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Abstract: A proactive mobile network (PMN) is a novel architecture enabling extremely low-latency
communication. This architecture employs an open-loop transmission mode that prohibits all
real-time control feedback processes and employs virtual cell technology to allocate resources non-
exclusively to users. However, such a design also results in significant potential user interference and
worsens the communication’s reliability. In this paper, we propose introducing multi-reconfigurable
intelligent surface (RIS) technology into the downlink process of the PMN to increase the network’s
capacity against interference. Since the PMN environment is complex and time varying and accurate
channel state information cannot be acquired in real time, it is challenging to manage RISs to
service the PMN effectively. We begin by formulating an optimization problem for RIS phase shifts
and reflection coefficients. Furthermore, motivated by recent developments in deep reinforcement
learning (DRL), we propose an asynchronous advantage actor–critic (A3C)-based method for solving
the problem by appropriately designing the action space, state space, and reward function. Simulation
results indicate that deploying RISs within a region can significantly facilitate interference suppression.
The proposed A3C-based scheme can achieve a higher capacity than baseline schemes and approach
the upper limit as the number of RISs increases.

Keywords: proactive mobile network (PMN); reconfigurable intelligent surface (RIS); asynchronous
advantage actor–critic (A3C); interference suppression; reinforcement learning (RL)

1. Introduction

Recent advancements in state-of-the-art applications, including intelligent manu-
facturing, autonomous driving, and remote operations, have necessitated that mobile
networks support communication with an exceptionally low latency [1–3]. This demand
has prompted the emergence of ultra-reliable low-latency communication (URLLC) as one
of the three communication scenarios within fifth generation mobile networks (5G). De-
spite significant efforts in recent years to reduce communication latency in 5G closed-loop
architectures, these approaches often involve excessive control overhead messages, leading
to unacceptable latency [4]. To address this issue, researchers are exploring methods to
integrate perception, computation, and communication within mobile network architec-
tures. This novel approach replaces conventional direct interaction control methods with
historical data mining and perception of the surrounding environment to obtain relevant
and necessary information. Consequently, a proactive mobile network (PMN) architecture
is proposed [5–7]. The PMN architecture is considered to have significant theoretical value
and holds the potential for deployment in future 6G networks [8–10].

A PMN employs an open-loop transmission approach and utilizes a virtual cell ar-
chitecture to achieve low-latency communication [11,12]. As depicted in Figure 1, the
radio access network (RAN) comprises access points (APs) governed by an anchor node
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(AN). The AN is responsible for executing advanced networking capabilities and predictive
network management in collaboration with the edge server. Multiple APs within the AN’s
coverage area work together with a focus on machine centricity to establish a virtual cell,
ensuring an uninterrupted service. In this architecture, data transmission occurs promptly
upon generation, employing open-loop transmission for both the uplink and the downlink
without additional control information exchange [13–15]. By leveraging environment per-
ception sensors and powerful edge computing capabilities, the PMN eliminates the need
for retransmission and acknowledgment processes. Compared to the data transmission
process in 5G or other classic closed-loop networks, the PMN eradicates control links asso-
ciated with a single data transmission, such as waiting for latency and post-transmission
compensation, to an extreme extent. This compression results in the air interface latency
performance condensing to a single one-way transmit time, thereby achieving extremely
low-latency communication.

Figure 1. Network infrastructure framework for a PMN: access points (APs) offer spatial coverage
and signal backhaul, while the anchor node (AN) is responsible for executing advanced operations
and the edge server provides data processing in proactive mobile communication. The smart machine
(SM) associates proactively with the APs to construct a virtual cell. Data are transmitted immediately
upon generation, regardless of uplink or downlink, without extra control single exchange.

While the PMN holds the potential to achieve minimal communication latency, ensur-
ing transmission-reliable capacity presents a significant challenge. Traditional approaches
relying on interactive control protocols conflict with the PMN’s requirement to avoid real-
time direct closed-loop control. Furthermore, the PMN does not conduct real-time resource
allocation for individual transmission duties. Additionally, the channel resources available
to different smart machines (SMs) are not independent, which limits efficiency within a re-
stricted frequency bandwidth. This situation is further exacerbated by the impact of virtual
cell technology, which introduces substantial inter–user interference and compounds the
difficulty of ensuring reliable capacity in the PMN [6,16].

To address these challenges, reconfigurable intelligent surfaces (RISs) offer a potential
solution. By manipulating the phase shifts of reflecting elements, RISs have emerged as a
promising technology for configuring the wireless environment [17]. Multiple RISs can be
strategically deployed within the PMN’s coverage area under the control of the AN. By
judiciously modulating the RISs, the signal of interest can be amplified via direct refraction
while co-channel interference is suppressed. However, the effective utilization of RISs
necessitates precise real-time channel information, which proves challenging to obtain
within the PMN due to the absence of real-time feedback associated with transmission.

In this paper, we propose an RIS-assisted interference suppression scheme based on
the asynchronous advantage actor–critic (A3C) algorithm to surmount this challenging
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problem, which combines deep reinforcement learning (DRL) to control the RISs dynami-
cally. Regarding the system design, we consider the fairness of the use of the network by
SMs within the region and construct the goal as a max-min channel capacity problem. Our
approach enables adaptive adjustments of the RISs without relying on accurate real-time
feedback, maximizing the target in downlink transmission. Through experimental eval-
uations and simulations, the proposed A3C-based RIS-assisted scheme demonstrates its
capability to effectively mitigate interference, enhance transmission reliability, and optimize
the overall network performance.

The main contributions of this paper are as follows:

• We propose introducing RIS technology to solve the extensive and severe inter-user
interference problem in PMN downlink communication. This permits the AN to
rationally and uniformly regulate multiple RISs to suppress interference among users
in the service region and simultaneously boost the target signal of multiple users.

• We designed a DRL-based AN dynamic management scheme for multiple RISs. The
scheme overcomes the technical challenge that exact channel state information cannot
be obtained in real time in PMNs, which is required for traditional RIS manage-
ment schemes.

• A numerical evaluation verifies the efficacy of the proposed RIS-assisted PMN down-
link scheme in interference suppression. The results indicate that the communication
capacity of the PMN can be substantially increased by deploying multiple RISs and
controlling the RISs’ phase shifts and reflection coefficients.

The remaining sections of the paper are organized as follows: Section 2 summarizes
the current status of knowledge. Section 3 analyzes the downlink transmission process
within a PMN and formulates the multi-RIS management problem. This paper gives a
succinct description of the A3C-based RIS management scheme in Section 4, which also
serves as a brief introduction to the DRL. In Section 5, simulation results are presented and
analyzed. Section 6 of this paper provides a summary of our work.

2. Related Works

In the recent literature, significant advancements have been made in various aspects of
proactive mobile networks (PMNs), showcasing the growing interest and research efforts in
this field. For instance, ref. [18] proposes expected mobility management, which answers
the problem of network facilities in PMNs tracking the mobility of serviced SMs. Build-
ing upon this premise, ref. [8] presents a machine-centric proactive multi-cell association
(PMCA) scheme that demonstrates the viability of an open-loop transmission-based archi-
tecture. With the aid of a proactive service and an edge server, a substantial study has been
conducted on precaching relevant data near the user [9,19]. Regarding communication
security, some studies have also proposed to achieve eavesdropping avoidance through
proactive interference [20]. For the specific data transmission and resource management
method, refs. [6,10,16] provide uplink and downlink solutions, respectively. The core
challenge in the uplink is to ensure transmission reliability when the network is in passive
service without control interaction. In addition to reliability, energy efficiency is also an
important consideration in the downlink. Refs. [6,16] design a dual reinforcement learning
iterative technique in a shared environment that realizes the reliability guarantee of uplink
transmission in PMNs via free control interaction. Ref. [10] recommends that the SM
controls the network side during downlink transmission, and by introducing non-real-time
information in the preceding uplink process, it facilitates the selection of resources used in
the present downlink transmission. Although research on PMNs is still in the exploratory
stage, the proposed scheme has its limitations as it only examines performance from a
single strategy.

In contrast, the technology of using RISs for auxiliary transmission has reached a
relatively mature stage. Researchers have proposed innovative relay-assisted RIS struc-
tures, such as the one presented in [21], which connects parallel RISs via a full-duplex relay
to reduce the number of reflective components required for the same rate. Refs. [22,23]
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examined the cooperation system composed of an RIS and decoding and forwarding relays
in half-duplex and full-duplex operating modes, respectively. By combining an RIS and
a relay into a cooperative system, the communication performance can be significantly
enhanced. Additional gains can be obtained if the self-interference at the full-duplex relay
is sufficiently suppressed. Refs. [24–26] investigated the communication performance of
the cooperative system composed of multiple distributed RISs and relays. Refs. [27,28]
proposed various cooperative system schemes. Compared to RIS-only or relay-only trans-
mission schemes in various transmission environments, they all exhibited significant
performance enhancements. Moreover, in schemes with relays, increasing the number of
RIS components results in a greater gain than in schemes without relays. Ref. [29] pro-
posed a novel RIS auxiliary communication system with the RIS controller functioning as a
relay with decoding and forwarding capabilities. In contrast to the preceding cooperative
system, the controller of the RIS is located within its near-field range. These advancements
highlight the potential of RIS technology in enhancing the communication performance
and promoting cooperative systems.

Furthermore, recent research has explored the application of RISs for interference
mitigation, resulting in groundbreaking findings. Studies in [30] comprehensively examine
the interference handling capacity of RIS-enhanced communication systems. The authors
of [31] investigated an optimization problem involving phase shift design and beamforming
strategies at all base stations in a multi-cell network powered by a single RIS as they delved
deeper into the domain of inter-cell interference. Experts in [32] targeted systems assisted
by RISs and interference, optimizing quasi-static phase shifts under both instantaneous
and statistical channel state information (CSI) scenarios. Additionally, ref. [33] implements
RIS technology in high-speed railway networks to mitigate interference from intentional or
unintentional sources, devising complex and sub-optimal algorithms to generate RIS phase
shifts that maximize the signal-to-interference-plus-noise ratio.

These studies demonstrate that extensive research has been conducted on RIS tech-
nology and its potential to enhance communication performance and reduce interference.
However, it is crucial to note that the studies mentioned above have predominantly focused
on isolated instances of inter-user interference while disregarding the multi-user scenario.
In addition, the conditions learned by their proposed schemes, which are founded on real-
time CSI, need to be revised to meet the PMN requirements. Given the growing interest in
and importance of research in the field of PMNs, there is an evident need for developing a
novel scheme that can effectively address the PMNs’ particular requirements. In particular,
this plan should consider the simultaneous scheduling of numerous RISs and address the
challenges presented by the forbidding direct method for obtaining precise real-time CSI.
This paper’s primary objective is to fill these gaps and provide a comprehensive solution
for these critical PMN features.

3. System Model and Problem Formulation

This paper considers an RIS-assisted downlink in a proactive mobile network, as
depicted in Figure 2, in which multiple RISs aid the transmission between A APs and S
SMs. The region managed and served by a single AN has M RISs.

3.1. Channel Model

Suppose each AP and SM is equipped with only one single antenna, and each RIS
consists of N reflecting elements. We denote the reflection coefficient matrix of the m-th RIS
by Θm = diag(αm,1ejφm,1 , . . . , αm,Nejφm,N ) ∈ CN×N . Here, αm,n ∈ [0, 1] and φm,n ∈ [0, 2π)
indicate the amplitude reflection coefficient and the phase shift of the n-th unit of the m-th
RIS, separately. Let ha,m = [ha,m,1, . . . , ha,m,N ]

H ∈ CN×1 and hm,s = [hm,s,1, . . . , hm,s,N ]
H ∈

CN×1 denote the channel efficient of the AP-RIS link and the RIS-SM link, respectively.
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Furthermore, we use ga,s to denote the channel efficiency of the AP-SM direct link. ha,m,n,
hm,s,n, and ga,s follow independent Rician fading as [30]

ha,m,n =

√
va,m

va,m + 1
ha,m,n +

√
1

va,m + 1
ĥa,m,n (1)

hm,s,n =

√
vm,s

vm,s + 1
hm,s,n +

√
1

vm,s + 1
ĥm,s,n (2)

ga,s =

√
va,s

va,s + 1
ga,s +

√
1

va,s + 1
ĝa,s (3)

where va,m, vm,s, and va,s are the corresponding Rician factors, respectively. ha,m,n, hm,s,n,
and ga,s are the line-of-sight (LoS) parts of the fading channel. Furthermore, ĥa,m,n, ĥm,s,n,
and ĝa,s are the non-line-of-sight (NLoS) parts.

For ha,m,n, we have

ha,m,n =
√

βd−
α0
2

a,m e−j(n−1)π sin θa,m (4)

where θa,m represents the angle of arrival (AoA) at the m-th RIS that the single sent by
the a-th AP [34]. The α0 is the path loss exponent and the β denotes the path loss at the
reference distance of 1 meter. da,m is the distance between the RIS and the AP. hm,s,n and
ga,s can be obtained similarly. However, θm,s and θa,s are the angle of departure (AoD). For
the NLoS parts, we have ĥa,m,n = d−α/2

a,m ḣ, where ḣ correspond to the complex Gaussian
distribution CN (0, 1). Both ĥm,s,n and ĝa,s are modelled similarly.

Figure 2. Introduction to multiple RIS-assisted PMN downlink processes. The AN controls and
adjusts all RISs in a unified manner. The goal is to assist the multipath superposition enhancement of
the target signal while allowing the interfering signals to superimpose and suppress each other.

Since the mobility of the SMs, transmission delay, and processing delay cannot be
neglected in the actual PMN, it is difficult to obtain the ideal CSI. If obsolete CSI is used to
design the phase change, the performance loss will be glaring. Therefore, it is important to
consider obsolete CSI in the RIS-assisted PMN system. In this scenario, τ represents the
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time difference between the obsolete CSI and the real-time CSI. The relation between the
obsolete CSI h̃[t− τ] and the real-time CSI h[t] can then be expressed as [34]

h[t] = κh̃[t− τ] +
√

1− κ2∆(τ), (5)

where κ is the temporal correlation coefficient or the obsolete CSI coefficient, which is
given by

κ = J0(2π fDτ), (6)

where J0(·) is the zeroth-order Bessel function of the first kind and fD is the Doppler shift.
fD is calculated by fD = v fc/c, given the carrier frequency fc, where c is the speed of light.
In addition, ∆(τ) represents the error term, which is distributed independently from h̃t−τ

with zero-mean and σh variance complex Gaussian entries.

3.2. RIS-Aided PMN Downlink Capacity

For the s-th SM, the received signal at time t can be written as

ys[t] = ∑
a

√
pa[t](∑

m
hH

m,s[t]Θm[t]ha,m[t] + ga,s[t])xa[t] + z[t], (7)

where xa[t] denotes the desired signal sent by the a-th AP, z[t] corresponds to CN (0, σ2),
which denotes the noise, and pa[t] is the transmit power (in dBm) of the AP. Use Ωs[t]
to indicate the set of APs performing downlink transmission for the s-th SM. It follows
that Ωi[t]

⋂
Ωj[t] = ∅, 1 6 i, j 6 S and

⋃S
i=1 Ωi[t] ⊆ {1, . . . , A}. According to (7), we can

therefore obtain the achievable rate of the RIS-aided PMN downlink transmission as

Rs[t] = log

(
1 +

∑a∈Ωs [t] pa[t](∑m hH
m,s[t]Θm[t]ha,m[t] + ga,s[t])Qa[t](ga,s[t] + ∑m hm,s[t]ΘH

m [t]hH
a,m[t])

∑b/∈Ωs [t] pa[t](∑m hH
m,s[t]Θm[t]hb,m[t] + gb,s[t])Qb[t](gb,s[t] + ∑m hm,s[t]ΘH

m [t]hH
b,m[t]) + σ2

)
. (8)

In (8), Qa[t] = E[xa[t]x̄a[t]]. When the phase shifts are fixed in the maximal interference
situation, Q∗a [t] is expressed by

Q∗a [t] =
(∑m hH

m,s[t]Θm[t]ha,m[t] + ga,s[t])(ga,s[t] + ∑m hm,s[t]ΘH
m [t]hH

a,m[t])
‖∑m hH

m,s[t]Θm[t]ha,m[t] + ga,s[t]‖2 . (9)

Obviously, Qa[t] 6 Q∗a [t] 6 1, and the same applies to Qb[t]. Thus, the RIS-aided PMN
downlink capacity for the s-th SM is given by

Cs[t] = log

(
1 +

∑a∈Ωs [t] pa[t]‖∑m hH
m,s[t]Θm[t]ha,m[t] + ga,s[t]‖2

∑b/∈Ωs [t] pb[t]‖∑m hH
m,s[t]Θm[t]hb,m[t] + gb,s[t]‖2 + σ2

)
. (10)

It should be pointed out that the RIS-aided PMN downlink process can only acquire
the estimated CSI h̃[t]. Thus, the capacity in (10) is calculated based on the actual CSI
expressed by (5).

3.3. Optimization Problem Formulation

According to (10), the reflection coefficient matrices of the RISs play a crucial role
in the interference capacity of RIS-aided PMN networks. To enhance the desired signal
and reduce interference, it is necessary to design optimal RIS phase shifts and amplitude
reflection coefficients. In order to achieve capacity assisted by an RIS, the following capacity
maximization problem is formulated:
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P : max
{αm,n},{φm,n}

min
s

1
T

T

∑
t=1

Cs[t]

s.t.
c1 : 0 6 αm,n[t] 6 1,
c2 : 0 6 φm,n[t] < 2π.

(11)

In (11), we take into account the fairness of the network used by each SM and establish the
objective as maximizing the minimal capacity of all devices. We further note that the log
function increases monotonically. The above optimization is equivalently transformed to

P : max
{αm,n},{φm,n}

min
s

1
T

T

∑
t=1

(
∑a∈Ωs [t] pa[t]‖∑m hH

m,s[t]Θm[t]ha,m[t] + ga,s[t]‖2

∑b/∈Ωs [t] pb[t]‖∑m hH
m,s[t]Θm[t]hb,m[t] + gb,s[t]‖2 + σ2

)
s.t. c1 : 0 6 αm,n[t] 6 1, c2 : 0 6 φm,n[t] < 2π.

(12)

We can see that problem (12) is a fractional optimization problem, a difficult-to-solve
non-convex problem. In addition, given the practical significance of the problem, it is costly
for the AN to traverse all network states in real time for each time slot in a highly dynamic
environment to calculate and locate the optimal point. In order to overcome this difficulty,
we propose an algorithmic computation taking advantage of DRL.

4. Deep Reinforcement Learning Approach

This section begins by demonstrating how to formulate problem (12) as a reinforcement
learning problem. Furthermore, based on the characteristics of the problem’s continuous
high-dimensional decision variables, a scheme based on A3C is proposed to modify the
RISs phase shifts and amplitude reflection coefficient.

4.1. Reinforcement Learning Problem Formulation

Various factors, such as the fluctuating network load, the state of wireless channels,
and the transmission requirements of multiple devices, exhibit statistical patterns and state
transition characteristics over time in practical network scenarios. From an engineering
standpoint, the significance of (12) resides in its ability to guide decision making regarding
the network-dependent behaviors of RISs. Given these conditions’ inherent uncertainty
and stochastic nature, numerous decision-making problems can be effectively addressed
by transforming them into Markov decision process (MDP) problems and applying RL
theory to maximize decision-making utility. Unlike conventional stochastic optimal control
methods [35], RL approaches offer distinct benefits by eliminating the need for extensive
prior knowledge of system dynamics or objectives [36–38]. Instead, RL strategies discover
optimal control policies via direct interaction with the system. Consequently, the first step
is to re-formulate (12) as an MDP problem.

The MDP is expressed by a five-tuple 〈S ,A,P ,R, ε〉, where S is the set of observed
environment states, A is a set of available actions for the agent, P denotes state transition
probabilities,R is the reward function, and ε ∈ [0, 1] indicates the discount factor. For each
step, the agent takes an action at ∈ A according to the environment states st ∈ S . The
action affects the state’s transition to a new st+1 while giving the agent a certain reward
rt = R(st, at). The MDP components will be described in the following.

State Space: At the beginning of time t, AN obtains the spatial position sp
t of all SMs,

all required channel information sc
t , and service relationship between APs and SMs during

downlink transmission ss
t in the region by means of the sensors and historical data under

its jurisdiction. sp
t is denoted as

sp
t = {p1

x[t], . . . ., pS
x [t], p1

y[t], . . . , pS
y [t]}, (13)
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where ps
x[t] and ps

y[t], respectively, represent the horizontal and vertical coordinates of the
s-th SM. sc

t contains the channel information of all AP-RIS links, AP-SM links, and RIS-SM
links, which is given by

sc
t = {ha,m, hm,s, ga,s}. (14)

ss
t is represented by a vector, with each element corresponding to the SM served by the s-th

AP during the slot. To this end, the state space at time t is defined as

st = sp
t

⋃
sc

t
⋃

ss
t . (15)

Two more issues should be noted. Adding irrelevant or weakly correlated features
to the state will undoubtedly increase efforts of data collection and likely decrease the
system’s performance. As a result, we amend the consideration of SMs mobility norms and
service relationship modifications in subsequent simulations [39,40]. However, because this
work is not centered on this subject, it will not be discussed in detail here. The second issue
is that, in this work, the imaginary portion of the channel coefficients will be converted to
real integers. Then, these coefficients and the rear portion of the channel coefficients can be
fed into the neural network [41].

Action Space: According to the present state of the RIS-assisted PMN downlink sys-
tem, decisions must be made regarding the phase shift and amplitude reflection coefficient.
Consequently, the action space is represented by

at = [α1,1, . . . , α1,N , α2,1, . . . , αM,N , φ1,1, . . . , φ1,N , φ2,1, . . . , φM,N ]. (16)

State Transition Probability: In the absence of prior knowledge of the probability of
state transitions, the agent determines P(st+1|(st, at)) based solely on the environment [42].
P(st+1|(st, at)) represents the probability distribution of st+1 for the given st and the chosen
at. In this study, the transition on the channels, such as (1)–(5), and the spatial location
of SMs and the transfer of service correspondence relationship with APs depend on the
simulation setting.

Reward Function: The reward function, which represents the immediate reward for a
given state action dyad, is generally related to the objective function. This paper aims to
maximize the minimal capacity of all SMs within RIS-assisted PMN downlink transmissions
with mutual interference. Therefore, the reward function is determined by

rt = minCs[t] (17)

Using the above entry, π denotes the strategy of the AN choosing action by the network
status. Thus, the total expected reward for the future by one action is the Q-function,

Qπ(s′, a′) = Eπ [Rt|s0 = s′, a0 = a′] = Eπ [
∞

∑
t=0

εt · r(st, at)|s0 = s′, a0 = a′], (18)

where Rt is the discounted accumulated reward, indicating how the future rewards influ-
ence the current state value. Sometimes, the expectation of a certain state’s future reward is
directly measured, that is,

Vπ(s′) = Eπ [Qπ(s′, a′)|s0 = s′] = ∑
a

π(a|s′)Qπ(s′, a) (19)

Then, the RL aims to find the optimal strategy π∗ that for every s′ and a′

π∗ = arg max
π

Qπ(s′, a′) = arg max
π

Vπ(s′) (20)

4.2. Actor–Critic Decision Framework

Due to the high dimensionality and continuity of the state and action spaces in this
problem, the above Q-function and optimal strategy are challenging to solve directly. This
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suggests approximating the relationship between S , A, and Q-functions using parame-
terized functions. Deep neural networks (DNNs) have excellent fitting functions [43,44].
In contrast to supervised learning and other training methods with distinct objectives,
however, there is no obvious objective when a DNN is used to depict the relationship
between elements in RL. The actor–critic structure is therefore employed [45].

The high dimensionality and continuity of the state and action spaces pose significant
challenges in directly solving the Q-function and optimal strategy in this problem. To
address this, an alternative approach is to approximate the relationship between the state
space S , action space A, and Q-functions using parameterized functions. A deep neural
network (DNN) is well suited for this task due to its excellent function approximation
capabilities. However, unlike supervised learning or other training methods with explicit
objectives, there is no clear objective when using a DNN to represent the relationship be-
tween elements in reinforcement learning (RL). To overcome this, an actor–critic structure
is employed, as suggested in [45]. The actor–critic architecture combines both policy evalu-
ation (the critic) and policy improvement (the actor) to learn and optimize the policy in an
RL setting. This allows for effective training of the DNN and facilitates the approximation
of the complex relationships between states, actions, and Q-values, leading to an improved
performance in solving the problem at hand.

The agent in the AC framework consists of an actor and a critic. The actor is a DNN
that corresponds to a strategy function whose purpose is to solve the problem of continuous
action selection by utilizing the parametric properties of DNNs and probability actions.
The parameters in this section are represented by θ, and the approximate strategy function
can be written as follows:

π(s, θ) = P[a|s, θ] ≈ π(a|s). (21)

The critic is an additional DNN that utilizes the Q-function. It is capable of solving
expected return evaluations on high-dimensional continuous state spaces. Specifically,
Q̂(s, a, w) ≈ Qπ(s, a), where w is the parameter for this part. The actor in the actor–critic
framework executes an action based on the current strategy in response to the current
state during each training episode. The environment then changes state and rewards the
critic with feedback. Using the temporal difference (TD) algorithm, the critic, responsible
for evaluating the quality of the actor’s actions, is updated to improve its judgment and
evaluation capabilities. The actor is modified using the policy gradient method to optimize
for higher returns. However, it is important to note that in the base version of the actor–critic
architecture, both the actor and the critic rely on gradient updates and are interdependent,
making convergence to a stable solution challenging. The interaction between these two
components can result in instability and training difficulties for DNNs.

The asynchronous advantage actor–critic (A3C) algorithm builds upon the actor–critic
algorithm by introducing concurrent actors and asynchronous training of neural networks.
This key distinction significantly accelerates the convergence process [46]. In the A3C
algorithm, the network parameters are stored on a central server. Each actor operates
independently and interacts with the environment, collecting experiences and generating
gradients based on their local network. Once an actor reaches a terminal state or the
maximum action index, it transmits its gradients to the central server. The central server
then updates the global parameters using these gradients and redistributes the updated
parameters to all the actors. This ensures that all actors share the same policy while
avoiding high parameter correlation that can arise with a single agent. Unlike traditional
deep Q-networks (DQNs), A3C does not require a replay memory [46]. Additionally, the
training duration can be drastically reduced.

4.3. A3C-Based Approach

In the following is a description of the implementation of the A3C-based orchestration
solution illustrated in Algorithm 1. When the environment is in state st, the estimated state
value is Vπ(st; ω) in each time slot t, and the agent executes action at according to policy
π(at|st; θ). When the utmost number of steps is reached, or the final state is attained, the
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policy and its corresponding value function are iterated and updated. Then, A3C uses a
k-step reward for parameter updating, which is provided by

Rt =
k−1

∑
i=0

εi · rt+i + εk ·Vπ(st+k; ω) (22)

where k is the variation from state to state, tmax is the upper limit, and ε is the discount
factor signifying how future rewards affect the current state value [46,47].

Algorithm 1: A3C-Based Solution

1 Initialization of the global actor network and global critic network with
parameters ω and θ.

2 Initialize global shared counter as T = 0 and thread-specific counter as t = 1.
3 Initialize the thread-specific actor and thread-specific critic network parameters ω′

and θ′.
4 Initialize Tmax, tmax, and all the parameters as in Table 1, respectively.
5 while T < Tmax do
6 for each worker do
7 Initialize the gradients of global agent: dω = 0 and dθ = 0.
8 Synchronous parameters of each worker with global parameters ω′ = ω

and θ′ = θ.
9 Get the system state st.

10 for t 6 tmax do
11 Perform at under policy π(at|st; θ′).
12 Obtain reward rt and new state st+1.
13 t = t + 1
14 end
15 R assigned Vπ(st; ω′) for non-terminal st and 0 for terminal st
16 while t > 1 do
17 R = rt + εR
18 Accumulate gradient ω′ based on (26)
19 Accumulate gradient θ′ based on (27) t = t− 1
20 end
21 Execute asynchronous update of θ and ω according to (29)
22 end
23 T = T + 1
24 end

Similar to the AC algorithm, A3C specifies the advantage function At to reduce the
estimation variance, which is given by

A(st, at; θ, ω) = Rt −Vπ(st; ω) (23)

where θ and ω are actor and critic network parameters, respectively. Therefore, the advan-
tage function At can be used to enhance the learning capacity of agents to prevent them
from over- or under-estimating the action. In addition, based on the advantage function At,
the loss function of the actor network can be given by

Lπ(θ) = log π(at|st; θ)A(st, at; θ, ω) + ζH(π(st; θ)), (24)

The term H(π(st; θ)) is incorporated in the training process to promote exploration and
prevent premature convergence. Additionally, the parameter ζ is utilized to regulate
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the strength of entropy regularization, which helps balance the exploration/exploitation
tradeoff. The critic network’s approximated value loss function is represented as:

LV(ω) = (Rt −Vπ(st; ω))2, (25)

which is used to update the value function Vπ(st; ω). The critic network undergoes updates
through the use of a cumulative gradient which is as follows:

dω← dω +
∂Rt −Vπ(st; ω)

∂ω′ (26)

Next, the actor network is updated and iterated through

dθ← dθ+∇θ′ log π(at|st; θ′)A(st, at; θ′, ω′) + ζ∇θ′ H(π(st; θ′)). (27)

Furthermore, the parameters θ′ and ω′ relate to specific workers, whereas the parameters
θ and ω correspond to the global actor and critic network, respectively.

In our training process, we rely on the traditional non-centered RMSProp algo-
rithm [48]. This includes reducing the two loss functions and adjusting the actor and
critic parameters using their accumulated gradients, as depicted in Equations (26) and (27).
The gradient computed via RMSProp can be represented as follows:

q← ξq + (1− ξ)d(∗)2 (28)

where ξ is the momentum and d(∗) is the accumulated gradients of the policy or value loss
function. Based on the obtained q, the update is performed according to

∗ ← ∗ − σ
d(∗)√
q + ε

(29)

where σ is the learning rate and ε is a tiny positive number used to avoid errors when the
denominator equals 0 [44]. The global framework of the A3C algorithm in this paper is
illustrated in Figure 3.

Figure 3. A3C-based framework for management phase shifts and amplitude reflection coefficients
of the RISs at the ANs.
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5. Analysis of Simulation Results
5.1. Simulation Setting

All simulations were conducted inside a 200 m× 200 m rectangular region where all
wireless networks are believed to be controlled by one AN. There are 30 APs randomly
deployed in the region. The transmit power of each AP is set to not exceed 32 dBm. During
the downlink process, the AN randomly selects one of the three APs closest to each SM to
serve the transmission of the SM. In addition, due to the mobility of the SM, if the closest
three APs around it all have been selected to serve other SMs, the AP closest to it is used and
is not assigned to perform this time downlink. The path loss factor α0 is 2 and β = −25 dB.
In addition, the noise power density is σ2 = −110 dBm. The moving speed of all SMs in
the area is limited to 40 km/h–100 km/h, and one of the eight directions can be randomly
selected to move every minute. The default values of other parameters are summarized in
Table 1.

Table 1. Important parameters in the simulation setup.

Parameter Value

The Rician factors va,m, vm,s, and va,s (4, 5, 6)
The temporal correlation coefficient κ 0.7

Number of APs A 20
Number of SMs S 18

Number of elements in each RIS N 32
Discount factor ε 0.8

Coefficient ξ 0.1, 0.001, 0.0001
Noise power density σ2 −164 dBm/Hz

Max transmit power of each AP 27 dBm

Furthermore, in the A3C scheme, we configure the hidden layer of the DNN to
be a fully connected layer whose active function is relu. For the actor, the number of
hidden layers is set to 3, with 300, 400, and 200 neurons in each hidden layer, respectively.
The number of neurons in each of the critic’s four hidden layers is 400, 500, 500, and
300, respectively.

It should be noted that our simulation only approximates the DNN network structure
and parameters based on the existing literature, particularly [49–51]. Our aim is to assess
the efficacy of our proposed scheme. Nonetheless, to achieve more favorable outcomes, it
is imperative to conduct further research to optimize other DNN hyperparameters in RL
and explore alternative network structures such as LSTM and RNNs. This paper does not
delve into this aspect of the topic.

5.2. Results and Analysis

We begin by demonstrating the convergence of our proposed algorithm at various
learning rates. Figure 4 depicts convergence under varying actor learning rates la, with
the critic’s learning rate set to lc = 0.001, whereas Figure 5 depicts convergence under
varying critic learning rated, with the actor’s learning rate set to la = 0.001. As can be
seen in these two figures, the system reward initially increases abruptly. Then, it converges
at nearly 3000 episodes under various learning rate combinations, indicating that our
proposed algorithm converges rapidly. Specifically, when the learning rate is 0.03, although
it achieves a swift convergence, its capacity performance is inferior to that of the 0.001 case.
It is no surprise that an appropriate learning rate should be selected for convergence speed.
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Figure 4. Downlink capacity over episodes under different learning rates la.

Figure 5. Downlink capacity over episodes under different learning rates lc.

We will now assess the effectiveness of our proposed scheme, which is based on A3C.
To compare its performance, we will consider three baseline methods:

1. Without RIS: This scenario depicts the PMN downlink transmission in its original
state, without any interference suppression mechanisms [10]. In this case, RIS-related
processes are eliminated and the interference capacity is provided by

Cs[t] = log

(
1 +

∑a∈Ωs [t] pa[t]‖ga,s[t]‖2

∑b/∈Ωs [t] pb[t]‖gb,s[t]‖2 + σ2

)
. (30)

2. Unify reflecting coefficients and random phase shift: In this case, we consider
introducing an RIS to be deployed in the region to assist the downlink process. However,
there is no effective management mechanism, and the components in the RIS can only
be randomly configured [49]. In this method, the amplitude reflection coefficient of all
RISs is set to 1, and the phase shifts of RISs are designed randomly according to a uniform
distribution in [0, 2π).
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3. Maximizing Receiving Power: This method seeks to maximize the received power
of the target signal at the SM by devising the RIS phase shift and reflection factor while
disregarding mutual interference between SMs, that is

P : max
{αm,n},{φm,n}

min
s

1
T

T

∑
t=1

∑
a∈Ωs [t]

pa[t]‖∑
m

hH
m,s[t]Θm[t]ha,m[t] + ga,s[t]‖2

s.t. c1 : 0 6 αm,n[t] 6 1, c2 : 0 6 φm,n[t] < 2π.

(31)

This problem has been solved with the method in [52].
Figure 6 depicts the effect of deploying various RISs in the experimental region on

the downlink transmission capacity convergence performance. The results indicate that in-
creasing the number of RISs deployed enables the system performance to converge towards
higher capacities. Nonetheless, the capacity advantage diminishes as the number of RISs
increases. In addition, the proposed A3C-based scheme has clear performance advantages
over the other three baseline schemes, with a 173% improvement in performance over the
scheme without RISs. Compared to the strategy of merely increasing the signal’s intensity
without interference suppression, the performance is increased by 64%.

Figure 6. Downlink capacity under mutual interference among SMs against the number of RISs.

It is clear that the implementation of multiple RISs will improve the downlink trans-
mission performance of the PMN system. However, the system’s channel capacity will be
limited without an effective management mechanism, resulting in a random phase shift.
A simple scheduling method, which aims to maximize the power of the target signal, can
increase the system’s upper capacity limit. However, this may cause interference with other
users, resulting in the performance curve stabilizing prematurely after reaching a certain
value. To address this, the proposed A3C-based scheme is highly effective as it minimizes
user interference and improves the quality of the received signal intended for the target.

We conducted an extensive analysis to determine how the strength of the target
signal and interference signal affect the system capacity. We specifically compared the
performance of the “Maximizing Receiving Power” case with our proposed “A3C-based”
solution, which takes interference suppression into account. The results are presented in
Figure 7. Our findings show that the system capacity changes as the AP transmit power
increases. Generally, the capacity increases with power, but if it becomes too high, the
capacity starts to decrease. This highlights the importance of optimizing the transmit power
to balance capacity and avoid negative effects. Additionally, our results demonstrate that
the proposed A3C-based scheme significantly improves the system performance compared
to the baseline scheme. It achieves an impressive 71% improvement in system performance,
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emphasizing the importance of considering interference suppression when designing a
downlink transmission scheme that caters to the PMN’s unique characteristics.

Figure 7. Downlink capacity under mutual interference among SMs against the transmission power.

It is important to note that we have only verified the proposed plan’s effectiveness.
However, there are various crucial factors to consider when it comes to actual deployment.
These include the duration from policy training to stability convergence, limitations in
equipment computing power, optimizing the targeted DNN structure, and ensuring that the
samples are complex enough during online training via interaction with the environment.
These issues require further attention and investigation.

6. Conclusions

In this paper, we present a solution to eliminate interference in the proactive mobile
network downlink process. Our proposed method effectively reduces interference and
improves the reliable capacity of the system by introducing RIS-aided technology. We
formulate an optimization problem to design the phase shifts and reflection coefficients
at multiple RISs. By using deep reinforcement learning as an A3C-based method, we
solved the optimization problem in a time-varying and complex PMN environment where
real-time channel state information is not readily available. The simulation results show
that deploying RISs significantly enhances interference suppression, and our proposed
scheme obtains greater capacity than baseline schemes. As the number of RISs increases,
the capacity approaches its maximum, demonstrating the scalability and efficacy of our
solution. These results indicate that RISs and DRL techniques can be incorporated into
PMNs to facilitate exceptionally low-latency communication and improve the overall
network performance. However, some details still need to be further studied, such as
optimizing the DNN structure in the scheme and considering computing power factors
in specific practical networks. Our follow-up work will continue to explore these areas in
more depth.
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