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Abstract: Electroencephalography (EEG) signals are the primary source for discriminating the preictal
from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction
systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a
three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL)
model, which is able to achieve enhanced capability by utilizing a significant number of seizure
patterns from globally distributed patients while maintaining data privacy. The determination of the
preictal state is influenced by global and local model-assisted decision making by modeling the two-
level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network
(Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model
utilizes the aggregated seizure knowledge obtained from the different medical centers through FL
and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-
Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic
seizure patients by examining the outcomes of the FL model, heart rate variability features, and
patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14%
specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the
bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption
of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a
result of addressing data scarcity.

Keywords: epilepsy; seizure prediction; preictal; federated learning (FL); spiking encoder; graph
convolutional neural network (GCNN); patient-specific personalization

1. Introduction

Epilepsy is a chronic neurological dysfunction syndrome characterized by repeated
seizures induced due to irregular and excessive brain activity. Characteristics of seizure in-
volve loss of consciousness, disruption of movement, and other cognitive malfunctions [1].
Epilepsy poses a severe disease burden; 70 million people are affected by epilepsy world-
wide, according to the World Health Organization (WHO) survey, and about 20 million new
epileptic patients are recorded each year [2]. Up to 70% of epileptic patients’ conditions are
medically manageable using Anti-Epileptic Drugs (AED), whereas the conditions of 30% of
people with epilepsy are unmanageable due to the unpredictability of their seizures [3].
Thus, epileptic seizure prediction has become extremely important to be able to save pa-
tients from seizures before they occur. Electroencephalograms (EEGs) record the brain’s
electrical activity, serving as an analytical and diagnostic tool for epilepsy. EEGs are a
widely used signal for measuring electrical, metabolic, or clinical changes in brain activity
in order to observe the transition from the non-seizure state to the seizure state. EEG
recordings of epileptic patients are categorized into multiple consecutive stages depending
on the occurrence of seizures [4]. The preictal stage refers to that stage occurring before
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the onset of a seizure; the ictal stage refers to the phase while a seizure is occurring; the
postictal stage refers to the period after a seizure; and finally, the interictal stage denotes the
seizure-free period between the occurrence of two seizures [5]. Seizure onset [6] implies the
actual generation of clinical seizures in the cortex. Figure 1 illustrates the epilepsy stages.
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Figure 1. Diagram of epilepsy stages.

Epilepsy is a life-threatening disorder due to the occurrence of unexpected seizure
episodes, creating a high psychological and social impact on epileptic patients. To promote
quality of life, the prediction of epileptic seizures is necessary in order to control impending
seizures [7]. It is essential to devise a potential siezure prediction system for patients
who cannot be treated using medication. When processing epileptic EEG signals, seizure
detection and prediction are modeled as classification tasks. Small seizure durations in
EEG recordings indicate that the interictal state is comparatively longer than the ictal state.
Hence, the seizure detection task attempts to differentiate the ictal state from the interictal
state. In the subsequent identification of the preictal interval, seizure onset prediction
critically supports the early medical diagnosis of epileptic seizures in patients.

Despite the abundance of epilepsy research activities, researchers have envisioned
the possibility of performing accurate seizure prediction and interceding before the onset
of seizure indications [8]. Conventional works utilize handcrafted features marked on
EEG signals to locate the preictal state before seizure onset. However, manual feature
extraction leads to inaccurate seizure prediction due to information loss and extends
the warning time. Epileptic seizure prediction research works have employed various
models, such as machine learning and signal processing [9]. Machine-learning-based
seizure prediction and medical diagnosis have been accompanied by privacy concerns
due to the considerable sensitivity of health data. In addition to the patient characteristics
included in the health data, the processing of diagnosis results is also sensitive; hence,
privacy becomes a major constraint. Even though research into machine-learning-based
diagnosis has investigated different encryption methods, medical diagnosis systems are
confronted with the challenge of low efficiency while needing to achieve high levels of
privacy. The concept of Federated Learning (FL) [10] has emerged as a potential solution,
and is able to overcome privacy issues while training machine learning models using the
data of edge devices distributed worldwide.
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Developing a high-performance model is crucial in order to provide a reliable, real-
time medical diagnosis. The FL model protects users’ data by transferring only model
parameters trained locally on the client device, instead of transferring clients’ data to the
cloud. Owing to the shortage of clinical experts and the high cost of manual diagnosis,
adopting FL improves the quality of healthcare service without an expensive diagnosis.
In the FL, local model learning and decision making are performed by leveraging local
data and global model knowledge, whereas the global shared model receives updates from
distributed local models trained on various data. Hence, the main aim of the early epileptic
seizure prediction system is fulfilled by the FL model while ensuring privacy, minimal
latency, and minimal power consumption.

Research works on conventional epileptic seizure prediction methods [11] have increas-
ingly been applying Convolutional Neural Networks (CNNs); however, the high diversity
and complexity of EEG signals deteriorate the prediction performance of this simple struc-
ture. Moreover, epileptic seizure prediction systems are faced with the computation of
optimal or personalized preictal periods for the training set. Previous machine-learning-
based seizure prediction approaches have investigated the use of fixed preictal intervals
in the training samples. Patients have different preictal durations based on their charac-
teristics before the seizure onset. Hence, examining patient-independent preictal periods
is ineffective for accurate seizure prediction. Examining generalized seizure prediction
involves classifying the preictal, interictal, and ictal states of EEG signals recorded from all
of the scalp regions. Thus, as modeled in Figure 2, this work aims to build a patient-specific
preictal period detection system for predicting seizure onset quickly and with high accuracy
and privacy.
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1.1. Contributions of This Work

In this work, a seizure prediction mechanism consisting of a three-tier architectureis
proposed by applying federated learning and a hybrid deep learning model to accurately
detect the preictal class. The notable contributions of this work are presented below:

• Contribution 1: Design of Seizure Prediction System

� Research Gap: Data scarcity, privacy, and manual assistance in real-time
seizure prediction.

� Contribution: In this work, the preprocessing and classification stages are
designed to take place in a two-level edge layer in the FL model instead of
building local hospital models to ensure real-time prediction without man-
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ual interruption. Moreover, the postprocessing stage is automated using the
Adaptive Neuro-Fuzzy Inference System (ANFIS).

� Achievement: As proof of principle in the FL, the data scarcity and privacy
problems are resolved by utilizing the aggregated knowledge of seizure pat-
terns from distributed EEG signals, and the design of a two-level edge layer
mitigates manual interference.

• Contribution 2: Preprocessing and Classification

� Research Gap: Lack of preictal-aware learning process.
� Contribution: The proposed process employs a bi-timescale approach based

on segment-aware training samples and models the layer-wise feature space
of EEG signals to enhance the preictal state detection capability. In particular,
in this work, a learning model is designed with a Spiking Encoder (SE) and a
Graph Convolutional Neural Network (GCNN) to handle the diversity and
complexity of the EEG signals. Furthermore, the local model utilizes global
knowledge and distinguishes the preictal from the interictal state.

� Achievement: Global preictal-pattern-based coarse-grained personalization.

• Contribution 3: Postprocessing

� Research Gap: Need for patient-specific seizure prediction.
� Contribution: This work employs the ANFIS-PSO model for fine-grained preic-

tal personalization and adaptively integrates the Heart Rate Variability (HRV)
features and clinical features, along with the seizure probability obtained from
the FL-assisted coarse-grained personalization to strengthen the patient-specific
seizure onset prediction ability in the edge server.

� Achievement: More accurate seizure prediction.

1.2. Paper Organization

This paper, addressing seizure prediction, is structured as follows. Section 2 represents
a literature review of research work performed on epileptic seizure prediction. The system
model and problem formulation contemplated in the epileptic siezure prediction system
proposed here are described in Section 3. Section 4 describes the proposed epileptic
seizure prediction methodology. Section 5 presents the experimental evaluation with the
experimental setup and datasets used in the proposed model and compares previous works.
Finally, the conclusion and summary of the proposed approach are presented in Section 6.

2. Literature Review

In recent decades, machine learning models have gained significant attention for the
prediction of the outcomes of healthcare services, including in disease prediction, pattern
extraction, and decision making.

2.1. Deep-Learning-Based Epileptic Seizure Prediction Approaches

A patient-specific seizure prediction approach has been reported [12] adopting the
CNN model to categorize the preictal stage on the basis of EEG and iEEG signals. Short-
time Fourier transform is used to perform raw EEG data preprocessing with minimal
effort in the feature engineering process. A seizure prediction framework [13] using Long
Short-Term Memory Networks (LSTM) has been developed to analyze the preictal state on
the basis of EEG signals. This LSTM-based siezure prediction system utilizes a broad range
of feature extraction methods, namely, in the frequency and time domains, graph using
theoretical measures and EEG correlation to impart solid ictal prediction performance.
Another seizure prediction methodology has been presented [14] that was designed to
distinguish between the preictal and interictal phases using CNN, and data equalization
was performed in order to overcome the trial imbalance problem. This model utilized
common spatial patterns and wavelet packet-based decomposition feature extractors to
extract the temporal–frequency characteristics of EEG signals. Another epileptic seizure
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occurrence prediction model was presented [15] in which the multi-view CNN model was
exploited to attain different views of EEG signals. This model acquires discriminative
and adequate feature representations from EGG data using time- and frequency-domain
methods. A seizure prediction approach [16] was developed in which LSTM was utilized to
differentiate the preictal state from the interictal and ictal states on the basis of EEG signals.
In this approach, a stacked Bi-LSTM network is built to achieve better seizure prediction
performance before seizure onset.

An end-to-end patient-specific model has been reported [17] in which CNN is em-
ployed to predict seizures before seizures. In this method, the CNN network is implemented
using one-dimensional (1D) and two-dimensional (2D) kernels in the initial and final stages
of the convolution and max-pooling layers to attain greater accuracy. The efficient seizure
prediction approach [18] relies on CNN to extract features automatically and to classify the
preictal and interictal segments of the EGG. In this approach, EEG channel optimization is
conducted using the channel reduction technique in order to predict seizures on the basis of
EEG signals. A patient-specific siezure prediction system has been reported [19] in which
electrocardiogram (ECG) features, particularly the time and frequency features from the
RR series, are examined by means of recurrence quantification analysis. Furthermore, it ex-
ploits the Support Vector Machine (SVM) model to classify preictal and interictal segments.
To identify the preictal state from the EEG signals, the research reported in [20] investigated
the HRV features of ECG signals while considering the frequency- and time-domain fea-
tures for the recognition of each seizure. Early changes in the EEG and HRV features assist
in characterizing the preictal and interictal states in drug-resistant epilepsy patients. The
research reported in [21] developed an ANFIS-based seizure prediction system for patients
affected by Parkinson’s disease. By modeling the ANFIS for the purpose of EEG signal
analysis, the starting point of seizure onset could be detected, thus supporting real-time
seizure prediction. However, performing real-time medical diagnosis on the basis of the
examination of a single modality of EEG input data alone is ineffective due to the lack of
exploration of different inputs.

2.2. Hybrid-Learning-Based Epileptic Seizure Prediction Approaches

A generalized deep learning framework has been reported [22] for seizure prediction
employing the CNN-LSTM architecture. Initially, in this framework, Short-Time Fourier
Transform (STFT) is applied to effectively carry out EEG signal preprocessing. Then, the
features of sequential EEG segments are captured using spectral, spatial, and temporal
methods, and the preictal EEG segments are distinguished from the interictal EEG segments,
with high prediction performance. An effective patient-specific seizure forecasting method
has been described [23] in which the Deep Convolutional Neural Network (DCNN) and
Bidirectional LSTM (Bi-LSTM) models are employed to analyze the temporal and spatial
features of raw EEG signals. Subsequently, this method enables a Deep Convolutional
Auto-Encoder (DCAE)-model-based supervised learning method with transfer learning
and channel selection to diminish the training time and computation load while predicting
the seizure events. In the research work reported in [24], the EMD and DWT methods
were employed to convert the raw EEG signals into the extracted features, which were
then provided as the input to the classification models, specifically the Decision Tree, and
their approach was evaluated using the Bonn EEG dataset. The epileptic seizure prediction
system reported in [25] consisted of a method in which LSTM and CNN were combined,
and a Long-term Recurrent Convolutional Network (LRCN) model was presented. The
LRCN design was used to identify preictal segments by analyzing the spatial and temporal
information in an EEG sequence belonging to the CHB-MIT dataset. A novel epileptic
seizure prediction approach has been presented [26] in which a hybrid DenseNet-LSTM
model is employed for forecasting patient-specific epileptic seizures. The hybrid DenseNet-
LSTM model integrates the DCNN and LSTM networks. Furthermore, it applies Discrete
Wavelet Transform (DWT) to the EEG signals, transforms them using CNN, and then
classifies preictal and interictal states using LSTM.
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An epileptic seizure forecasting method has been developed [27] that is able to predict
the preictal stage of seizure activity. This method encompasses a series of processes, in-
cluding Empirical Mode Decomposition (EMD), for preprocessing EEG signals, Generative
Adversarial Network (GAN), to overcome class imbalance issues, and CNN, to perform
automated optimal feature extraction, while LSTM is exploited to robustly distinguish
preictal and interictal segments. An epileptic EEG recognition approach [28] utilizes the
improved residual network architecture to diagnose epileptic EEG, and different states of
epileptic EEGs are automatically labeled. This improved residual network is an indepen-
dent Recurrent Convolutional Neural Network (RCNN) composed of a One-Dimensional
CNN to preprocess the essential features of EEG and an Independent Recurrent Neural
Network (indRNN) to learn the correlations among EEG signal sequences and differentiate
different ictal periods. Deep ensemble learning has been proposed [29] for epileptic seizure
forecasting, where EMD is incorporated to remove noise and GAN to generate synthetic
preictal stages. Subsequently, it exploits three-layered customized CNN to extract a compre-
hensive feature set and SVM, CNN, and LSTM in order to enable ensemble classifiers using
Model-Agnostic Meta-Learning (MAML) to differentiate between preictal and interictal
states. A new neuromorphic computing approach has been reported [30] in which the
Gaussian random discrete encoder is employed to create spike sequences for the input EEG
data. The combination of the energy-efficient SNN and CNN is able to perform seizure
prediction by leveraging the potential advantages of each model. The seizure prediction
approach [31] mitigates the need for higher computation consumption in information
fusion by adopting a Graph CNN (GCN) that explores the graph structure of EEG signals.
Designing a simple network architecture with node and edge features predicts seizures on
the basis of scalp EEG signals. Despite this, the generalized graph structure can result in
the medical misdiagnosis of individual patients, because the edge features in the graph are
sensitive to differences among patients.

It can be concluded from the above literature analysis that there are different models
for epileptic seizure prediction, and new solutions are emerging. However, there are several
research directions in patient-specific preictal state detection leveraging early diagnosis
that are not pioneering; therefore, several constraints must be resolved in order to achieve
reliable seizure prediction in real time. For decision making in environments characterized
by data scarcity, extracting other patients’ preictal information has not received adequate
attention. Additionally, automated personalization on the basis of small EEG patterns
without handcrafted features remains an emerging field of research. The fusion of multiple
seizure-indicating features, such as EEG signals, ECG signals, and clinical records, requires
further research for accurate seizure prediction. In deep learning, the handling of data
scarcity and the preservation of privacy in small sensitive medical datasets have not been
well studied. Hence, this work addresses these issues through the following attempt to
produce a model for the task of epileptic seizure prediction.

3. Design of Epileptic Seizure Prediction

In the real world, the healthcare system highly demands Cloud computing technolo-
gies to combat the massive generation of voluminous data from the revolution of smart
technologies. To avert the uploading and to store a tremendous amount of raw data on a
centralized server, smart healthcare systems adopt the Federated Learning technique in a
decentralized manner, ensuring the privacy of sensitive local data.

3.1. System Model

This work presents an epileptic siezure prediction system that alerts patients and
medical practitioners regarding the onset of epileptic seizures in distributed medical centers
or hospitals.

With reference to [32], which was motivated by the analysis of ECG features, it is
assumed that (i) the preictal interval search relies on state changes in EEG and ECG signals,
and (ii) preictal state localization is influenced by ECG-related events that precede seizure
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onset in the EEG signals. Preictal period initialization does not strictly occur near seizure
onset in each subject, and varies among patients; therefore, it is infeasible to employ a
generalized consensus of the duration of the preictal period. To furnish medical services
in a distributed client environment, the federated learning model adopts the benefits of
using a centralized global server, and clients update their knowledge on the basis of the
learning model parameters. The model-centric and cross-device FL model is employed to
implement the proposed three-tier system. In federated learning, a model-centric approach
refers to the storage of heterogeneous data at different local hospitals, while the learning
model is fixed and centralized for training the different datasets. The cross-device refers to
the receipt of data from different edge devices belonging to a single organization. To design
FL-assisted epileptic seizure prediction, data from three different hospitals, using scenarios
with the same feature space, were recorded from EEG channels, and different samples
were obtained from across the three EEG datasets, regardless of the dimensions; these are
referred to as sample-based FL and horizontal FL, respectively. In the distributed hospitals,
each dataset comprises observations of brain activity monitored using different electrode
placement systems at various sampling frequencies, and using different channels. In the
FL design, decision making by the the local model is interrelated with the global model
by aggregating the local model parameters from the different clients in order to perform
model building on the cloud server. By modeling the FedAvg algorithm for aggregating
the local model weights of different clients at each iteration, the proposed epileptic seizure
prediction system repeatedly aggregates the model weights until convergence is achieved
on the centralized global server as well as the local model outcomes. In FedAvg, the central
server aggregates the parameters obtained from the distributed local models and distributes
the global parameters to the clients. Federated learning greatly supports medical clients
in the context of mobile healthcare, home healthcare, and hospital healthcare. This work
predominantly intends to alert patients or caretakers before the onset of an epileptic seizure
by identifying potential signs that can help to distinguish between the preictal and interictal
states on the basis of EEG signal timeframes. Hence, the design of the proposed prediction
model involves three major components in a three-tier architecture: the hospital as the
client, the local model as the edge server, and the cloud as the global server. The proposed
three-tier architecture is illustrated in Figure 3.

Tier 1 in the three-tier architecture gathers EEG signals from a diversity of patients in
distributed hospitals. In the hospitals, EEG signals are recorded following the placement of
non-invasive electrodes using a 10–20-electrode placement system and different mobile EEG
systems like headsets, mobile EEG caps, and saline-based electrodes. Tier 2 is responsible
for utilizing the data collected from the hospitals and building the local model for each
hospital in the corresponding edge server, rather than building the local models in the
hospitals themselves. Tier 3 remotely builds a global model on the basis of the knowledge
of local models in order to discriminate between different states within the EEG timeframes.

Client (Hospital): The proposed system contemplates a horizontal FL model, which
utilizes the distributed datasets with the same feature space across all clients, implying
that hospital 1 and hospital 2 have the same feature model in different dimensions, with
different channels as the columns. The region of the hospital or medical center is modeled
as tier 1 in the three-tier epileptic seizure prediction system architecture.

Local Model (Edge Server): In the FL model, the edge server is critical in providing
computation and data storage functions closer to the clients, thereby enhancing network
availability while ensuring minimal latency. Due to the potential advantages of the edge
server, the transmission time is comparatively low compared with transmitting to the
cloud. Hence, request latency is minimized. Moreover, due to there being comparatively
less network traffic in each edge server within the server’s coverage area, the network
availability remains high at the time of requests compared to network availability in
the cloud. Time-sensitive healthcare applications greatly benefit from edge computing
capabilities compared to huge data generation. On the basis of the distributed EEG signals
obtained from various hospitals, the FL model builds a local model for each hospital and
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builds a global model without transferring the local data to the cloud or other clients,
referring to the ‘Model-Centric’ FL concept.
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Global Model (Cloud): Cloud computing infrastructure acts as the global model
for remote processing across the sensitive data belonging to hospitals distributed in the
horizontal FL. This involves the aggregation of global knowledge based on the different
preictal patterns obtained from the different local models using FedAvg.

As discussed above, in this work, a three-tier architecture is designed. Furthermore,
in this work, the full epileptic seizure prediction procedure is divided into three stages:
preprocessing, classification, and postprocessing, as outlined in Figure 4. In the proposed
system, the preprocessing and classification processes are modeled in the edge server
with reference to the FL concept. In the classification phase, FL-assisted coarse-grained
personalization is framed as a binary classification problem in which the preictal and
interictal classes are to be differentiated. During postprocessing, the proposed approach
only utilizes the preictal class probability after obtaining the outcome from the coarse-
grained binary classification model. In particular, postprocessing involves ANFIS-based
decision making, which is executed in the edge server’s first layer to mitigate the client’s
computational burden.
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Figure 4. Process diagram of the proposed seizure prediction system.

3.2. Problem Formulation

In the biomedical field, disease diagnosis systems have often encountered challenges
in predicting epileptic seizure patterns from EEG signals related to data scarcity, diversity,
and privacy. In this work, two major research constraints are considered in the epileptic
seizure prediction system: model generalization and preictal state identification.

Definition 1 (Model Generalization). Owing to the patient’s pattern diversity, the patient-
specific epileptic siezure prediction systems have been predominantly focused on the previous
works [19,33] rather than patient-independent decision making. The model generalization is
essential to overcome several shortcomings of epileptic seizure prediction research, involving the
scarcity issue of preictal samples and the computational burden in frequently training the models for
every patient.

min
i

(
1
S

S

∑
i=1

Li(θ,φ)

)
(1)

During epileptic seizure prediction, the generalized model-assisted prediction capability max-
imizes the first research objective by minimizing loss among the number ‘S’ of patients (i). In
Equation (1), θ and φ refer to the learning model’s actual and predicted value parameters for the
computation of loss.

Definition 2 (Preictal State Identification). The numerous developments in EEG signal pro-
cessing research notwithstanding, seizures are unpredictable due to the lack of medical theory related
to proving the prediction results. This epileptic siezure prediction system intends to differentiate
between the preictal and interictal states, considered as a binary classification problem, as the
second research objective. In the sequence of time series EEG signals, the preictal state is the period
immediately before the seizure onset [1,7]. In the preictal state, the predictive probability of seizure
is the same as throughout the sample segments, which is not intuitively acceptable, due to the lack of
discrimination between the preictal and seizure state over different periods. Hence, the minimization
of the loss across the number ‘V’ of EEG segments (r) within a patient ‘i’.

min
r

(
1
V

V

∑
r=1

Lr(θ,φ)

)
(2)
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In Equation (2), actual and predicted values are computed for each EEG segment (r) in the
learning model. Quantifying the changes in the seizure pattern in the EEG signals and modeling
a prediction system to determine the epileptogenic transient changes is challenging. Quantitative
EEG measures involve the periodic analysis of frequency patterns over the course of the sequence
of EEG signals to detect seizure transitions. The length of the preictal state, prior to seizure onset,
varies between patients from a few minutes to hours. In addition, the selection of an inaccurate
preictal duration drastically affects the prediction results. Hence, preictal period selection should be
performed in a patient-specific manner to avert an increase in the number of false predictions and a
decrease in prediction sensitivity due to fluctuations in the preictal period. Thus, this work aims to
maintain the trade-off between model generalization and patient-specific preictal period selection or
preictal probability identification without compromising the prediction performance in the epileptic
seizure prediction system.

4. Proposed Epileptic Seizure Prediction Methodology

With the aim of predicting epileptic seizures, this work focuses on designing a fed-
erated learning process for local model building, generalized model building, global
knowledge aggregation, global preictal knowledge unification, and distinct preictal pe-
riod modeling.

Figure 5 depicts the proposed epileptic seizure prediction approach and the FL-assisted
process. The edge server is responsible for automating epileptic seizure prediction with the
assistance of the cloud, which involves EEG preprocessing, generalized and distinct feature
extraction, and personalized federated learning-based seizure prediction. In other words,
in the proposed approach, a two-level edge layer is designed, where the data-aware process
is incorporated in level 1, the lower layer in the edge layer, and the model-aware process
in level 2, the upper layer in the edge layer. In the two-level edge layer, the data-aware
process involves filtering, correlative feature selection, segmentation, and patient-specific
preictal modeling, whereas the model-aware process involves generalized model building
and distinct preictal period modeling. The computational steps in the lower and upper
layers are subsequently performed in the lower and upper layers. Conversely, even though
patient-specific preictal modeling is designed as being part of the lower level of the edge
layer, it relies on the outcomes of distinct preictal period modeling, which is performed in
the upper level of the edge layer.
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4.1. EEG-Signal-Based Distributed Local Model Building

In this section, the design of the distributed local models on edge servers on the basis
of EEG signals obtained, while adopting the federated learning model, from hospitals or
medical centers as clients.

EEG Signal Preprocessing

In seizure prediction, scalp EEG signals are paramount to recognizing the different
ictal segments, and are recorded by electrodes placed on the individual’s scalp. In the
proposed system, EEG signal preprocessing is imperative in order to remove artifacts and
noise. Recently, signal processing techniques have enabled the system to automatically
identify and remove artifacts in EEG-based seizure prediction systems [34,35]. To model
the end-to-end automatic epileptic seizure prediction system, in the proposed prediction
approach, several preprocessing procedures are utilized alone, without the requirement
of human interference for feature extraction. As a result, filtering, artifact removal, and
correlative feature or channel selection are conducted in the preprocessing step.

(i) Filtering and Artifact Removal: In the proposed prediction model, the window and
Butterworth filter methods are applied to filter the noise. When preprocessing EEG
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recordings, the second-order Butterworth bandpass filter is critical in examining and
removing artifacts [36]. Due to the importance of providing a linear frequency for
bandpass filtering, the Butterworth bandpass filter is employed as an EEG signal
preprocessing filter. Moreover, preprocessing involves normalizing and chunking the
signals into fixed lengths. In high-dimensional data, EEG signal values vary greatly
from channel to channel, which becomes critical during model training. Hence,
normalization is essential for EEG signal processing, which constitutes the processing
of structured data in the learning model. Moreover, the input EEG signals are divided
into minimal periods of 1 s samples, corresponding to the sliding window length,
based on the sampling rate of EEG recordings to precisely normalize the EEG signals
per second rather than normalizing them with reference to the entire timeframe.

(ii) Correlative Channel Selection: To accurately predict seizures, in the proposed ap-
proach, a minimal number of channels is selected, because all channels have equal
significance in epileptic seizure prediction. Investigating the correlation between
different channels means that examining the role of the interaction among brain
regions in modulating the epileptic seizure activity becomes a potentially crucial
standard for the prediction of seizure onset [37]. The channel reduction in the seizure
prediction system ensures the potential advantages of minimal energy consumption,
reduction in overfitting rate, and increased time efficiency [38,39]. In this correla-
tive channel reduction scheme, in the proposed approach, the significance of each
channel’s contribution to the classification outcome is evaluated through the wrapper
feature selection method [40]. If any channel does not result in an improvement in
accuracy, that channel is ignored in the proposed approach, which does not reduce
performance in the future. To perform the correlative channel selection, the Taguchi-
method-based optimization [41] is adopted in the proposed system, which provides
potential information using the minimum number of experiments based on the De-
sign of Experiment (DoE) concept. In channel reduction, iteration continues until
the model’s accuracy decreases when removing any further channels from the final
set. Thus, the proposed approach efficiently selects the EEG channels for epileptic
seizure prediction.

4.2. Federated-Learning-Based Generalized Model Construction

In the biomedical community, resolving the data scarcity constraint is becoming a
major challenge in accurately diagnosing patients, due to inadequate data availability
regarding epileptic seizures for each patient. In contrast, deep learning models require
large amounts of training data or patterns to perform decision making. To overcome this
obstacle, the proposed approach adopts federated learning for model generalization, whcih
supports the utilization of the influence of the epileptic seizure patterns of a diversity
of patients. In the edge environment, model generalization is essential for predicting
seizure onset when considering segment-aware training sample generation and spike
sequence-aware pattern modeling, in addition to only utilizing the model parameters from
multiple clients.

4.2.1. Segment-Aware Training Sample Generation

The key factor in the proposed system is the differentiation between the preictal and
interictal states. Hence, the segmentation process necessitates the recognition of standard
state transitions, as provided by clinical experts. The statistical features of non-stationary
EEG signals vary within a given time interval. Accordingly, based on the data distribution,
in the proposed approach, long sequences are divided into EEG segments of short duration
with or without overlapping EEG signals. Thus, sensing EEG signals with shorter durations
has benefits in the form of minimizing requirements in terms of computational power and
storage requirements, as well as low transmission bandwidth. In the proposed epileptic
seizure prediction system, the input EEG samples are segmented into different timescale-
based EEG samples. Segmentation is performed based on the timescales 1 s, 2 s, 4 s, and
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8 s [42,43]. Initially, the input EEG signals are segmented into four different timescales
in the process of segmentation, and then, the bi-timescale approach is performed for
decision making. In the bi-timescale approach, two segments are selected from among four
segments for each dataset, and binary classification decisions are made jointly in during
coarse-grained decision making.

Bi-Timescale Approach: EEG signals are time dependent; hence, in the proposed
approach, the segmentation and learning of temporal signals are performed with the assis-
tance of bi-timescale modeling, which assists in comprehending inherent relationships in
the time domain. EEG signals are likely to comprise different types of potential information
in various timescales. Hence, investigating four timescales and selecting two optimal
timescales results in a significant improvement in performance for different EEG datasets.
Finally, two types of timescale information are concatenated for decision making in the
GCNN model.

Due to the collection of EEG signals over long periods, the segmentation of the signal
is essential for performing analysis by modeling representative forms of periodic and
non-stationary EEG signals as smaller and mutually exclusive segments. Different EEG
signals are gathered at different sampling rates in the distributed environment. Hence,
signal segmentation is critical for recognizing preictal patterns. Accordingly, the selection of
optimal signal partitioning is carried out based on EEG time segments of 1 s, 2 s, 4 s, and 8 s,
employing sliding window concept, in order to determine any two different EEG segments
that impact the accurate preictal state detection in the corresponding dataset, with respect
to the bi-timescale-based learning process, depicted in Figure 6. In previous research works
in which EEG segmentation was performed [42,43], the durations of EEG segments were
widely modeled as either 1 s, 2 s, 4 s, or 8 s; hence, this work considers all four segmentation
lengths in order to optimally select the appropriate length for each dataset by means of the
bi-timescale approach. The proposed system adaptively selects the most highly influencing
EEG segment length for each dataset in order to uniquely examine the seizure patterns
in the different distributed EEG datasets, which is determined by means of ROC curve
analysis. The significance of ROC-curve-based examination lies in its measurement of
the relationship between true positives and false positives in each dataset, facilitating the
assigning of the optimal segment duration for the corresponding dataset. Thus, the optimal
EEG segment is found for a single dataset in which the segment is optimal in all channels,
which is then taken into account during the training of the learning model.

In the EEG signals, modeling the training samples enforces the learning behavior of
deep learning to distinguish between preictal and interictal patterns. With the assistance of
ROC analysis, the optimal selection of EEG segments, accomplished using the bi-timescale
approach, from the multiple timescales plays a vital role in the decision-making process,
because each timescale conveys different potential information to the learning model. To
generate the training samples, the segments are formed for both the preictal and interictal
classes of the EEG signal using a sliding window, with and without overlap, respectively,
based on the ratio of samples in the classes to ensure balanced operation, with sliding
window length being based on the segmentation timescales. The aforementioned 1 s, 2 s, 4 s,
and 8 s timescale-based EEG segmentation is performed using the sliding window concept.
The interictal state is regarded as belonging to the non-seizure EEG recordings, whereas
the preictal state is sensitive to the duration before the seizure. Instead of modeling only
one timescale of EEG data as a single training sample, this research considers additional
timescale signal durations as a single training sample in order to mitigate the noise effect in
the training knowledge. As a result, training set generation is influenced by the number of
segments in the preictal and interictal parts when performing balanced data modeling with
the aim of successfully recognizing seizure state transitions.
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4.2.2. Spike Sequence-Aware Feature Space Modeling and Global Modeling

According to the neuroimaging concept of epilepsy [7], the interictal state corresponds
to the seizure-free period, and the preictal state describes the pre-seizure period in the time
series of EEG signals. The length of the preictal period varies among patients with different
characteristics, and no reference standard is available to conclude any particular preictal
period. Hence, with the assistance of FL, in the proposed approach, the knowledge of
different preictal patterns, learned from different preictal datasets, is incorporated, which
facilitates conclusions about generalized preictal patterns on the basis of global model
weights. The interictal period is the duration belonging to neither the preictal nor the
ictal period in the sequence of EEG signals. To date, epileptic seizure prediction research
works have employed CNN and RNN models [44,45] for classifying the high-dimensional
preictal and interictal EEG patterns in the spatial and temporal domains; however, the
conversion of EEG signals into a Euclidean grid structure causes the results to suffer
from a loss of adjacent spatial information. Hence, the proposed approach exploits the
Graph Convolutional Neural Network (GCNN), following the use of a spiking encoder,
which consumes minimal computational and storage resource across the channels after
feature extraction. In the proposed epileptic seizure prediction system, the main objective
of applying a spiking encoder is to encode and represent the input EEG signals as the
spike-aware sequence representation. Due to the addition of the matrix in the computation
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of the Spike Neural Network (SNN) model [46,47], instead of the multiplication process,
the Spiking Encoder (SE) becomes energy efficient [48]. Moreover, the SE is able to model
dynamic modes of network operation by encoding the temporal information in the signals.
As a result, the SE is more computationally and energy efficient.

(i) Spiking Encoder-Based Feature Space Modeling

In the EEG signals, in the proposed system, the spikes are detected throughout the
duration of the EEG for all channels. Hence, in the proposed system, the deep neural
network is designed with a spiking encoder, a Graph Convolutional Neural Network model,
and weight mapping in order to predict seizures. In this approach, the spiking-GCNN
model is built for two sets of training samples generated from optimally selected EEG
segment durations, until the hidden layer representation of the GCNN model is achieved.
In the bi-timescale approach, the representations obtained from the two optimally selected
timescales are concatenated, and they are provided as the input to the dense layer of
the spiking-GCNN model, as illustrated in Figure 6. Instead of extracting the statistical
features using time-domain-based signal processing methods for graph construction, in the
proposed approach, the features are examined automatically by the spiking neural network,
which infers the reflection in the shape features in the time domain, including deviations in
the signal amplitude, changes in the slope, and differences in the number of spikes. In the
hybrid Spiking-GCNN model, the weights are trained for the CNN model associated with
the energy- and computationally efficient Spiking encoder model mapping, in which the SE
represents the EEG data as spike sequences. To precisely generate the spike representation,
the proposed system models the spiking encoder using the surrogate gradient method,
which enables backpropagation in the feed-forward neural network for the discrete nature
of spikes. To build the spiking encoder, the ‘up’ and ‘down’ threshold parameters are
determined for each segmented timestep in the sequence of EEG signals. Instead of creating
a random matrix for the input timesteps, in the proposed approach, a segment-aware matrix
is built to model signal amplitude values for the segmented timesteps and channels. By
generating a segment-aware matrix, the encoder model compares every signal value in the
input data with the mean value obtained from the mean of the ‘up’ and ‘down’ threshold
points. If the mean value is greater, the spiked value of a particular signal will be equal to
‘0’; otherwise, the spiked value will be equal to ‘1’. Moreover, the encoding representation
of the input sample in each segment relies on the number of spikes per sample and the
spike average per sample duration.

R(S)t =

 prseiz = High, if 1
m ∑

j∈m
|Sp|qt < |Sp|qt &avg

∣∣DSp
∣∣q
t >

∣∣DSp
∣∣q
t

prseiz = Low, Otherwise
(3)

The formulation of Equation (3) is based on the strategy whereby high numbers
of spikes and spikes with a comparatively minimal duration indicate that a segmented
timestep has a high probability of seizure onset (prseiz). Consequently, the representation of
the signals in the preictal class has vector values with higher weights than in the interictal
class. In Equation (3), |Sp|qt and

∣∣DSp
∣∣q
t denote the number of spikes in segmented timestep

‘t’ in the qth channel and the duration of the spikes in segmented timestep ‘t’ in the qth
channel, respectively. ‘m’ refers to the total number of channels and avg

∣∣DSp
∣∣q
t refers

to the average duration of spikes occurring in each segment. By applying the ‘AND’
logical operator between the spikes computed from the spiking encoder and the seizure
probability assigned by Equation (3), i.e., ES

t ·R(S)t, in the proposed approach, the spike
sequences are fine tuned. ES

t refers to the encoded value of the input signal (S) in segmented
timestep ‘t’ obtained using the spiking encoder. Thus, the spiking encoder generates a
high-level abstraction of the input signals with the influence of the weight update using
surrogate gradient-descent-based backpropagation, and the GCNN differentiates between
the preictal and interictal states through the modeling of the node and edge parameters in
the graph structure.
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In the proposed method, the GCNN is trained on the input data to obtain weights,
and the weights are mapped using the spike sequences transformed by the spiking encoder
to predict seizures on the basis of the signals. In the proposed approach, a graph is
built, G = (V, E), to provide the encoded knowledge for the GCNN model, in which
V = {v1, v2, . . . , vm} , referring to a set of ‘m’ channels, and ‘E’ denotes the connectivity
between the channel electrodes on the patient’s brain. In the proposed system, the node
features are the vector representations obtained from the fine-tuned spike sequences. The
adjacency matrix, A ∈ Rm×m comprises the edge features of the relationship between the
channel values in the preprocessed EEG signals. To address the problems of numerical
instability, dispersion, and gradient explosion over multiple iterations, renormalization
is applied, and the layer-wise propagation rule is employed in the spiking-GCNN, as
described in [31]. The bi-timescale-approach-based spiking-GCNN modeling achieves
layer-wise propagation. Instead of examining the node and edge relations on the basis of
the graph structure alone, modeling the representation matrix resulting from the spiking
encoderin each layer facilitates the accurate recognition of the inherent relationships in
each class.

f
(

ML, A
)
= σ

((
∼
D
− 1

2
A
∼
D
− 1

2

)
MLR(S)LW

L
)

(4)

In Equation (4), ML, R(S)L, and WL refer to the activation matrix, the representation
matrix obtained from the spiking encoder, and the layer-specific weight matrix in the Lth

layer, respectively. ‘A’ and ‘
∼
D’ denote the adjacency matrix and renormalized degree matrix

of the graphs, respectively. σ(·) denotes an activation function in the GCNN model.

(ii) Global Knowledge Aggregation

The deployment of intelligent models necessitates periodic training and updating,
placing a burden on medical practitioners or experts, who are required to generate the
annotated labels for the massive volume of patients at any given time. Hence, federated
learning mitigates this constraint across hospitals during the peak volume season, enabling
medical centers to download and exploit the most up-to-date model for epilepsy diagnosis.
Accordingly, the adoption of federated learning leverages the ability of the proposed system
to utilize other patients’ epileptic patterns to improve seizure prediction performance. Even
though variations exist across patients, there is a root-cause pattern similarity of epilepsy
disease appearing between patients. Accordingly, the proposed prediction system trains
a model whereby a global model, which is trained on other patients’ data, is used to
update the local model with globally trained parameters. Adopting the global model
parameters in each local model assists in the accurate prediction of epileptic seizures
without jeopardizing performance.

During the training stage in generalized federated learning, in the proposed approach,
a global model is built based on the loss function of the prediction model (LPM), computed
across all patients or subjects (S). In the seizure prediction system, the different states (C)
refer to the preictal and interictal states observed in subjects ‘S’ in different local medical
centers. Let Xs =

{
xs

1, xs
2, . . . , xs

TS

}
, denoting a set of EEG samples from the subject ‘S’,

where TS denotes the number of training samples. Let Ys =
{

ys
1, ys

2, . . . , ys
TS

}
, denoting

a set of labels from the state ‘C’. To predict epileptic seizure, in the proposed system, the
weights are mapped to the softmax-based probabilistic distribution

(
ps

i
)
.

LPM = −
S

∑
i=1

TS

∑
j=1

C

∑
k=1

ω
(

yi
j = C

)
log
(
(ps

i )C

)
(5)

As formulated in Equation (5),ω(.) will be equal to 1 if there is equality between the
actual and predicted outcomes; otherwise, it will be equal to zero. In Equation (5), i, j, and k
refer to the patient or subject, the training sample, and the class, respectively. yi

j denotes the
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label of the jth training sample of the ith subject. Thus, the proposed approach aggregates
the preictal segment-based knowledge with the appropriate global model parameters.

4.3. Coarse-Grained Personalization with Optimal Trade-Off

In the proposed system, each local model receives the weights from the aggregated
global server and is updated to perform decision making on its local EEG dataset. This
is referred to as coarse-grained personalization, and is accomplished by the FL model.
Furthermore, it maintains an optimal trade-off between the generalized and patient-specific
personalized models. With the objective of iteratively updating the local model using the
shared weights, the proposed approach measures the divergence between the probabilistic
distribution of the generalized global model (PG) and the personalized local model (PP)
using Bregman divergence [49]. In the proposed system, the Bregman divergence is
computed based on the asymmetric measurement of logistic loss. The probability of the
global model (PG) in the proposed approach is normalized by analyzing the impact of the
probability of the seizure computed from the outcome of the fine-tuned spiking encoder, as
shown in Equation (6). The reason behind this is that the personalized model needs to be
updated for a higher probability of seizure onset in the number of ‘High-Prseiz’ samples
(N(Pr seiz = High)) for the corresponding local dataset, as formulated in Equation (7).

Ldiv(PG, PP) = PGlog
(

PG

PP

)
+
(
1− PG

)
log

((
1− PG

)
(1− PP)

)
(6)

where PG =

{
PG, if N(Pr seiz = High) > N(Prseiz = Low)

log PG, Otherwise
(7)

In the proposed approach, the loss of the client data is computed by contemplating
the prediction loss (LPred) and the divergence loss (Ldiv(PG, PP)) with two constant weights
(w1, w2), respectively. As modeled in Equations (6) and (8), the loss divergence and loss
are computed for the global-to-local and personalized local models, respectively.

LP = w1 × LPred + w2 × Ldiv(PG, PP) (8)

Instead of sharing the sensitive raw medical information of the patients and the
network structure with the global model, the proposed approach shares only the weights
derived in the local model. A central hub in federated learning coordinates the learning
process of all of the clients by means of global modeling and ensures improved accuracy
comapred to clients’ local models, assuming that the data distribution of all clients is similar.
In the proposed system, the training process of local models is carried out on an edge server
for each hospital, and each client tests their samples while contributing to the global model
and the local model, which are maintained by the cloud and the edge server, respectively.
In consequence, each client benefits from the knowledge obtained by the global deep
learning model, thus compensating for the fact that its own knowledge was learned from a
minimal amount of training data in its corresponding hospital. To determine the number
of iterations in federated learning, the early stopping method is adopted as the termination
criterion, where the model is retained on the basis of the improved performance after a
fixed number of epochs. Consequently, the proposed approach differentiates the preictal
state from the interictal state, and preserves the patients’ privacy during the training
process. Thus, the proposed approach, to a significant degree, maintains the trade-off
between model generalization and personalized preictal detection in the epileptic seizure
prediction system.

4.4. Distinct Preictal State Modeling for Seizure Prediction

In the proposed system, postprocessing includes the performance of distinct preictal
period modeling, which is highly correlated with patient-specific clinical features, followed
by the coarse-grained personalization obtained using FL-assisted decision making. The
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proposed approach utilizes several potential clinical features and the Heart Rate Variability
(HRV) of each epilepsy patient with the assistance of ANFIS-PSO [50,51] on the edge server
to perform fine-grained personalization. Figure 7 illustrates the ANFIS architecture used in
the proposed epileptic seizure prediction system.
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ANFIS-PSO-Based Fine-Grained Preictal Personalization

The prediction of seizures and the diagnosis of epilepsy rely on both the electrophysi-
ological and clinical data of each patient, in addition to the generalized global knowledge
aggregated from the distributed medical centers. The correlation between the clinical fea-
tures of a seizure and any electrical abnormalities identified in the input EEG records and
ECG signals facilitates the fine-grained personalization of preictal state identification. The
seizure onset time varies among patients, and its recognition depends on several seizure-
related behavior changes. To avert confusion with respect to seizure onset identification,
additional clinical factors are exploited, and the precise determination of seizure onset is
enforced through patient-specific modeling of the preictal duration. The actual start of the
preictal period varies from patient to patient. Hence, the proposed approach utilizes the
ANFIS-PSO model and examines the clinical features, including the patient’s age, gender,
family history, etiology, and Heart Rate Variability (HRV) characteristics [52] in the time
domain and frequency domain, as well as non-linear features.

For testing purposes, in this work, such HRV features are synthetically modeled with
reference to several previous research works. Even though these works [53,54] had different
objectives, the ranges of several HRV features were determined based on observations
obtained while monitoring normal and epileptic patient categories in different states. Hence,
the ranges are analyzed in combination for epileptic patients on the basis of the minimal
and maximal changes in the observations of each feature, and the observed ranges are
divided into three classes for the proposed algorithm based on the HRV feature value
transitions obtained from two references corresponding to different states.

The ANFIS model forces the proposed system to build a set of fuzzy if–then rules based
on the membership functions by modeling input–output pairs. Combining fuzzy if–then
rules, the fuzzy inference system, the adaptive structure, and the adaptive learning rule in
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the ANFIS ensures improved outcome quality compared to fuzzy logic. The integration
of PSO with the ANFIS model facilitates the optimal selection of learners and ensures
computationally efficient and optimal decision making [55,56]. The design of the fine-
grained personalization of the preictal period with the aim of performing epileptic seizure
prediction adopts ANFIS modeling with nine input parameters, which are obtained from
three different inputs: EEG, ECG, and the patient’s clinical records. The membership
function parameter iscalculated based on the embedded relation between the input data
and the training dataset output.

In the ANFIS-PSO, tuning the membership function parameters relies on backpropa-
gation. The learning process continues the evolution of membership functions until the
target error is reached. In the proposed system, premise and consequence parameters in
the membership function are updated based on the Mean Absolute Error (MAE) during
backpropagation. Defining the target error for the ANFIS-PSO model is dependent on the
minimal error across all of the iterations compared to the selection outcome of the learners
using the PSO model. Moreover, the PSO-based classification error validation enforces the
tuning of ANFIS parameters in terms of the number and shape of the input membership
function, in which the selection of the best learner relies heavily on the higher fitness score
of the PSO algorithm. To reduce the output error of the fuzzy inference system, the opti-
mization process involves adjusting the network parameters and weights and interpolating
the fuzzy membership function computation for a set of variables. In the proposed system,
the Sugeno-type fuzzy inference system is modeled to examine the mapping relations
between the input and output data values and to optimally compute the membership
function. The antecedent and consequent parameters perform fuzzy reasoning on the basis
of the linguistic variables and the outcome of the target variables on the basis of if–then
rules with logic ‘AND’ operations, respectively. The triangular membership logic-based
membership function is modeled using the reference for each variable. Thus, the initial
fuzzy sets with input variables for the proposed ANFIS-PSO decision-making process are
presented in Table 1. In the proposed design, the consequent is modeled as the seizure risk
level based on the potential observation of preictal probability in EEG and HRV features.

Table 1. Fuzzy input variables.

No. Input Features Class 1 (Low) Class 2 (Medium) Class 3 (High)

1 EEG Coarse-grained
Personalization 0–0.3 0.31–0.6 0.61–1.0

2
ECG (Heart Rate

Variability)

Lmax(beats) 198–238 239–245 245–290
LF/HF 1.3–1.7 1.1–2.1 1.3–2.9

SDNN (ms) 109–141.6 85.4–165 83.7–159.1
Mean HR(beats/min) 65.2–76.2 71.6–81.4 72.1–92.5

pNN50 (%) 6.2–17.6 2.5–8.1 1.6–9.6

3 Patients’ Clinical
Records

Genetic No Yes Yes
Metabolic No Yes Yes

Number of seizure events 0 < Event < 3 3 ≤ Event ≤ 5 Greater than 5

In addition to the EEG analysis, by examining the HRV features of ECG signals and
clinical features, in the proposed approach, the probability of epileptic seizure is computed
for all samples, with the preictal probability being predicted on the basis of the FL-assisted
coarse-grained personalization. The system categorizes a set of patients (k), according to
three preictal period intervals on the basis of the influence of the HRV and clinical features
of the corresponding patient in order to determine the likelihood of the occurrence of
an epileptic seizure. In ECG signals, the R–R interval refers to the duration between two
successive R waves in the QRS signal. Several HRV features of the ECG signals considered
in this work are described in Table 2.
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Table 2. HRV Features and its Description.

HRV Features Description

Lmax Length of the longest diagonal line

SDNN Standard deviation of R–R intervals in milliseconds

LF Spectral density (computed through FFT) of the linear interpolated
R–R tachogram between 0.04 and 0.3 Hz (low frequency)

HF Spectral density (computed through FFT) of the linear interpolated
R–R tachogram between 0.3 and 1.3 Hz (high frequency)

Mean HR Average heart rate

pNN50 Probability of R–R intervals > 50 ms e <−50 ms

While analyzing the HRV features, in this work, we additionally focus on modeling
high-, medium-, and low-risk preictal periods in epileptic patients based on the criteria
shown in Equation (9) throughout the sequence of the ECG signals. Chinges in the HRV
( ˆHRVi) are recognized as indicating the transition on the basis of an inherent examination
of the triggering state of different preictal states.

Px
i =


P1

k , if ˆHRVi == α

P2
k , if ˆHRVi == β

P3
k , if ˆHRVi == γ

(9)

where

(i) The high-risk preictal period criteria in HRV are formulated as

α =
{
(HRVi)ti

< (HRVi)ti+1
� (HRVi)ti+2

. . . T
}

;

(ii) The medium-risk preictal period criteria in HRV are formulated as

β =
{
(HRVi)ti

∼= (HRVi)ti+1
< (HRVi)ti+2

� (HRVi)ti+3
. . . T

}
;

(iii) The low-risk preictal period criteria in HRV are formulated as

γ =
{
(HRVi)ti

∼= (HRVi)ti+1
∼= (HRVi)ti+2

< (HRVi)ti+3
� (HRVi)ti+4

. . . T
}

As modeled in Equation (9), the proposed mechanism fine tunes the preictal probabil-
ity of every patient (i) with the aim of predicting seizure onset, characterized by the changes
in HRV features presented in Table 1. Adaptive learning and fuzzy-inference-based mem-
bership functions and rules are generated from the information related to the training data
to determine the risk category of the epileptic seizure, and ANFIS-PSO is used to perform
the final decision making for the test data. Subsequent to the first-level postprocessing stage
by the ANFIS-PSO, in the proposed approach, the localization of the preictal interval is
elucidated in the second-level postprocessing stage, rather than modeling preictal duration
alone. Accordingly, the optimal interval by which to separate the alarm onset from the
seizure onset, Seizure Prediction Horizon (SPH), is modeled for the P1

k, P2
k, and P3

k patient
groups. As stated in the criteria for high-risk preictal periods, observation of sudden or
rapid changes in the HRV feature values over time (ti, ti+1,ti+2, . . . , T) indicate that the
patient is at high risk, and is likely to immediately suffer from seizure onset. Similarly,
in the medium-risk preictal period criteria, it is stated that the observation of gradual
comparative changes in the HRV feature values over time (ti, ti+1,ti+2, ti+3, . . . , T) indicate
that the patient is at medium risk of immediately suffering from seizure onset. As stated in
the low-risk preictal period criteria, the observation of comparatively marginal changes in
the HRV feature values over time (ti, ti+1,ti+2, ti+3, ti+4, . . . , T) indicates that the patient is
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at low risk of immediately suffering from seizure onset. As a result, the proposed approach
initiates the alarm based on the patient’s risk level to ensure accurate seizure diagnosis. In
the proposed system, the alarm onset time is modeled to occur before the seizure onset time
by taking the preictal state transition time into consideration. The alarm onset modeling
affects the SPH interval when considering the preictal state duration only. SPH is the interval
between alarm initialization and seizure occurrence. The segment with two successive much
greater HRV features within the time (t), and the preceding segment, with greater HRV
features, are localized as the start time of the preictal interval before the SPH. Thus, this work
ensures that the patient-specific preictal modeling system supports the preictal detection
with the aim of achieving accurate epileptic seizure prediction. The pseudocode for the
proposed epileptic siezure prediction system is presented in Algorithm 1.

Algorithm 1: Pseudocode of the Proposed Seizure Prediction Methodology

Input: Epileptic EEG Signals, {S×CH}Class
Output: Seizure Risk Levels {Low, Medium, High}
1 for all the hospitals and epileptic EEG samples do
2 //Preprocessing//
3 for all the samples, S do
4 Apply Butterworth filtering and normalize signals in 1s sliding window length
5 if a subset of channels obtains comparatively higher accuracy then
6 Select a subset as optimal channel
7 end if
8 end for
9 //FL-based Generalized Model Construction//
10 for each hospital/ local EEG dataset do
11 Segment samples into four different timescales as 1s, 2s, 4s, and 8s
12 Validate each segment on each dataset through ROC curve analysis
13 //Bi-timescale approach//
14 if a segment has a higher AUC score than others then
15 Select the first and second higher timescale as optimal timescales of that particular dataset
16 end if
17 for each timescale in the selected bi-timescale do
18 Extract spike sequences using a spiking encoder, i.e., Equation (3)
19 Build graphs for the GCNN model
20 Implement GCNN until the representation obtained from hidden layers
21 end for
22 Concatenate representations of two timescales at the dense layer of GCNN
23 Classify the Preictal and Interictal Classes
24 end for
25 for all three local models do
26 Perform FL-based global aggregation
27 Maintain trade-off between the global and local model using Equations (5–8)
28 end for
29 Update local GCNN model based on the global knowledge
30 Classify the Preictal and Interictal Classes
31 //Distinct Preictal State Modeling for Seizure Prediction//
32 for each hospital/ local EEG dataset do
33 Retain the preictal probability of each sample
34 Obtain ECG-HRV features and Demographic features
35 for these three inputs do
36 Apply ANFIS for decision making with the determination of three seizure risk levels using
Equation (9)
37 for the implementation of ANFIS do
38 Select the best learners using the PSO algorithm
39 end for
40 Determine the seizure risk levels as three classes
41 end for
42 end for
43 end for

4.5. Applicability in Real-Time Medical Systems

Recently, medical devices have delivered healthcare services by connecting medical
systems with patients and end users [57]. In the medical field, it is crucial to focus on
healthcare development from treatment to prevention in order to improve the quality of
human life and alleviate the cost of care. Intelligent algorithms can, to a significant extent,
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ensure highly efficient prevention while decreasing the computational burden and time
spent by hospital medical practitioners. With the rise of personalized and preventive care as
new treatment modalities, medical instruments or tools can be used as part of the treatment
or disease recognition components in hospitals in order to overcome the absence of doctors
or minimize the time spent on examining patients’ health data.

The proposed epileptic seizure prediction system simplifies the task of the client
(i.e., hospitals or medical centers) by performing a core portion of the system functions
on the server, thereby reducing the burden of EEG database maintenance and seizure
prediction system development costs on the client side. Interacting with the server on
computers via the internet, a client, such as a hospital, can process patient data for epileptic
seizure prediction without the requirement of maintenance. Clinicians and medical centers
receive intelligence from the prediction system to assist in the monitoring and diagnosis
of epilepsy disease, while enabling hospitals to avoid expensive clinical processes. At the
hospitals, the application of the proposed system in real-time disease prediction involves
testing individual patients’ samples on the designed system through the interface. The
hospitals perform their computations virtually using edge resources to overcome the
limitations of the resource-constrained client environment. In a nutshell, in the proposed
design, the outcome of the preprocessing and classification stages is referred to the coarse-
grained personalization model, which acts as a server with a huge database, while the
postprocessing stage refers the data to the fine-grained personalization model, which
establishes the interaction between the application and the server at the hospitals.

Figure 8 depicts the proposed real-time prediction system, which consists of three
components. Real-time prediction involves the consitution of a predictive model, which
involves the deployment of a coarse-grained personalization model to enable real-time
decision making, that is, postprocessing, with the predictive model being built on a huge
amount of data. Coarse-grained personalization is a rigorous iterative process that is
performed using historical epileptic patient data. Then, to predict epileptic seizures when
a continuous stream of patient samples is fed to the system, the predictive model is built,
thereby enhancing the end user or client experience. The three major components [58]
of real-time predictive analytics include (i) the prediction serving system, (ii) the trained
model, and (iii) feature inference. The prediction serving system utilizes a trained learning
model to recognize seizures. It provides a prediction outcome for the new input data.
In contrast, the trained model and features indicate the data structure, which comprises
the weights obtained throughout the training process and data attributes relevant for
the prediction.
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5. Experiments

The effectiveness and performance of our proposed model for early epileptic seizure
prediction were assessed, and the performance was compared with baseline models and
the results of several works recently published in the literature. The experimental models
of early epileptic seizure prediction methods were implemented using the Python program-
ming language. The software environment used for this experimental analysis was Python,
running on a 64-bit Ubuntu operating system powered by a 3GHz Intel processing unit
and 32GB memory.

Table 3 provides the configuration of the deep learning model of GCNN in the pro-
posed epileptic siezure prediction system. During the implementation of the proposed
epileptic seizure prediction algorithm, the numbers of preictal, interictal, and ictal samples
for the training set and test set for the CHB-MIT, Bonn, and NSC datasets are mentioned in
Table 4.

Table 3. Model parameters.

Learning Parameters Values

Dropout Rate 0.2

Hidden Units [16, 16]

Learning Rate 0.01

Activation GELU, Tanh, Sigmoid

Loss Function Sparse Categorical Cross-Entropy

Epochs 10

Batch Size 128

Optimizer Adam

Table 4. Samples used for implementation.

Number of Samples
CHB-MIT Bonn NSC

Preictal Ictal Preictal Interictal Preictal Interictal

Training Set 294 312 204 200 149 203

Test Set 756 738 746 750 436 382

5.1. Datasets

The experiments employed three EEG benchmark datasets, the CHB-MIT scalp EEG
dataset, the Bonn EEG dataset, and the New Delhi EEG dataset, to design the FL model
for the proposed epileptic seizure prediction method. The datasets were adjusted for the
epileptic seizure prediction task by accurately discriminating the preictal class from the
interictal or ictal class. The main aim of this work is to perform seizure state prediction
by determining the preictal state. Hence, we aim to accurately detect the preictal state
on the basis of EEG signals (i.e., the combination of the preictal state with other seizure
states like interictal or ictal state). Due to the availability of the preictal and ictal classes
only in the benchmark CHB-MIT dataset, an experiment was performed focusing on the
discrimination of the preictal and ictal classes, in which the probability of preictal class
detection was only addressed when performing postprocessing.

Preprocessed CHB-MIT scalp EEG database: This database was originally gathered
through the collaboration of the Children’s Hospital Boston and the Massachusetts Institute
of Technology (CHB-MIT), and consists of patients with epileptic seizures that were uncon-
trollable with medication. This prediction model utilizes the Preprocessed CHB-MIT scalp
EEG database [59], containing separate Comma-Separated Value (CSV) preictal and ictal
data files for the purposes of performance evaluation. Patients with an adequate number
of preictal and ictal samples were selected in order to fit the problem of epileptic seizure
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prediction. Due to the availability of only the preictal and ictal classes in the preprocessed
CHB-MIT dataset, in this work, the preictal state was discriminated from the ictal state
when evaluating this dataset.

Bonn EEG dataset: The University of Bonn provides the Bonn EEG dataset [60],
comprising five distinct folder subsets. There are 100 single-channel EEG epochs in each
file, and they are digitized at a sampling rate of 173.61 Hz using 12-bit A/D resolution. Each
EEG epoch contains 4097 samples with a duration of 23.6 s. The Bonn dataset comprises
EEG observations from a 100-single-channel system. In this case, a single channel refers to
the observations recorded from a single electrode only for each channel. In conclusion, the
Bonn dataset has 100 channels that belong to the single-channel recording type. In the Bonn
EEG dataset, sets C and D are EEG samples with interictal and preictal states, as described
in [5,61].

New Delhi EEG dataset: The Neurology and Sleep Center (NSC) database [62] consists
of 1024 EEG samples with a duration of 5.12 s, sampled at 200 Hz. Among the three states—
ictal, preictal, and interictal—made publicly available in the NSC dataset, in this work, the
preictal and interictal classes are considered for evaluating the seizure prediction algorithm.

Moreover, experiments were conducted on the patients’ clinical records, including
their demographic data and ECG-signal-based HRV features, in order to evaluate ANFIS-
based decision making in the postprocessing stage of the proposed system. Owing to
the lack of ECG data in the benchmark EEG datasets tested in this work, several HRV
features for the ECG signals were modeled with reference to [53,54], rather than extracting
features from unknown ECG signals. The preprocessing and examination of the ECG
signals was outside the research scope of this work. Hence, to prove the influence of the
ECG features on decision making with respect to epilepsy, standard ranges of HRV features
were synthesized. Furthermore, these three epileptic EEG datasets lack clinical information
about each patient. Thus, to test the influence of clinical information on epileptic seizure
prediction, patient-specific clinical information was modeled randomly for each dataset.

5.2. Performance Metrics

The experiment utilizes the following evaluation metrics: sensitivity, specificity, accu-
racy, and false positive rate (FPR) to demonstrate the reliability of the proposed model.

Sensitivity: Sensitivity is the ratio between the number of correctly classified preictal
samples and the total number of preictal samples to be classified in a particular class.
Sensitivity is also known as recall.

Sensitivity =
True Positives

True Positives + False Negatives
(10)

Specificity: Specificity is the ratio between the number of correctly classified interictal
samples and the total number of interictal samples actually classified.

Specificity =
True Negatives

True Negatives + False Positives
(11)

Accuracy: Accuracy measures the overall performance of the model at detecting both
the preictal and interictal samples.

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(12)

False Positive Rate: FPR measures the number of false positives over the total test period.

False Positive Rate =
False Positives

False Positives + True Negatives
(13)
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Area Under the Curve (AUC): AUC quantitatively measures the performance of the
learning model at discriminating between true positives and true negatives, with a higher
AUC score showing better learning model performance.

Relative Accuracy: To measure the algorithm’s performance even on samples with
imbalanced classes, relative accuracy is assessed using the prediction ability of the most
frequent class in the samples, referred to as the baseline.

Relative Accuracy =

(
Accuracy
Baseline

− 1
)
× 100 (14)

where
Baseline =

Most frequent Class
Total Samples

(15)

where
True Positive: Number of correctly detected preictal samples.
True Negative: Number of correctly detected interictal or ictal samples.
False Positive: Number of incorrectly detected preictal samples.
False Negative: Number of incorrectly detected preictal samples.

5.3. Results

In this experimental study, the variation across several baseline models and Existing
Epileptic Seizure Prediction (EESP) works was investigated. The baseline models used for
comparative purposes were K-Nearest Neighbor (KNN), Decision Tree, Support Vector
Machine (SVM), CNN, and LSTM, whereas the EESP works were EESP1 [24], EESP2 [25],
and EESP3 [27]. In this experiment, the baseline algorithms were evaluated as classification
models for the samples in three benchmark datasets. This section provides the results
for the discrimination of the preictal state from the interictal state and the preictal state
from the ictal state. In conclusion, the results in the Bonn and NSC datasets were tested on
the preictal–interictal samples and the results in the CHB-MIT dataset were tested on the
preictal–ictal samples.

Epileptic seizure prediction was realized, and a different anticipation strategy was
shown to exist. Thus, the use of a fixed prediction time and the consideration of seizure
onset time as a norm become ineffective. This is because the seizure prediction time
varies from one patient to another and from one period to another, even for the same
epileptic patients. Hence, the testing and evaluation of the seizure prediction algorithm
must be conducted on medical cases in real time in order to prove the seizure prediction
performance. In conclusion, the solution to the classification problem was evaluated on the
basis of the discrimination of preictal state samples from samples of other states to qualify
seizure prediction performance in this research work.

In Table 5, the epileptic seizure prediction performance of the proposed method and
is compared with the existing models EESP1, EESP2, and EESP3. The evaluated metrics
indicate the performance when discriminating between the preictal and interictal classes,
exemplifying seizure prediction performance. The proposed method outperformed the
models in Table 5 and achieved a prediction performance similar to that of the real-time
scenario using the Leave-One-Out Cross Validation (LOOCV) method during training. The
comparative baseline models and EESP research used k-fold cross-validation and train–test
split to evaluate the CHB-MIT, Bonn, and NSC EEG datasets.

Figure 9 illustrates the comparative sensitivity, specificity, and accuracy of the pro-
posed siezure prediction system with the existing works EESP1, EESP2, and EESP3 on both
the CHB-MIT and Bonn EEG datasets. The baseline classifiers of the KNN, Decision Tree,
and SVM algorithms had a sensitivity of 54.16%, 82.19%, and 89.39%, respectively, when
distinguishing the preictal state from the interictal state while evaluating the CHB-MIT
dataset. Under the scenario with the same number of patients and samples, our proposed
method outperformed the CNN and LSTM deep learning models, with an accuracy that
was 11.46% and 6.8% higher, respectively. Compared to EESP1 on the CHB-MIT dataset,
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the proposed method obtained a 10.54% higher sensitivity and comparatively minimal false
positive rate of 0.094. The sensitivity and specificity of our method were comparatively
higher than those of other models, and worked while being tested on two EEG datasets,
as depicted in Figure 9. Moreover, the proposed approach yielded accuracies of 96.28%
and 95.17% on the CHB-MIT and Bonn datasets, respectively, which are 4.37% and 4.03%
higher than when using the EESP3 approach.

Table 5. Results of various baseline models and existing models with respect to epileptic seizure prediction.

Comparative Works & Models
CHB-MIT Bonn NSC

Sen
(%)

Spec
(%)

Acc
(%) FPR Sen

(%)
Spec
(%)

Acc
(%) FPR Sen

(%)
Spec
(%)

Acc
(%) FPR

KNN 54.16 77.47 66.15 0.253 46.85 89.26 68.13 0.11 78.10 59.02 68.78 0.412

Decision Tree 82.19 83.70 82.95 0.163 62.28 55.61 58.98 0.443 48.91 59.56 55.01 0.40

SVM 89.39 96.29 92.88 0.037 55.42 80.48 68.04 0.19 75.91 61.20 68.61 0.388

CNN 81.43 88.03 84.82 0.129 66.28 75.61 71.12 0.243 57.66 69.39 63.07 0.316

LSTM 88.63 90.03 89.48 0.105 78.85 77.56 78.25 0.224 69.34 66.12 67.75 0.348

EESP1(EMD+DWT+Decision
Tree) [22] 85.79 88.41 87.26 0.126 79.81 72.48 76.59 0.285 76.85 90.10 83.48 0.098

EESP2(LRCN) [23] 87.12 95.92 91.57 0.051 69.24 75.61 72.55 0.243 78.51 56.89 67.82 0.43

EESP3(GAN+CNN+LSTM) [25] 91.23 92.46 91.91 0.084 90.21 91.89 91.14 0.097 89.94 95.23 92.61 0.061

Proposed Method 96.33 96.14 96.28 0.032 93.94 96.13 95.17 0.044 91.11 94.24 92.72 0.057
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Figure 9. Comparative performance of the proposed method.

In Figure 9, the true positive rate and true negative rate were examined in order to
validate the performance of the seizure prediction algorithm at detecting the preictal and
interictal classes, whereby the assessment of the accuracy metric significantly illustrates
the accurate categorization of both epilepsy classes. However, accuracy is not a good
metric for assessing the performance of algorithms on the imbalanced data samples in each
class. To resolve this, relative accuracy is used to comparatively assess the performance of
the seizure prediction algorithm across imbalanced samples with respect to accuracy and
baseline values, as illustrated in Figure 10. In the CHB-MIT dataset, the proposed approach
obtained a relative accuracy of 12.87% for an accuracy of 96.28%, which is comparatively
higher than the existing works EESP1, EESP2, and EESP3.
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As presented in Table 5, when using the proposed approach on the Bonn EEG dataset,
an average sensitivity of 93.94% and an average FPR of 0.044 were obtained. The overall
sensitivity, specificity, and accuracy on the NSC dataset reached 91.11%, 94.24%, and
92.72%, respectively. Thus, the proposed model was able to accurately categorize preictal
and interictal seizure states in the Bonn and NSC datasets and preictal and ictal seizure
states in the CHB-MIT dataset. It can be seen from Table 5 that better results were obtained
using the proposed method than when using the other methods. Even though EESP3
achieved a true negative rate of 95.23%, which is comparatively higher than the proposed
method, the accuracy of the proposed prediction model outperformed that of the existing
research by improving the true positive rate. All methods were evaluated on three publicly
available EEG benchmark datasets, CHB-MIT, Bonn, and NSC, locally and globally using
the FL concept. Deciding which model is better for predicting epileptic seizure is an
arduous task due to each method needing to be tested using the limited data of different
patients on different datasets. Hence, the generalizability of the proposed method is tested
without the need for patient-specific clinical data and ECG data, with reference to the
proposed method without using the ANFIS-PSO model, that is, the proposed method using
SE, GCNN, and FL.

Furthermore, it is evident from Table 6 that the combination of the SE, GCNN, FL,
and ANFIS-PSO-based epileptic siezure prediction systems provides higher sensitivity
of 96.33% and a higher specificity of 96.14% for the CHB-MIT dataset. Additionally, the
sensitivity and specificity achieved on the Bonn and NSC datasets are 93.94% and 96.13%,
and 91.11% and 94.24%, respectively. As a result, it can be concluded that the recognition
of the preictal state was accurately achieved, through the discrimination either of the ictal
state, in the case of the CHB-MIT dataset, or of the interictal state, in case of the the Bonn
and NSC datasets. However, there is a marginal variation in the performance measures on
different EEG datasets, even when the global model parameters are utilized in the proposed
method for updating the local model, due to the variations in time definitions, patients,
and epileptic patterns. By examining the performance of the baseline models and existing
works presented in Table 6, it is quite apparent that the proposed method yields better
results in epileptic seizure prediction on the three different datasets.

Compared to accuracy and specificity, measuring the performance of the detection
of the preictal class is extremely important in this research, and sensitivity is a significant
measure when validating the epileptic seizure prediction method. Recognition of the
preictal state, rather than detecting the interictal and ictal states, is the most crucial process
in accurately predicting seizure occurrence, due to the necessity of initializing the warning
before the occurrence of a seizure. Table 6 provides a comparison of the performance of the
proposed method when using the centralized and federated approaches. In this research,
training using a centralized approach consisted of the learning or processing of one EEG
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dataset at a time, followed by gradient computation and weight updating. Conversely,
the federated approach consisted of processing three EEG datasets at once, followed by
averaging the weights of the clients.

Table 6. Performance evaluation of the proposed method.

Approach Proposed Method Input Data
Performance on Benchmark Datasets

CHB-MIT Bonn NSC

Sen (%) Spec (%) Sen (%) Spec (%) Sen (%) Spec (%)

Centralized SE + GCNN EEG 89.07 91.53 92.27 94.28 88.18 92.22

Federated SE + GCNN + FL EEG 90.63 92.04 94.17 95.45 75.14 93.72

Federated SE + GCNN + FL +
ANFIS-PSO EEG + ECG 91.78 92.31 92.42 94.59 91.08 92.82

Federated SE + GCNN + FL +
ANFIS-PSO

EEG + Patients’
Demographic data 91.10 92.52 93.87 92.28 90.79 93.65

Federated SE + GCNN + FL +
ANFIS-PSO

EEG + ECG + Patients’
Demographic data 96.33 96.14 93.94 96.13 91.11 94.24

By introducing the FL in combination with the SE-GCNN model, this work obtained
improvements of 1.56% and 0.51% in sensitivity and specificity, respectively, when testing
on the CHB-MIT dataset. This enhancement was due to the adoption of the FL model
as the global model and the segment-aware generation of the training sample in the
proposed system, facilitating the discrimination between the preictal and interictal states.
As mentioned in Table 6, the centralized approach had the worst sensitivity, specificity,
accuracy, and false positive rate among the proposed models. Consequently, the FL model
was adopted for the learning process in the proposed epileptic seizure prediction system.
Moreover, the proposed system used the ANFIS model in the postprocessing stage, and the
results were influenced by the SE, GCNN, and FL models. As a result, the performance
of the proposed model demonstrated an increased sensitivity of 96.33%, an increased
specificity of 96.14%, and an increased accuracy of 96.28% for the CHB-MIT dataset, as
shown in Table 5. The false positive rate also decreased to 0.032. During postprocessing,
the ANFIS-PSO model was tested with different combinations of input data, such as
(i) EEG and ECG, (ii) EEG and demographic, and (iii) EEG, ECG, and demographic. The
combination of EEG, ECG, and demographic was shown to outperform the other two cases,
achieving 91.11% sensitivity and 94.24% specificity on the NSC dataset.

Moreover, Table 7 presents the performance of the proposed method and EESP2 for
each of the individual patients or subjects comprising the CHB-MIT dataset. Among all
of the patients in the CHB-MIT dataset, few accomplish comparatively best results; for
example, patient CHB03 achieved the highest performance, with a sensitivity of 98.27%, an
accuracy of 96.09%, and an FPR of 0.071. In the seizure prediction system, the improvement
of all of the metrics, including sensitivity, specificity, FPR, and accuracy, was significant.
From the analysis presented in Table 7, the average of the specificity results for the different
patients using the proposed method is 91.24%. The proposed epileptic siezure prediction
system using SE-GCNN and the FL model enforces a minimal false positive rate due to
the spiking-sequence-based graph construction and the influence of the local model being
updated on the basis of generalized patterns. Moreover, the HRV features of seizure activity
accompanied by the EEG-based prediction probability greatly facilitates the achievement
of higher sensitivity, with 89.84% being achieved across all patients. The performance
presented in Table 7 illustrates that the proposed method ensures stability and maintains
the trade-off between the accuracy achieved across all patients and that for a single patient.

The ROC curves and AUC scores of the proposed model when tested on three bench-
mark datasets are plotted in Figure 11. Figure 11 shows that the proposed model can
discriminate the preictal samples from the interictal and ictal samples in all three CHB-MIT,
Bonn, and NSC datasets. The implementation of the FL model using a three-tier architec-
ture greatly assists the epileptic seizure prediction system in achieving better AUC scores,
with 0.896, 0.932, and 0.923 being achieved on the different EEG datasets by updating the
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local models with the influence of the global model parameters. As a result, the overall
ROC-AUC analysis demonstrates the contribution of the proposed method in terms of
ensuring the accurate real-time prediction for all of the generalized seizure patients by
implementing FL-assisted coarse-grained personalization and ANFIS-assisted fine-grained
personalization modeling.

Table 7. Evaluation of CHB-MIT dataset.

Patient ID
Proposed Method EESP2 (LRCN) [23]

Sen (%) Spec (%) Acc (%) FPR AUC Sen (%) Spec (%) Acc (%) FPR AUC

CHB01 96.33 96.14 96.28 0.032 0.95 ± 0.00 91.32 94.63 93.01 0.067 0.92 ± 0.01

CHB02 85.85 98.31 92.18 0.025 0.957 ± 0.03 80.48 54.76 67.66 0.452 0.521 ± 0.02

CHB03 98.27 93.89 96.09 0.071 0.961 ± 0.01 94.48 96.44 95.47 0.045 0.921 ± 0.03

CHB04 91.41 88.53 90.01 0.124 0.932 ± 0.00 88.98 85.36 87.38 0.147 0.852 ± 0.01

CHB05 94.31 88.84 91.58 0.125 0.874 ± 0.01 87.45 94.29 90.88 0.071 0.891 ± 0.00

CHB06 85.83 89.28 87.61 0.112 0.858 ± 0.05 82.39 89.31 85.94 0.107 0.823 ± 0.02

CHB07 88.16 91.25 89.69 0.086 0.879 ± 0.01 87.16 90.01 88.61 0.098 0.805 ± 0.03

CHB08 82.98 90.21 86.49 0.098 0.839 ± 0.02 78.29 85.61 82.01 0.145 0.826 ± 0.01

CHB09 91.91 88.89 90.51 0.112 0.908 ± 0.00 89.68 90.40 90.04 0.116 0.891 ± 0.01

CHB10 90.05 89.26 89.78 0.113 0.91 ± 0.014 88.35 84.91 86.79 0.156 0.831 ± 0.00

CHB11 92.13 90.34 91.39 0.0953 0.895 ± 0.01 89.63 90.31 89.85 0.097 0.856 ± 0.02

CHB12 89.02 88.91 88.89 0.1112 0.886 ± 0.06 81.26 85.32 83.35 0.149 0.831 ± 0.02

CHB13 89.61 90.27 89.89 0.098 0.901 ± 0.01 88.51 80.32 84.56 0.197 0.795 ± 0.05

CHB14 90.12 85.96 89.01 0.142 0.906 ± 0.03 88.96 82.07 84.62 0.183 0.827 ± 0.02

CHB15 90.29 92.59 91.56 0.0756 0.91 ± 0.00 87.31 90.01 88.75 0.098 0.843 ± 0.01

CHB16 88.20 89.97 89.98 0.112 0.834 ± 0.01 80.12 78.31 80.02 0.218 0.785 ± 0.03

CHB17 87.05 90.28 89.12 0.098 0.865 ± 0.02 76.31 88.04 82.23 0.118 0.814 ± 0.01

CHB18 92.36 91.64 92.05 0.085 0.896 ± 0.01 90.53 89.31 89.87 0.107 0.821 ± 0.02

CHB19 87.89 93.58 91.01 0.0651 0.875 ± 0.1 85.46 90.07 87.82 0.098 0.813 ± 0.01

CHB20 90.21 95.61 92.85 0.0443 0.895 ± 0.02 89.43 92.67 91.12 0.074 0.856 ± 0.03

CHB21 89.31 93.14 91.34 0.069 0.904 ± 0.01 88.91 90.71 89.93 0.094 0.881 ± 0.02

CHB22 90.54 89.04 89.85 0.114 0.912 ± 0.03 89.34 87.05 88.23 0.132 0.851 ± 0.01

CHB23 85.31 90.16 87.89 0.099 0.872 ± 0.02 82.67 89.67 86.29 0.112 0.834 ± 0.01

CHB24 89.19 93.57 91.45 0.0651 0.888 ± 0.01 84.39 91.28 87.91 0.089 0.812 ± 0.02

Average 89.84 91.24 90.69 0.090 0.896 ± 0.02 86.31 87.12 86.76 0.132 0.829 ± 0.02

Figure 12 illustrates the ROC curve and the AUC score for each patient when tested on
the five patients comprising the CHB-MIT dataset. From the analysis of Figures 11 and 12,
it can be determined that the proposed epileptic siezure prediction system achieved higher
AUC scores, and thus is able to provide accurate seizure predictions for all of the patients, in
a patient-specific manner. Among the five epileptic patients tested, the proposed approach
was able to accurately predict an epileptic seizure for patient CHB03 with an AUC score of
0.961 on the basis of the discrimination of the preictal state from the ictal samples.
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6. Conclusions

In this work, a three-tier architecture was designed for FL-based epileptic seizure
prediction that addressed the constraints of data scarcity, diversity, and privacy without
compromising the accuracy and computational cost by implementing a two-level edge
layer. For the modeling of the FL, the global-model-based updating of the local model
ensured a balance between model generalization and coarse-grained personalization. The
design of a hybrid model with SE and GCNN supported the accurate recognition of the
preictal class from the interictal class using segment-aware spike modeling and the bi-
timescale approach in coarse-grained personalization. Furthermore, the seizure risk-aware
patient personalization was achieved using the ANFIS model, fine-tuning the coarse-
grained results obtained from the FL model using the HRV features of ECG signals and
patient-specific clinical features. As a result, the proposed system was able to recognize
the risk level of the preictal state by examining the preictal probability determined on the
basis of the EEG signals. Thus, the experimental results demonstrate that the proposed
method outperforms several baseline models, as well as previous research on epileptic
seizure prediction, yielding 10.54% and 9.21% higher sensitivity than EESP1 and EESP2,
respectively. The proposed method can be extended to design automatic early warning
systems with customized seizure prediction horizon times. In addition, the significance of
the position of electrodes and channels on the scalp should be considered for the real-time
prediction of seizures using deep learning algorithms.

6.1. Advantages and Limitations

The proposed approach presents numerous benefits for healthcare services through the
potential design of a federated learning-based seizure prediction mechanism. The proposed
approach utilizes global epilepsy knowledge through the use of a federated learning
model in distributed medical centers. Moreover, the bi-timescale approach and spiking
GCNN, along with ANFIS-PSO-based epilepsy state discrimination, in the proposed system
enforces the investigation of the temporal as well as spatial relationship of the EEG channel
values in the large-scale training dataset, thereby reducing the requirement of the resource
capabilities in the medical center.

Nevertheless, the proposed siezure prediction system presents several limitations in
terms of providing healthcare services to end users. Firstly, there are variations in EEG data
scarcity and hardware resource capabilities among different local hospitals and medical
centers; therefore, there is a lack of ability to handle the high dynamics of epileptic EEG
signals in the context of sliding window modeling and spike analysis, thereby increasing
the classification error. In addition, relying on manual annotations for epilepsy states is
critical in real-time seizure prediction, likely increasing number of false positives due to the
lack of ability to handle data scarcity with respect to label scarcity.

6.2. Future Directions

The proposed method could be extended to design an automatic early warning system
with a customized seizure prediction horizon time. In addition, the significance of the
position of electrodes and channels on the scalp should be considered for the real-time
prediction of seizures using deep learning algorithms. Additionally, future work will
include the design of a lightweight real-time seizure forecasting model with the aim of
performing time series learning for unlabeled epileptic EEG samples.
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