SZMB-10) for precise measurement of the
motor rotor’s position, along with a current sensor (LA25-P) dedicated to the measurement
of phase current and bus current. The power supply framework primarily comprised
a VARIEO-RU60-10060 for powering the driver and an RPB3003D-3 providing power
to the current sensor. The signal observation and acquisition equipment comprised a
Tektronix2014B oscilloscope and a ZTIC-EM9118 acquisition, as shown in Figure 5 and
Table 1.
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Table 1. Partial parameters of each sensor.

Sensors Parameters Value

SZMB-10 Measurement Range 0–20,000 Hz
LA25-P Measurement range 0–25 A

LA25-P Error ±0.65%

During the regular operation of the hydrogen circulation pump system, the target
rotational speed remained relatively stable. Given that the fan load torque and speed
have a quadratic relationship, the motor speed was controlled in a closed-loop manner by
adjusting the drive system current using a PID algorithm. The BLDCM employs square
wave driving, utilizing position signal correction strategies and commutation moment
prediction algorithms to acquire the ideal location for each Hall edge, which serves as the
sign for motor commutation. Experiments were conducted in the range of 5k rpm to 10k
rpm to corroborate the feasibility of the algorithms proposed in this study.

4.2. Identification and Calibration of Partial Deviation

In a 360◦ mechanical angle, there are four edges for each of the three-phase Hall sensor
signals. Assuming that two rising edges are HallAR1 and HallAR2, and two falling edges
are HallAF1 and HallAF2 respectively, X can be A, B, or C.

1. Permanent magnet pole shift identification

According to Figure 4 (Correction Strategy), the identification of magnetic pole dis-
placement was conducted, with the selection of signal from phase A. Considering it as the
reference, the three remembered rotational speeds during the experiment, along with their
corresponding statistical deviation values, were obtained and are presented in Table 2. The
phase difference percentages between the remaining three edges and the ideal edge are
also provided. In Table 2, the weights for the respective rotational speeds are assigned as
0.5, 0.3, and 0.2, respectively.

Table 2. Phase difference between the actual edge and the ideal edges.

Speed (rpm) HallAF1 (%) HallAR1 (%) HallAF2 (%)

960 1.67 0.03 0.22
1107 1.54 0.03 0.22
1330 1.46 0.03 0.23

Weighted Sum 1.59 0.03 0.22

Due to the fact that the ideal rising and falling edges of the Hall sensor can be mutually
deduced, it was possible to select any set of rising and falling edges to infer the rotor
position information. According to Table 2, the phase deviation of HallAF1 is larger
compared to HallAR1 and HallAF2. To mitigate the speed fluctuations caused by this edge
deviation, only the rising edge could be selected for deviation correction, and the falling
edge can be deduced based on the correction results of the rising edge. The experimental
results demonstrate a significant reduction in speed fluctuations using this approach.

2. Relative position deviation between Hall sensors

In accordance with Figure 4 (calibration strategy), the relative positional deviation
between the three-phase Hall sensors was identified. The edge deviations were set as
ϕminX1 and ϕminX2. The test results for the three speeds were also weighted and processed,
as shown in Table 3. The deviation correction values in the table were used for calibrating
the relative deviations between the sensors during normal motor operation.
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Table 3. Correction value of relative deviation for each rising edge.

Speed (rpm) A1 (◦) B1 (◦) C1 (◦) A2 (◦) B2 (◦) C2 (◦)

960 −0.906 0.031 0.875 −0.772 −0.182 0.955
1107 −0.935 0.028 0.933 −0.803 −0.193 0.996
1330 −0.980 0.027 0.953 −0.819 −0.165 0.985

Weighted Sum −0.930 0.021 0.908 −0.791 −0.182 0.974

The differences of various edges at different speeds in Table 3 are relatively small.
Based on the relevant theory outlined in Section 2.1, the weighted average value was
deemed appropriate as the correction value for the relative positional deviations among
the sensors in the pre-calibration process.

3. Absolute position deviation correction

The reference signal chosen for measurement was HallAR. The voltage at the B and
C phases, as well as the real-time phase current at the B phase, were measured. Taking
the calibration stage at 1107 rpm as an example, Figure 6a displays the real-time voltage
signals at the B and C phases, as well as the real-time phase current signal at the B phase.
Figure 6b illustrates the relationship between the zero-crossing points of the line counter
EBC and the Hall-A phase signal.
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In accordance with the calibration strategy depicted in Figure 4, it is evident that there
exists a certain hysteresis during the motor’s phase shift. The specific hysteresis angle can
be calculated by determining the phase difference between the falling segment’s line-BEMF
zero-crossing point and the Hall-A phase edge. In order to highlight the phase of the
line-BEMF zero-crossing point more prominently, the calculated data of 1/EBC has been
included in the figure. The test results at the three speeds were also subjected to weighting
and the outcomes are presented in Table 4. These correction values serve to rectify any
sensor installation deviations during regular motor operation.

Table 4. Phase difference between the falling stage of the EBC zero-crossing point with HallAR.

Speed (rpm) HallAR1 (%) HallAR2 (%)

960 4.25 4.22
1107 4.21 4.19
1330 4.18 4.17

Weighted Sum 4.22 4.20
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Similarly, in Table 4, the differences of various edges at different speeds are also
minimal. Thus, following the framework presented in Section 2.2, the weighted average
value was considered suitable as the correction value for the absolute positional deviations
in the pre-calibration process.

4. Hall Signal Conditioning Circuit Delay

In accordance with the calibration strategy depicted in Figure 4, the results of the delay
time adjustment circuit are illustrated in Figure 7a. The data in the figure represent the
average of multiple measurement results.
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From the graphical representation, it is evident that the observed pattern of delay
correction aligns with the theoretical framework presented in Section 2.5. When applying
this correction in practical applications, it is advised to obtain the required adjustment
values through interpolation based on the corresponding speeds.

5. Sensor signal offset introduced by armature reaction

By installing a (30-1) encoder on the input shaft of the motor and using the magnetic
electric sensor to provide reference position signals, the phase variation of the rising edge on
Hall-A phase was calibrated under different loads. A calibration was performed at 800 rpm,
obtaining mechanical angles of 311.7◦ and 131.8◦ for HallAR1 and HallAR2, respectively,
which were taken as the reference values for zero armature reaction deviation. Testing
was conducted within a speed range of 5000 rpm to 10,000 rpm. The correction angles
introduced by the armature reaction are depicted in Figure 7b, where the data represent the
average of multiple measurement results.

The graphical representation illustrates that the observed pattern of offset correction
aligns with the theoretical framework presented in Section 2.4. When applying this correc-
tion in practical applications, it is recommended to obtain the necessary adjustment values
through interpolation based on the corresponding speeds.

4.3. Online Calibration Experimental Stage

To validate the efficacy of each deviation correction technique, a comparative experi-
mental investigation was conducted, employing the following methodologies: (I) A square
wave was utilized to drive the BLDCM, while the full bridge circuit was propelled by a
two-to-two conduction control approach. This method implemented 12 discrete steps per
360◦ mechanical angle and the speed range was precisely regulated using PID control. The
duty cycle of the full bridge circuit switch tube served as the controlled variable, with the
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commencement of commutation marked by the Hall sensor edge; (II) The sole alteration
in this setup pertained to the commutation point, wherein the corrected Hall sensor edge
replaced the original point of commutation. Notably, the correction outcomes remained
consistent across various speeds. Figure 8 graphically delineates the speed comparison
during 10 mechanical cycles of the rotor, specifically measured at 5700 rpm.
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The analysis shows that, after deviation correction, the Mean Square Error (MSE) of
the speed is reduced by 8.0% compared to before and the speed fluctuation is significantly
reduced, indicating a smoother operation of the motor.

Figure 9 illustrates the comparative outcomes of the terminal voltage signal and phase
current signal. As depicted in the figure, the terminal voltage waveform prior to calibration
exhibits evident characteristics of delayed commutation. Conversely, the waveform of the
corrected terminal voltage and phase current closely approximates the waveform of the
signal during commutation at the correct timing. Furthermore, at identical speeds, the peak
current observed prior to calibration approaches 10 A. However, following the calibration,
it diminishes to less than 4 A. Remarkably, the average current post-calibration stands at a
mere 37.2% of its former value, resulting in substantial reductions in power consumption.
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The comparative experimental results show that the average phase current after devia-
tion correction is smaller, indicating higher motor efficiency, thus proving the effectiveness
of the correction method.

4.4. Prediction Algorithm of the Phase Commutation Time Based on Sage-Husa

When predicting the phase commutation time based on (9)–(12), it is necessary to
determine relevant parameters in the system model, such as the rotary inertia J, torque
coefficient KT(n), and propeller characteristic coefficient M(n). Using experimental data
from a fan-less loaded motor accelerating within the range of 800–3000 rpm, the rotary
inertia of the motor system without fan-loaded can be derived by analyzing changes
in voltage, current, and speed. Combined with the known design parameters of the
additional gear encoder, the rotational inertia of the motor system can be calculated as
J ≈ 0.0039 kg ·m2. In addition, a regression can be performed on the values of KT(n) and
M(n) based on experimental data obtained from a fan-loaded motor running within the
range of 800–10,000 rpm, where changes in voltage, current, speed, and magnetic sensor
position signal were recorded.

In the observation matrix, let the initial value of parameter X be X0, where q0 = 0 and
r0 = 0 are chosen. Due to the precision of the current sensor, R0 = diag[0, 0.02] is set. As
the hydrogen circulation pump motor operates within the speed range of 5000–10,000 rpm,
the prediction based on Sage–Husa begins with a stable speed of 5000 rpm. With the
tracking process, Pk quickly stabilizes. Since the covariance matrix Pk is symmetric,
a relatively large initial value can be chosen, and P0 = diag[50000, 50000, 50000] was
selected here.

As the minimum adjustment step of the PWM module of the XEP100 chip is 1/240,
and the power supply settings remain unchanged, at most 15-speed control points can be
obtained within the range of 5000–10,000 rpm. For the purpose of presentation, seven points
were selected, and the mean square deviation of the speed was taken as the evaluation
parameter to assess the effectiveness of the deviation correction and prediction algorithms.
The speed gradually increased, starting from 5000 rpm in the experiment and stabilized
for 1 s near each test point. Among the four noise parameters, except for Qk, the other
three parameters can be roughly determined based on theoretical analysis. Therefore, the
prediction algorithm mainly tracks Qk, while Rk, rk, and qk are selected for tracking at
intervals of 10 turns (120 commutation cycles).

Figure 10 compares the predicted speed results of pre-calibration correction prediction
(with a correction delay of 60◦ electrical angle as the next commutation position), the
prediction based on the Kalman Filter (KF) algorithm, and the prediction based on the Sage–
Husa method for the motor speed range between 5000 rpm and 10,000 rpm. The stability
of the predicted speed indirectly reflects the accuracy of the commutation information
prediction results.

By utilizing the speed values obtained from Figure 10, the commutation moments at
each commutation position were inferred. A selected local time window was chosen and
the commutation times for each method within this time period are displayed in Figure 11.
For comparison purposes, the ideal commutation time data, obtained by smoothing the
measured speed data, has been included.

The data from Figures 10 and 11 were analyzed to assess the level of speed fluctua-
tions and the accuracy of time predictions for the three prediction methods. The Mean
Absolute Percentage Error (MAPE) was utilized to quantify the degree of error between the
instantaneous speed and commutation time predictions and the actual values. The evalu-
ation metrics chosen included the MAPE for the speed in the speed regulation stage, the
maximum overshoot in the speed regulation stage, the MAPE for the speed in the constant
speed stage, and the MAPE of the commutation time throughout the entire process. The
results of this evaluation are compiled in Table 5.
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Table 5. Comparison of prediction results from three different methods.

The MAPE for
Regulation

Speed Stage (%)

The Maximum
Overshoot of

Speed (%)

The MAPE for
Constant Speed

Stage (%)

The MAPE of the
Commutation

Time (%)

Pre-calibration 0.7500 0.0456 0.0101 0.0087
KF method 0.6700 0.0348 0.0082 0.0077
Sage–Husa

method 0.3700 0.0153 0.0037 0.0066
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Based on Figures 10 and 11 and Table 5, it can be observed that, throughout the entire
process, both the KF predicted speed curve and the Sage–Husa predicted speed curve
exhibit smaller fluctuations compared to the speed curve solely based on pre-calibration
correction. This suggests that both prediction algorithms are effective in tracking the motor
speed. Although the majority of the Sage–Husa prediction results are similar to the KF
prediction results, there are instances where the KF predictions exhibit larger fluctuations,
resulting in discrepancies in speed and commutation time fluctuations compared to the
measured and ideal commutation times.

From the analysis of the speed fluctuations, speed overshoot, and commutation time
results in both the constant speed and speed regulation stages, it can be observed that the
Sage–Husa results yield a reduction of 44.8%, 56.0%, 54.9%, and 14.7% compared to the KF
predicted results. This indicates that the Sage–Husa algorithm achieves higher prediction
accuracy, is less affected by random disturbances, and is closer to the ideal commutation
results. Therefore, the position information prediction algorithm based on Sage–Husa is
effective in utilizing historical information to predict ideal commutation times.

5. Conclusions

The BLDCM with binary Hall sensors relies on the edge detection of Hall sensor
signals for commutation. However, if there is a deviation in the Hall sensor signals, it can
lead to current and torque fluctuations, reducing motor efficiency and causing mechanical
vibrations. In this paper, the deviation of Hall signals was classified into three categories:
(1) delays and sensor recognition deviations caused by Hall signal conditioning circuits and
armature reaction at different loads; (2) sensor installation and magnetic pole displacement;
and (3) interference introduced into the Hall sensor signals during operation. Each type of
deviation was analyzed and a correction method was proposed to address these deviations.

The main findings of the paper are as follows:

1. Given that some of the deviations capable of causing displacement in motor posi-
tion information necessitate consideration under high-speed operating conditions,
yet can be disregarded under low-speed operating conditions, delays introduced by
conditioning circuit latency, offsets introduced by armature reactions, installation
deviations of Hall sensors, and pole offsets were each addressed by employing offline
and online calibration methods for identification and subsequent utilization in correct-
ing motor commutation positions. Empirical results illustrate that, in comparison to
direct commutation using Hall sensor edges, employing the edges post commutation
location correction for commutation reduces the phase current of the motor to 37.2%
of its pre-correction state, and the rotational speed Mean Squared Error (MES) is
diminished to 8.0% of its pre-correction value;

2. The absolute installation position deviation of the Hall sensor was estimated utilizing
the Line-BEMF, which, in comparison to the BEMF estimation, enhances the preci-
sion of position information estimation while simultaneously reducing the number
of calculations;

3. Capitalizing on the stable load characteristics of the hydrogen circulation pump,
the Sage–Husa method was introduced into the motor control system, formulating
a commutation moment prediction algorithm that can track multiple system noise
parameters. This algorithm was employed to estimate the commutation position
during operation. Compared with the traditional Kalman Filter (KF) prediction
algorithm, the Sage–Husa adaptive position information prediction algorithm reduces
speed fluctuations, overshoot of the speed curve, and commutation time deviation
throughout the process by 44.8%, 56.0%, 54.9%, and 14.7%, respectively, during both
the uniform operation stage and the speed adjustment stage. Consequently, it exhibits
superior disturbance rejection capacity, offering more accurate and stable predictions
for the commutation moment.

The design and realization of phase prediction algorithms for a hydrogen circulation
pump utilizing the BLDCM based on the Sage–Husa method involve extensive theoretical,
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methodological, and technical realms, presenting several challenges that necessitate future
endeavors to untangle them. Due to the operational characteristics of the hydrogen circula-
tion pump, which involve a lower frequency of speed adjustment and stable load, there
has been no application experiment of this algorithm during frequent speed adjustments.
In the future, we will seek application scenarios with different characteristics to verify this
algorithm and similar ones.
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