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Abstract: Accurate measurements of the bubble size distribution (BSD) are crucial for investigating
gas–liquid mass transfer mechanisms and describing the characteristics of chemical production.
However, measuring the BSD in high-density bubbly flows remains challenging due to limited image
algorithms and high data densities. Therefore, an end-to-end BSD detection method in dense bubbly
flows based on deep learning is proposed in this paper. The bubble detector locates the positions of
dense bubbles utilizing objection detection networks and simultaneously performs ellipse parameter
fitting to measure the size of the bubbles. Different You Only Look Once (YOLO) architectures are
compared, and YOLOv7 is selected as the backbone network. The complete intersection over union
calculation method is modified by the circumferential horizontal rectangle of bubbles, and the loss
function is optimized by adding L2 constraints of ellipse size parameters. The experimental results
show that the proposed technique surpasses existing methods in terms of precision, recall, and mean
square error, achieving values of 0.9871, 0.8725, and 3.8299, respectively. The proposed technique
demonstrates high efficiency and accuracy when measuring BSDs in high-density bubbly flows and
has the potential for practical applications.

Keywords: bubble size distribution; dense bubbly flows; end-to-end detector; objection detection;
ellipse parameter fitting; L2 constraints

1. Introduction

Bubbly flow is a common gas–liquid two-phase flow pattern which widely exists in
water conservancy, petroleum, the chemical industry, the nuclear industry, and other fields.
For example, the shape and size distributions of bubbles have a high correlation with the
performance of mineral froth flotation [1]. The morphology of bubbles in Chinese spirits
is closely related to alcohol concentration and quality [2]. Monitoring bubble parameters
in hysteroscopic images is especially necessary to diagnose gas embolisms [3]. Detailed
knowledge of bubble characteristics and dynamics is essential for process optimization.
The interaction between the bubbles and the liquid determines the quantity of transferred
mixing energy. Having an accurate measurement of the bubble size distribution (BSD) is
very important for numerical flow modeling, the study of the gas–liquid mass transfer
mechanism, and the design and control of gas–liquid multiphase reactors.

There are different BSD measurement methods for fluid mediums in the existing
literature. They can be divided into intrusive and non-intrusive methods. Intrusive meth-
ods, such as capillary suction probes [4], conductivity probes [5], optical fiber probes [6],
and wire-mesh sensors [7], are usually limited to a single or a few bubbles. Thus, the results
may be biased by the applied measurement technique. Intrusive methods can be applied to
a broader range of setups and with different liquids. Non-intrusive methods include phase
doppler anemometry [8], interferometric particle imaging [9], and digital image analysis
(DIA). Among non-invasive methods, direct imaging is the most commonly used since
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multiple objects can be observed simultaneously and the equipment is relatively cheap
and flexible.

Traditional image processing techniques usually start with boundary extraction—either
applying global or local thresholds—background subtraction, or edge detection by ana-
lyzing local intensity gradients. In the second stage, the boundary of the object, which
can be individual bubbles or a cluster of bubbles, is segmented into curved segments
of the bubbles. This can be achieved through seed-point extraction or breakpoint-based
methods. Seed-points are defined as the centers of overlapping objects and are used to
determine the number of bubbles in a cluster [10]. Different techniques are used, namely
bounded erosion with elliptical distance transform [11], ultimate erosion [12], and fast
radial symmetry transform [13]. The watershedding technique [14] and polygonal approx-
imation method [15] are proposed to separate bubble objects into solitary bubbles and
overlapping bubbles. Breakpoint methods segment the contours of clusters into contours
of individual objects by detecting points where contours intersect. This can be done by
analyzing the convexity of the contour [16] or by a combination of boundary curvature and
intensity gradient analysis [17]. Several methods for reconstructing overlapping bubbles
are proposed. An improved Hough transform algorithm can be used to reconstruct the
contours of bubbles [18]. Ellipse parameters are estimated as bubble parameters using a
stable direct least square fitting method [15].

A major problem with traditional imaging techniques is that the parameters of the
different stages and even the workflow itself strongly depend on the experimental setup in
which the images were taken. Experimental variables such as the distance between bubbles
and the camera or the background light intensity significantly affect the applicability of
these techniques. However, these variables are often limited by experimental conditions.
Therefore, the potential for generalizing workflows is limited, requiring extensive manual
adaptations and expertise in image processing.

Deep learning has become a prevailing machine vision technique due to the develop-
ment of deep convolutional neural networks (CNN) in recent years. By comprehensively
comparing the performance of various bubble detection methods when processing indus-
trial image data, it is proved that the CNN-based method is superior to the circular Hough
transform, concentric circular arrangements, and boosting-based detection methods [19].
Based on the deep learning algorithm, bubble center detection and synthetic bubble image
generation are proposed to determine overlapping, blurred, and non-spherical bubble
images [20]. A convolutional denoising auto-encoder architecture was introduced to rec-
ognize bubble patterns in images and identify their geometric parameters. The training
dataset used synthetic images similar to real photos collected in experiments [21]. BubCNN
employed a faster region-based CNN (RCNN) detector to localize bubbles and a shape
regression CNN to predict bubble shape parameters [22]. Compared with state-of-the-art
image processing procedures, BubCNN shows better generalization abilities. While the
accuracy of BubCNN is high when the gas holdup is below 2%, its accuracy drops signifi-
cantly as the gas holdup increases. Cerqueira and Paladino [23] developed a CNN-based
method to identify bubbles and reconstruct bubble shapes in millimeter bubbly flows and
obtained accurate results at gas holdups below 9%. A framework combining a deep edge-
aware network and a marker-controlled watershed algorithm was proposed for extracting
bubble parameters from hysteroscopy images. The proposed edge-aware network consists
of an encoder–decoder architecture for bubble segmentation and a contour branch that is
supervised by edge losses [3].

Researchers have also made great efforts in BSD detection in froth flotation. McGill
bubble size analyzers (BSA) [24] are known to be the most acceptable techniques in both
batch and industrial conditions. The Anglo Platinum Bubble Sizer was developed by
the University of Cape Town in collaboration with Anglo Platinum as a modification
of McGill BSA. Ma et al. [25] used a linear relationship between the bubble size and the
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area of the bright centroid to improve BSD characterization in the spherical regime in
the presence of dense binding clusters. Bubble sampling is also critical to reduce the pres-
ence of clusters. Azgomi et al. [26] measured bubble size in a laboratory-scale flotation
column which was designed with an expansion in the section. The results showed that the
gas holdup decrease in the sampling point was effective in reducing the bubbles observed
in the visual field. A new deflecting system that allowed a fraction of the sampled bubbles
to be photographed was designed to reduce clusters of bubbles in the visual field [27].
An online BSD monitoring scheme was proposed by incorporating a multiscale-deblurring
full convolutional network (FulConNet) (MsD) and a multistage jumping feature-fused
FulConNet (MsJ), having the potential of online identification of the health state of the
flotation process operations [28].

Although the current deep learning technology has improved the accuracy and ro-
bustness of bubble detection methods, it is worthwhile to mention that some problems
remain. Firstly, the characteristics of bubbly flows with high gas holdup, such as low
transparency, overlapping bubbles, and significant variations in bubble scale, impede the
practical implementation of conventional bubble detection methods. Deep-learning-based
methods in the literature are still limited to applications in gas–liquid flow with low gas
holdups. Secondly, the current CNN models are typically designed as two-stage methods
involving segmentation and reconstruction, which require a huge amount of computation
and can impact the efficiency of the detection process.

This work proposes an end-to-end BSD detection method for dense bubbly flows.
The proposed model optimizes the output structure and loss function, allowing it to effec-
tively locate bubbles and determine size parameters through ellipse fitting simultaneously.
The design of the loss function takes into account both localization loss and size fitting loss,
thereby improving the accuracy of both bubble localization and size regression. Efficient
objection detection model YOLO series models are researched and adopted as backbone
models. This paper is structured as follows. In Section 2, we give a detailed description
of the proposed method. In Section 3, we present the experimental results and analysis.
Section 4 discusses the advantages and disadvantages of the proposed method. Finally,
the conclusions are presented in Section 5.

2. Methodology
2.1. Overview

In contrast to previous tea-stage methods, an end-to-end BSD detection scheme based
on deep learning is proposed in this paper, as shown in Figure 1. This scheme uses the
objection detection framework to realize bubble location and size detection in the dense
flow simultaneously. The whole process is divided into two stages of training and detection.
During training, a bubble detector based on a deep CNN model is trained on public bubble
datasets [29]. The model parameters are updated via backpropagation. During detection,
the well-trained detector model takes bubble images as input, then performs the forward
propagation, and finally outputs the bubble parameters.

In the field of computer vision, object detection includes two tasks, namely object loca-
tion and object classification. Object classification is a classification problem to determine
what category the target belongs to. Object location is essentially a regression problem that
determines the coordinate position and size (usually the length and width of the bounding
box) of the targets in the image. In this paper, the proposed method is only responsible for
detecting a single category which is the “bubble” and does not distinguish the properties
of bubbles (such as bubble shape, bubble color, etc.). Hence, the detector model ignores
the classification requirement. BSD detection is essentially a regression prediction of the
location and size parameters of the bubbles.
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Figure 1. End-to-end BSD detection workflow.

In many processes, the shape of rising gas bubbles can be approximated by an ellip-
soid [22]. In a 2D projection, ellipsoids become ellipses, which are described mathematically by

[(x− xc) cos(θ) + (y− yc) sin(θ)]2

a2 +
[(x− xc) sin(θ) + (y− yc) cos(θ)]2

b2 = 1 (1)

where (xc, yc) is the ellipse center coordinate, and a, b are the semi-major and semi-minor
axes of the ellipse, respectively. θ is the anticlockwise rotation angle. It is worth noting
that the location parameters refer to (xc, yc), and the size parameters refer to (a, b, θ).
The detailed processing tricks are explained below.

2.2. BSD Detector Architecture

The proposed BSD detection technique is based on the You Only Look Once (YOLO)
algorithm [30–32]. YOLO series models are state-of-the-art models for real-time object
detection with a fast network architecture, effective feature integration methods, and robust
loss functions. YOLO divides the image into grids and predicts bounding boxes and
probabilities for each grid simultaneously.

The one-stage BSD detector architecture is shown in Figure 2, including a backbone, a
neck, and multi-head modules. The backbone is the feature extraction network with stacked
convolution, pooling, and other operation layers, such as ResNet-50 [33], Darknet53 [30],
CSPDarknet53 [31], etc. CNN modules in the backbone finally downsample the input
by 32.

Figure 2. The proposed one-stage BSD detector architecture based on YOLO. The orange and blue
blocks represent the backbone module and the neck module, respectively.
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Nick is composed of several bottom-up paths and several top-down paths to collect
feature maps from different stages, such as SPP [34], FPN [35], etc. To enhance the detection
probability of different bubble targets, upsampling is carried out twice. This operation
contributes to obtaining more meaningful semantic features and finer-grained information
from the earlier feature map.

Multi-head detection is utilized on three feature maps of varying scales, downsampled
by factors of 8, 16, and 32, respectively. The backbone feature extractor is augmented with
multiple convolutional layers. The last layer outputs a three dimensional tensor encoding
ellipse parameters and confidence. Figure 3 illustrates that each detection output tensor
is encoded as S× S× (B× (5 + 1)). This encoding is used because each output contains
five ellipse parameters and one confidence parameter. S is the grid size of the feature
map for each sub-detection path, and B is the anchor number for each path. It is worth
noting that tx, ty, ta, tb are the offsets on the feature map instead of the final results, which
is explained below.

Figure 3. Detector output illustration.

2.3. Ellipse Location and Fitting

The initial approach of object detection typically employs the mean square error (MSE)
for direct regression on the coordinates of the center point, as well as the height and width of
the bounding box. Anchor-based methods estimate the corresponding offsets. Referring to
the bounding box prediction method in YOLOv5 [36], the proposed model also utilizes the
anchor-based strategy to detect bubbles. The difference lies in the design, where the detection
network indirectly predicts four coordinates offsets (tx, ty, ta, tb) for each bubble, as shown in
Figure 4. The final result is obtained using the following equations.

xc = (2σ(tx)− 0.5) + cx (2)

yc =
(
2σ
(
ty
)
− 0.5

)
+ cy (3)

a = pa(2σ(ta))
2 (4)

b = pb(2σ(tb))
2 (5)

bw = 2
√

a2 cos2(θ) + b2 sin2(θ) (6)

bh = 2
√

b2 cos2(θ) + a2 sin2(θ) (7)

where
(
cx, cy

)
is the cell offset from the top left corner of the feature map. pa, pb are the

prior semi-major and semi-minor axes of bubbles which are calculated by K-means [37].
In order to calculate intersection over union (IoU), the circumscribed horizontal rectangle
of the rotated ellipse is used to replace the bounding box. bw and bh refer to the width
and height of the circumscribed horizontal rectangle. All of the four offset parameters are
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predicted by a sigmoid function σ(). The paper employs the pixel as the unit of xc, yc, a, b
and radians as the unit of θ.

Figure 4. Ellipse fitting with dimension priors.

2.4. Loss Function Design

As described above, the backpropagation algorithm employs a loss function to con-
strain and guide the optimization of the model. We design a comprehensive loss function
that includes location loss, regression loss, and confidence loss. Location loss Lloc is used
to guide optimization of parameters tx and ty, regression loss Lreg is used to fit ellipse
parameters ta, tb, and θ, and confidence loss Lcon f is used to evaluate an objectness score
for each bubble. The entire loss function Loss is defined as

Loss = λl Lloc + λrLreg + λcLcon f (8)

Lloc = 1− CIoU (9)

Lreg =
S2

∑
i=0

B

∑
j=0

Iobj
ij

[
(aij − âij)

2 + (bij − b̂ij)
2
+ (θij − θ̂ij)

2
]

(10)

Lcon f = −
1
N

S2

∑
i=0

B

∑
j=0

[
oij ln

(
con fij

)
+ (1− oij) ln

(
1− con fij

)]
(11)

where λl , λr, λc are constant factors. We use complete-IoU (CIoU) [38] to calculate location
loss. Here, the bounding box is replaced by (xc, yc, bw, bh). Regression loss is calculated
by the mean square error loss. Iobj

i denotes if an object appears in cell i, and Iobj
ij denotes

that the jth target in cell i is responsible for that detection. Confidence loss is calculated
by binary cross-entropy loss. aij, bij, θij are the predicted values, and âij, b̂ij, θ̂ij are the true
values. oij ∈ [0, 1] refers to the CIoU of the predicted target bounding box and real target
bounding box, con fij is the prediction confidence obtained by sigmoid function, and N is
the total number of positive and negative samples.

3. Experiments
3.1. Dataset

All images in the dataset were synthetically generated using the public BubGAN [29]
tool. BubGAN can be used for synthetic bubbly flow generation with customized bubbly
flow boundary conditions. A total of one million synthetic bubbles are stored in the
MillionBubble database with known bubble properties in terms of aspect ratio, rotation
angle, circularity, and edge ratio.

In this work, 100,000 synthetic bubbly flow images were generated by assembling sin-
gle bubbles in MillionBubble on an image background canvas with a size of 600× 600 pixels.
A total of 8000 images in the dataset are used as the training set, and the remaining 2000 im-
ages are used as the test set. The key parameters for generating images are bubble center
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coordinate (xc, yc), semi-major and semi-minor axes (a, b), rotation angle θ, and void
fraction. The distribution of the parameters is shown in Figure 5.

The center coordinates are subject to a random uniform distribution within the size
of the canvas. The rotation angles are normally distributed. The semi-major axis and
the semi-minor axis are mainly randomly distributed in [5, 40] pixels. The images have a
resolution of around 25 pixels per mm. Bubbles are generally easy to detect in spherical
regimes, while the detectability becomes more challenging when large bubbles coexist with
small bubbles [39]. The rotation angle follows a Gaussian distribution, and its range is
[−π/2, π/2]. The void fraction is defined by the volume of all bubbles divided by the
total volume, which is randomly and uniformly distributed in [0.01, 0.1]. The larger the
void fraction is, the denser the bubbles become. Note that the void fraction in the test
set is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}, and 200 images are
generated under each value.

Figure 5. The distribution of dataset parameters.

3.2. Evaluation Metrics

In this work, the flowing several metrics are used to evaluate the trained detectors.

(1) Precision: The fraction of relevant instances among the retrieved instances

Precision =
True Positive

True Positive + False Positive
(12)

(2) Recall: The fraction of relevant instances that were retrieved

Recall =
True Positive

True Positive + False Negtaive
(13)

(3) AP50: the average precision (AP) value calculated at the threshold of 50% for detection
evaluation. Specially, average precision is equivalent to mean average precision (mAP)
due to a single-class detection task.
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(4) F1 score: A harmonic average of precision and recall

F1 = 2× Precision× Recall
Precision + Recall

(14)

(5) MSE: Average squared difference between the estimated values and the actual value.

MSE = MSE(xc, yc, a, b, θ)

=
1
M

M

∑
i=1

[
(xci − x̂ci)

2 + (yci − ŷci)
2 + (ai − âi)

2 +
(

bi − b̂i

)2
+
(
θi − θ̂i

)2
]

(15)

where M is the number of true positive samples, xci, yci, ai, bi, θi are the predicted
values, and x̂ci, ŷci, âi, b̂i, θ̂i are the true values.

(6) Frames Per Second (FPS): the frequency (rate) at which consecutive images (frames)
are inferred

(7) FLOPs: Floating point operations to measure the complexity of the CNN model.

The metrics of precision, recall, AP50, and F1 score are used to evaluate the model’s
ability in bubble detection, while MES is used to evaluate the model’s ability to fit ellipti-
cal parameters.

3.3. Analysis of Backbone Networks

In this study, we initially assess the efficacy of our approach by testing different
backbone network structures to identify the optimal model architecture. We analyzed
and compared 11 mainstream YOLO networks, including YOLOv3 [30], YOLOv3-spp [30],
YOLOv3-tiny [30], YOLOv4-L [31], YOLOv4-M [31], YOLOv4-S [31], YOLOv5-L [36],
YOLOv5-M [36], YOLOv5-S [36], YOLOv7 [32], and YOLOv7-tiny [32]. It should be noted
that during the experiment, we only used the network architectures of different YOLO
versions as backbone networks. However, some tricks, such as CutMix and Mosaic data
augmentation in YOLOv4, were not exploited, and the method used to predict position
parameters is different from that used in the original paper.

We utilized a server equipped with an NVIDIA TITAN Xp GPU to train and test the
model. During the model training process, the following parameter settings were utilized:
input size = 640× 640× 3; the optimization algorithm was set to Adam; batch size = 32;
epochs = 100; and initial learning rate = 1× 10−3. Additionally, we introduced weight
decay with a factor of 1× 10−4 to tackle overfitting. The three constant coefficients in the
loss function were set to λl = 0.5, λr = 0.5, and λc = 0.1. The IoU threshold for training
was set to 0.2.

The model performs multi-head detection on three different feature maps (three
branches) of different sizes, which are 80× 80, 40× 40, and 20× 20. Each detection branch
has three anchors, resulting in a total of B = 9(3× 3) anchors. Therefore, the K-means
algorithm is used to cluster the parameters in the training set, with a total of nine clusters.
The clustering results are (13, 10), (26, 20), (33, 28), (40, 36), (45, 25), (48, 43), (54, 34), (56, 51),
and (72, 64). Due to the consistent background generated in the dataset, random flipping is
used as the only data augmentation method during training.

Since BubCNN [22] is considered to be the state-of-the-art method for bubble detection,
we conducted a comparative analysis between our method and BubCNN. BubCNN was
trained for 50 epochs with an initial learning rate of 1× 10−4. The learning rate was halved
every 10 epochs. During training, 1000 region proposals were evaluated, and the overlap
thresholds IoUmax and IoUmin were set to 0.7 and 0.3, respectively.

Based on the evaluation metrics defined in the previous section, we compared the
performance of 11 different backbone network models as shown in Table 1. It can be seen
that the precision of 11 different backbone network models is above 0.97, among which the
precision of YOLOv5-L backbone network model is the highest, reaching 0.9879. The model
with the lowest precision is the one in which the backbone network is YOLOv4-S, and the
precision is 0.9750. The precision of these two models differs only by 0.0129. The average
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precision of the 11 different backbone models is 0.9817, and the variance is 2.12× 10−5.
Due to the absence of noise interference in the dataset images used in this paper, all
models exhibit high precision with minimal differences. The precision of BubCNN is 0.8130.
Compared with BubCNN, the precision of YOLOv5-L model is increased by 0.1749, and the
precision of YOLOv4-S model is increased by 0.1620.

Table 1. Detector performance of different backbone networks.

Backbone Precision Recall AP50 F1 Score MSE FLOPs Parameters FPS

YOLOv7 0.9871 0.8725 0.9161 0.9263 3.8299 103.2G 36,497,954 55
YOLOv7-tiny 0.9843 0.8614 0.9152 0.9187 4.6796 13.0G 6,015,714 144

YOLOv5-L 0.9879 0.864 0.915 0.9218 3.74 107.7G 46,124,433 51
YOLOv5-M 0.9826 0.863 0.9131 0.9189 4.6239 47.9G 20,865,057 76
YOLOv5-S 0.9831 0.854 0.9137 0.914 4.5461 15.8G 7,020,913 135

YOLOv4-L 0.984 0.862 0.9067 0.919 3.7273 119.1G 52,496,689 46
YOLOv4-M 0.986 0.865 0.9063 0.9215 4.1 50.3G 24,357,849 69
YOLOv4-S 0.975 0.861 0.903 0.9145 4.8645 20.6G 9,118,721 117

YOLOv3 0.976 0.8571 0.9116 0.9127 4.39 154.6G 61,513,585 41
YOLOv3-spp 0.977 0.867 0.9132 0.9187 5.7 155.4G 62,562,673 40
YOLOv3-tiny 0.976 0.831 0.903 0.8977 7.24 12.9G 8,673,622 250

BubCNN 0.813 0.51 0.644 0.6268 13.2 - - 2

The difficulty studied in this paper is the detection of bubbles under dense conditions,
so recall is a more important metric to focus on. the recall of the model with YOLOv7 as
the backbone network is the highest among all models, reaching 0.8725. The recall of the
model with YOLOv3-tiny as the backbone model is the lowest, with a value of 0.8310. The
recall of the YOLOv7 model differs from that of the YOLOv3-tiny model by only 0.0415.
The average recall rate of the 11 different backbone models is 0.8598, and the variance is
1× 10−4. Although the precision differences of models with different backbone networks
are relatively small, there are still significant differences in the recall rates. The recall
rate of BubCNN is only 0.5100, which is increased by 0.3625 when compared to YOLOv7,
and increased by 0.3210 when compared to YOLOv3-tiny. This indicates that the method
proposed in this paper has good detection performance for bubbles under dense conditions.

The advantage of the AP metric is that it considers a balance between precision and
recall at different confidence threshold levels and can be used to compare the performance
of different models. The F1 score is a statistical measure used to evaluate the precision
of binary classification models, as it considers both precision and recall. Based on the
analysis of the AP50 and the F1 score, the best-performing model among all the tested
models is the one that uses the YOLOv7 backbone network, with AP50 = 0.9161 and
F1 score = 0.9263. YOLOv3 uses Darknet53 as the backbone network. YOLOv4 adds
the CSPDarknet53 structure and the Mish activation function on the basis of YOLOv3.
YOLOv5 stacks the ConvBNSiLU module, C3 module, and SPPF module to form the
backbone, and the YOLOv7 backbone network is composed of the CBS module, ELAN
module, and MPConv module. The experimental results indicate that the network structure
design of YOLOv7 is more suitable for the detection of dense bubbles. The AP50 result
of the YOLOv7 model surpasses BubCNN (0.6440) by 42%, demonstrating the superior
performance of the method proposed in this paper for bubble localization.

The MSE metric is an overall evaluation of the model’s fitting performance for two
positional parameters xc, yc and three size parameters a, b, θ. From the data in Table 1,
the model that has the best fitting performance is the one that uses the YOLOv4-L network,
with an MSE error of 3.7273 (in pixels). However, the YOLOv4-L model has average results
in terms of precision, recall, AP50, and other metrics. The model with the largest error is
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the one based on the YOLOv3-tiny structure, with an MSE of 7.2400, due to the shallowest
layer of the YOLOv3-tiny model. The average MSE of 11 different backbone models is
4.6765, with a variance of 0.9621. In terms of precision, recall rate, AP50, F1 score, and MSE,
the distribution of model performance on the MSE metric is the largest, because the fitting
of position and size is evaluated at the pixel level, while other metrics consider predicted
results as true positive samples when the IoU between the predicted result and the label
is larger than 0.5. The MSE of the YOLOv7 model is 3.8299, which is only 0.1026 higher
than the best result, and it is 9.3701 higher than the MSE of BubCNN (13.2). Therefore,
the performance of the model based on the YOLOv7 backbone network is excellent as well
in terms of parameter fitting.

Taking all evaluation metrics into account, the results in Table 1 demonstrate that the
proposed method has good detection performance and parameter fitting precision in dense
bubbly flows. Under the premise of considering detection efficiency, it is believed that the
model based on the YOLOv7 backbone network has the best overall performance, which is
why the analysis of the loss function, IoU, and void fraction in the following sections are
based on the YOLOv7 network.

3.4. Analysis of Loss Function and IoU

In object detection, the YOLO algorithm predicts the bounding box for targets through
regression. Traditional object detection algorithms use the MSE to predict the coordinates
of the center point as well as the length and width of the bounding box, or they predict the
upper left and lower right points. With the evolution and iteration of the YOLO algorithm,
researchers have used anchor-based methods to estimate the corresponding offset for the
position. They use IoU loss to predict the offset of the bounding box relative to the anchor.
As the parameters predicted in this study are not bounding boxes, it is necessary to redesign
an optimal loss function.

The method proposed in this paper assumes that the bubble is an ellipse rotating
counterclockwise around the x-axis. The loss function is composed of three parts: location
loss Lloc, regression loss Lred, and confidence loss Lcon f . The location loss is calculated in
the form of CIoU loss.

The effects of loss coefficient λl , λr, and λc for training were investigated. These three
parameters were chosen based on empirical methods. Here, we conducted tests using
various combinations selected from three values: 0.1, 0.5, and 1.0. The results are given in
Table 2. In general, the selection of various combinations has a minor impact on both the
location performance and the fitting accuracy of the model. When the values of coefficients
λl and λr are small, it results in a slight increase in the MSE. This occurs because reducing
these two coefficients weakens the constraints on the location and size parameters during
the training process. Comparatively, we prefer to improve the location performance of the
bubbles. We ultimately selected a parameter combination with the highest AP50 value,
which corresponds to λl = 0.5, λr = 0.5, and λc = 0.1.

Table 2. Detector performance with different coefficients for the loss function.

λ1 λr λc Precision Recall AP50 F1 Score MSE

0.5 0.5 0.5 0.9848 0.8738 0.9063 0.9260 3.9323
1.0 0.5 0.5 0.9853 0.8738 0.9067 0.9262 3.7166
0.5 1.0 0.5 0.9870 0.8713 0.9062 0.9255 3.8856
0.5 0.5 1.0 0.9842 0.8723 0.9058 0.9249 3.9255
0.1 0.5 0.5 0.9832 0.8738 0.9066 0.9252 4.0088
0.5 0.1 0.5 0.9859 0.8718 0.9135 0.9254 4.2846
0.5 0.5 0.1 0.9871 0.8725 0.9161 0.9263 3.8299
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When calculating IoU, the circumferential horizontal rectangle of the ellipse is taken
as the target position. The center coordinates (xc, yc), width bw, and height bh of the
circumferential horizontal rectangle are calculated by Equations (6) and (7), respectively.
Theoretically, it is possible to train the model using only IoU loss through backpropagation
to fit the five parameters tx, ty, ta, tb, θ. However, in the experimental process, we found
that only fitting the size parameters of the ellipse does not result in optimal performance.
Therefore, we experimented with four different methods, including IoU [40], GIoU [41],
DIoU [38], and CIoU [38]; the different regression losses are shown in Equations (16)–(18),
respectively. The difference between the three different modes lies in whether to include
the MSE of the size parameters (a, b, θ) in the loss function.

Mode1 : Lreg =
S2

∑
i=0

B

∑
j=0

Iobj
ij

[
(aij − âij)

2 + (bij − b̂ij)
2
+ (θij − θ̂ij)

2
]

(16)

Mode2 : Lreg =
S2

∑
i=0

B

∑
j=0

Iobj
ij

[
(θij − θ̂ij)

2
]

(17)

Mode3 : Lreg = 0 (18)

Table 3 presents the experimental results using different IoU and loss functions.
The left-hand side represents bubble detection performance, while the right-hand side
reflects bubble parameter fitting performance. When using Mode1 to calculate the loss func-
tion, the four methods of IoU calculation have little impact on precision. The highest model
precision is 0.9871 when using CIoU to calculate the loss function and lowest at 0.9859 when
using DIoU. The small difference in precision indicates that almost all detected bubbles are
true positives. However, the different IoU calculation methods have a certain impact on
the model’s recall. Among them, the model using CIoU has the highest recall at 0.8725 and
the best AP50 and F19 scores, reaching 0.9161 and 0.9263, respectively. The DIoU model
follows, with a recall 2.7× 10−4 lower than that of the CIoU model, and AP50 and F1 scores
decreasing by 2.5× 10−4 and 2.0× 10−4, respectively. The IoU and GIoU methods have
little difference in recall, AP50, and F1 score metrics. When all models use CIoU methods,
more parameters considered for regression loss (Mode1) resulted in better results in terms
of precision, recall, AP50, F1 score, and other aspects. Overall, different loss functions have
a relatively small difference in bubble detection performance, with slight fluctuations in
numerical results but have a significant impact on the fitting of size parameters.

Table 3. Analysis of loss function and IOU.

Loss Function Precision Recall AP50 F1 Score
MSE

xc yc a b θ Total

IoU + Mode1 0.9861 0.8654 0.9087 0.9218 2.4 1.8 11.3 7.4 0.0443 4.5852
GIoU + Mode1 0.9863 0.8697 0.9093 0.9243 2.9 2.1 12.9 9.8 0.0449 5.5473
DIoU + Mode1 0.9859 0.8699 0.9136 0.9243 2.3 1.7 10.1 7.2 0.0407 4.2846
CIoU + Mode1 0.9871 0.8725 0.9161 0.9263 2.1 1.6 9.2 6.2 0.0385 3.8299
CIoU + Mode2 0.9834 0.867 0.9103 0.9215 2.5 1.9 11.9 11.7 0.0364 5.6338
CIoU + Mode3 0.9792 0.861 0.9116 0.9163 3.3 2.5 14.4 10.3 0.2888 6.1692

BubCNN 0.813 0.51 0.644 0.6268 15.9 19 14.9 15.9 0.4820 13.2364

Analysis of the data in the right half of Table 3 shows that the design of regression loss
is crucial for the accuracy of parameter fitting. Traditional object detection algorithms only
use IoU to predict the bounding box parameters of objects. However, when using IoU loss
only to fit the location and size parameters of bubbles in this paper, the fitting performance
of the model is the worst, especially for size parameter fitting with significant deviations.
Although the CIoU + Mode3 method had the largest fitting MSE of location parameters,
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the difference was only under two, so the performance is considered to be at the same
level as the other methods. However, the MSE of parameters a, b are 14.4 and 10.3, higher
than the best model (CIoU + Mode1) by 5.2 and 4.1, respectively. Mode2 and Mode3 did not
calculate the L2 loss of a, b , so the MSE of these two parameters were larger than those of
other models. The CIoU + Mode3 model had an MSE of 0.288 for the parameter θ, while
the best model (CIoU + Mode2) had a significantly lower MSE of only 0.0364, which was
7.9 times smaller. The MSEs of other models for the parameter were around 0.04 because
they calculated the L2 loss of θ. Therefore, calculating the L2 loss of (a, b, θ) in regression
loss can significantly improve the model’s parameter detection accuracy.

Through the experimental analysis in this section, we found that the optimal solution
for the loss function is to use CIoU to calculate the location loss and Mode1 to calculate the
regression loss. Moreover, compared to BubCNN’s performance, the CIoU + Mode1 method
has shown significant improvements in all performance evaluation metrics, particularly
in recall and MSE. In terms of bubble localization, precision increased by 0.1741, recall
increased by 0.3625, AP50 increased by 0.2721, and F1 score increased by 0.2995. In terms
of parameter fitting, the MSE of parameter xc and parameter yc decreased by 13.8 and
17.4, respectively. The MSE of parameter a and parameter b decreased by 5.7 and 9.7,
respectively. MSE of parameter θ decreased by 0.4435, and the average MSE of all five
parameters decreased by 9.4.

The design of the IoU loss function in object detection has the potential to accurately
predict the bounding box of the target, which comprises four parameters. However, our
research focuses on bubble objects that differ from traditional bounding boxes and necessitate
the prediction of five parameters. The prediction of parameters xc and yc is equivalent to
estimating the center coordinates of the bounding box. Therefore, the IoU loss can be employed.
However, since the prediction of parameters a, b, and θ differs from the detection of bounding
box width and height, the L2 loss is employed to enforce the constraint. The optimized
loss function offers the following advantages. Firstly, it fulfills the model’s requirement
to simultaneously output both localization and size parameters. Secondly, it substantially
enhances the accuracy of predicting the bubble’s size parameters, particularly parameter θ.
Thirdly, it results in a marginal improvement in the localization performance of the bubbles.

3.5. Bubble Size Distribution Estimation Evaluation

This section evaluates the estimated results of the BSD from two perspectives: the
number of bubbles and the size of the bubbles. Figure 6 illustrates the number of bubbles
estimated from the test set of 2000 images. The blue curve represents the actual number of
bubbles in each sample image, while the yellow curve represents the estimated number
of bubbles. For better visualization, minor adjustments were made during the plotting
process, including sorting the actual bubble quantities in ascending order. From the
figure, it can be observed that when the number of bubbles in each image is less than
approximately 60, the model can detect almost all of them. However, as the number of
bubbles increases, the deviation between the predicted and actual values gradually becomes
larger. The increase in bubble quantity implies a higher void fraction, resulting in more
challenging bubble detection, which aligns with our intuitive understanding. The following
sections will provide a detailed numerical analysis of precision and recall.

The pixel lengths of the semi-major axis a in the test set were divided into four
intervals: 2 < a ≤ 10, 10 < a ≤ 20, 20 < a ≤ 30, and 30 < a ≤ 40. In physical space,
every 25 pixels correspond to a length of 1 mm. The estimated results of BSD are shown in
Figure 7, where the blue curve represents the actual values and the yellow curve represents
the estimated values. Similarly, for the purpose of analysis, we sorted the bubbles in
ascending order according to the actual value of a. Therefore, the actual value curves in
Figure 7a,d,f,g exhibit a monotonically increasing trend. The analysis of MSE data in Table 4
reveals a clear trend: as the bubble size increases, the fitting errors for parameters a and
b also increase. Notably, the MSE of parameter b is relatively smaller in comparison to
parameter a. When 2 < a ≤ 10, the MSE values for a and b are only 0.5 and 0.3, respectively.
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However, when 30 < a ≤ 40, their MSE values increase to 9.2 and 6.5. This is due to the
presence of densely distributed bubbles, where larger bubbles are more likely to overlap
and occlude other bubbles. The coexistence of large and small bubbles introduces noise and
impacts the analysis of the image. Consequently, larger bubble sizes result in larger errors.
However, as the size of the bubbles increase, the MSE of parameter θ gradually decreases
from 0.0796 to 0.0355. This is because when the bubble size is too small, the rotational
effect is not visually significant, making detection difficult. As the bubble size increases,
although interference from other bubbles may be present, this noise has a smaller impact
on rotation.

Figure 6. Comparison of the estimated and actual number of bubbles.

Table 4. MSE of bubbles with different semi-major axis sizes.

Semi-Major Axis Range 2 < a ≤ 10 10 < a ≤ 20 20 < a ≤ 30 30 < a ≤ 40

MSE of a 0.5 1.5 3.7 9.2
MSE of b 0.3 1.0 2.6 6.5
MSE of θ 0.0796 0.0415 0.0348 0.0355

3.6. Analysis under Different Void Fractions

Based on the previous experiment, we have explored the best comprehensive perfor-
mance solution, which uses YOLOv7 as the backbone network and calculates the local-
ization loss and regression loss separately using the CIoU method and Mode1 method.
This solution has shown excellent performance in terms of bubble precision, recall, fitting
accuracy, and efficiency. In this section, we will explore the detection results of this model
under different void fraction conditions.

Figure 8 illustrates the detection results of the best-performing model under different
void fractions. The void fraction represents the proportion of the area occupied by bubbles
in two-phase flow. The larger the void fraction, the larger the area occupied by bubbles,
and the denser the distribution. The void fraction ranges from 0.01 to 0.10 with a step size of
0.01. The images in Figure 8 represent typical pictures at each void fraction. The green dots
in each subgraph represent the fitted elliptical bubble center, and the red edge represents
the boundary of the ellipse. As evident from the figure, the proposed model accurately
detects bubbles and fits elliptical parameters for both sparse and dense bubble distributions.
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Figure 7. Comparison of the estimated and actual bubble size. The sub-figures in the first, second,
and third columns display the comparison results between the estimated and actual values of a, b,
and θ under different ranges of the semi-major axis (a). (a–c): 2 < a ≤ 10; (d–f): 10 < a ≤ 20; (g–i):
20 < a ≤ 30; (j–l): 30 < a ≤ 40.

Figure 8. Detection results under different void fractions.
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Table 5 shows the detection performance metrics of the model at different void frac-
tions, with 200 test images at each void fraction. The results of precision, recall, AP50,
and F1 score all decrease as the void fraction increases, with recall decreasing the most,
from 0.9794 to 0.8120. Precision decreases the least, from 0.9988 to 0.9826, decreasing by
0.0162 in total. The greater decrease in recall indicates an increased rate of false positive
detections as the bubbles become denser. As observed from Figure 8, the primary reason
for this is that some bubbles are significantly occluded and cannot be detected when the
bubbles become denser. The minor decrease in precision is caused by the detection of
redundant objects in areas with heavily stacked clusters of bubbles. The multiple edges
of tightly packed bubbles in clusters can visually resemble new bubbles, as shown in the
top-left region of the bubble cluster in Figure 8h. The slightly decreasing trend of AP50 and
F1 score by 0.0808 and 0.0998, respectively, suggests that the model still achieves excellent
detection performance in dense bubble distributions.

Table 5. Test results under different void fractions.

Void Fraction Precision Recall AP50 F1 Score
MSE

xc yc a b θ Total

0.01 0.9988 0.9794 0.9856 0.989 0.4 0.4 6.3 4.4 0.0165 2.2949
0.02 0.9956 0.9602 0.9765 0.9776 1 0.8 7 4.7 0.0234 2.7038
0.03 0.9962 0.9456 0.9704 0.9703 1.4 1 8 5.5 0.0253 3.1874
0.04 0.9925 0.9343 0.9637 0.9625 1.8 1.4 9 5.9 0.0288 3.6188
0.05 0.991 0.9116 0.9531 0.9496 2.2 1.6 9.7 6.4 0.0351 4.0073
0.06 0.9906 0.8905 0.9441 0.9379 2.4 1.7 9.5 6.3 0.0371 4.0003
0.07 0.9853 0.8747 0.936 0.9267 2.2 1.7 9.2 6.3 0.041 3.8744
0.08 0.9848 0.8571 0.9279 0.9165 2.2 1.6 9.4 6.4 0.0421 3.9475
0.09 0.9812 0.8354 0.9162 0.9024 2.4 1.8 9.5 6.4 0.0442 4.0237
0.1 0.9826 0.812 0.9048 0.8892 2.4 1.8 9.6 6.6 0.0469 4.1023

From the overall perspective, the MSE increases as the void fraction increases. The in-
creases in the MSE of xc, yc, a, b and θ are 2.0, 1.4, 3.3, 2.2, and 0.0304, respectively. Consid-
ered within the value ranges of the five parameters (as shown in Figure 9), the changes in
the MSE increase relatively slowly. This suggests that the model’s fitting ability is robust
and resilient. From Figure 8, it is observed that the reason for the increase in the MSE is
due to the possibility of fragmented and overlapped bubbles with dense bubble distribu-
tions. The fitting results of these bubbles by the model may exhibit some bias, as seen in
the top-right edge of the bubble in Figure 8d and the bottom-right edge of the bubble in
Figure 8g.

Figure 9 presents the box plot of MSE errors for the parameter fitting. The figure
indicates that the increase in void fraction has a minor impact on the median of the MSE
errors for all five parameters, suggesting that the central distribution of fitting errors
remains relatively unchanged and positively skewed. However, for parameters xc, yc,
and θ, the increase in void fraction results in an increase in the length of the box, and the
upper margin shows exponential growth, enhancing the positively skewed distribution.
The upper edge of parameters a and b slightly increases with the increase in void fraction,
and its error distribution is more stable in comparison to the other three parameters.
The appearance of a higher upper edge indicates the occurrence of missed detections (false
positives) in rare samples. Figure 9 further suggests that the fitting results for most bubbles
are minimally affected by the increase in void fraction, but the main impact is on the
occurrence of anomalous detection results.

Overall, the model proposed in this paper exhibits high accuracy and robustness in
detecting dense bubbles and fitting parameters.
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Figure 9. Mean square error results of different void fractions.

4. Discussions

The traditional image-processing-based bubble detection method can achieve good
detection performance under specific experimental conditions. However, changes in the
usage scenario often lead to a decrease in algorithm performance or even make it unsuitable
for use. BubCNN was the first to apply the deep-learning-based object detection network
Faster-RCNN to the field of bubble detection and combine it with a shape regression CNN
network for bubble shape parameter detection to create a two-stage bubble detector. Fol-
lowing this path of object detection, this paper designs an end-to-end bubble detection
network based on the YOLO network to achieve more efficient bubble location and pa-
rameter detection. Through experimental comparative analysis, our proposed method has
the following advantages: Firstly, for densely distributed bubbles, the proposed model
greatly improves the precision and recall over existing methods. The model has better
overall bubble positioning performance and has smaller fitting errors for parameters. Sec-
ondly, the improved bubble detection network proposed, which is based on the YOLO
method, is a one-stage network with higher detection efficiency and real-time performance.
The fastest model achieves an FPS of 255. Lastly, the open-source BubGAN dataset was
used for training the data. The diverse shapes of bubbles in the dataset enhance the model’s
generalization ability and extend its applicability to a wider range.

Nevertheless, the proposed method also has some limitations. Firstly, in highly dense
bubble distributions, the proposed method may produce false positive missed detections
and erroneous parameter detection results for bubbles that are incomplete or fragmented
at the edges of the image. In addition, although the assumption that the bubble contour
is usually elliptical is valid, it becomes inaccurate when dealing with higher Eotvos and
Reynolds numbers. Therefore, deep-learning-based instance segmentation methods can
be explored as potential solutions to address these two issues. Bubbles are segmented
with pixel-wise precision, and morphological parameters of each small bubble can be
extracted as needed. Finally, it should be noted that this research is based on 2D bubble
images, while 3D bubbles may lose some size features after being sampled by 2D cameras.
The stereological correction was not taken into consideration to determine bubble size,
which may result in certain errors.
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5. Conclusions

To address the problem of difficult detection of bubbles in dense bubbly flow, this paper
proposes a novel BSD detection method based on deep learning. The main contributions of
this paper are as follows:

(1) An end-to-end BSD detection method based on YOLO is proposed, using a multi-head
detection method to detect different-sized bubbles from three scales, and detecting
dense objects by using a dense detection approach. The model also adds an ellipse fit-
ting output for the morphological parameters of the bubbles, achieving a synchronous
output of their position and position parameters.

(2) The loss function of dense bubble detection is optimized using CIoU of bubble objects
and L2 constraints of elliptical parameters to improve the accuracy of model parameter
fitting. The precision, recall, and AP50 of the model are 0.9871, 0.8725, and 0.9161
respectively, and the MSE of the parameters is 3.8299.

Furthermore, pixel-level detection of bubbles will be researched in further work by
using deep-learning-based instance segmentation techniques.
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