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Abstract: Lower limb exoskeleton robots have shown significant research value due to their capa-
bilities of providing assistance to wearers and improving physical motion functions. As a type of
robotic technology, wearable robots are directly in contact with the wearer’s limbs during operation,
necessitating a high level of human–robot collaboration to ensure safety and efficacy. Furthermore,
gait prediction for the wearer, which helps to compensate for sensor delays and provide references
for controller design, is crucial for improving the the human–robot collaboration capability. For
gait prediction, the plantar force intrinsically reflects crucial gait patterns regardless of individual
differences. To be exact, the plantar force encompasses a doubled three-axis force, which varies over
time concerning the two feet, which also reflects the gait patterns indistinctly. In this paper, we devel-
oped a transformer-based neural network (TFSformer) comprising convolution and variational mode
decomposition (VMD) to predict bilateral hip and knee joint angles utilizing the plantar pressure.
Given the distinct information contained in the temporal and the force-space dimensions of plantar
pressure, the encoder uses 1D convolution to obtain the integrated features in the two dimensions.
As for the decoder, it utilizes a multi-channel attention mechanism to simultaneously focus on both
dimensions and a deep multi-channel attention structure to reduce the computational and memory
consumption. Furthermore, VMD is applied to networks to better distinguish the trends and changes
in data. The model is trained and tested on a self-constructed dataset that consists of data from
35 volunteers. The experimental results show that FTSformer reduces the mean absolute error (MAE)
up to 10.83%, 15.04% and 8.05% and the mean squared error (MSE) by 20.40%, 29.90% and 12.60%
compared to the CNN model, the transformer model and the CNN transformer model, respectively.

Keywords: gait prediction; transformer; convolutional neural network; plantar pressure

1. Introduction

A lower limb exoskeleton robot is a kind of wearable robot. In rehabilitation therapy,
the robot is designed for patients with lower limb motor dysfunction, providing efficient
and safe assistance in their rehabilitation training [1–3]. In the manufacturing industry, it is
capable of enhancing the motor ability of wearers by reducing the energy consumption,
enabling users to perform high-intensity work with greater ease [4,5]. Due to its pivotal
role in addressing population aging and intensive industrial transformations, the field of
lower limb exoskeletons has a substantial research value. While significant progress has
been made in exoskeleton technology [6–8], the optimization of human–robot collaboration
remains a persistent challenge due to the intricate interactions between the wearers and
the exoskeletons [9]. In particular, accurately predicting wearers’ motion intentions, thus
optimizing the controlling strategy, has consistently been a critical issue and remains a
prominent area of exploration in the field of exoskeletons.
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Gait data, encompassing physical quantities such as plantar pressure, angles and
torques of the hip joint, knee joint and ankle joint, as well as biological signals like elec-
tromyography (EMG) and electroencephalography (EEG) signals, serve as the fundamental
basis for human walking pattern analyses and motion intention predictions. EMG and EEG
are capable of reflecting the motion intention with a low delay. However, the measurement
of bioelectrical signals requires electrodes to be placed close to the skin surface, which in-
evitably causes discomfort to the subject. Moreover, these signals exhibit great randomness
and a relatively low signal-to-noise ratio. Joint angles and torques are easy to measure
using absolute encoders and joint drivers installed in robots. However, physical signals
obtained by sensors often contain a certain delay and thus cause lagging control commands.

The plantar pressure is one of the most important physical signals [10]. During
walking, the hip and knee joints first flex to lift the thighs forward, bring the calves closer to
the hips and then extend the hip joint to straighten the legs. Dorsiflexion of the ankle joint
lifts the toes off the ground and helps the foot complete the swing, while plantarflexion
positions the toes on the ground, lifting the heel. Through the synergism of lower limb
joints, the body’s weight, kinetic energy and muscle force are transmitted to the plantar,
generating plantar pressure and pushing the body forward. Meanwhile, the ground exerts
counterforce on the foot, helping maintain the balance and stability of the body. Given
the close connection between plantar pressure and joint movement, collecting plantar
pressure signals to predict the human gait trajectory is an effective method that not only
compensates for the measurement lag but provides references for robot control.

When comparing statistical methods [11–13], deep learning methods demonstrate a
better feature extraction performance, especially for non-stationary series and multivari-
ate time series forecasting. The mechanism of parameter sharing grants recurrent neural
networks (RNNs) an edge in processing sequential data [14–16]. Convolutional neural
networks (CNNs) are powerful in feature extraction, especially for data with a grid struc-
ture [17–21]. Transformers completely rely on an attention mechanism to characterize the
global dependency relationship between the input and output of the model, featuring supe-
riority in capturing the long-term dependence of sequence data [22]. Due to the high mem-
ory usage and time complexity, the basic model of the transformer needs to be improved in
practical applications.

Time series can be visualized in the time domain, but mere time domain analyses
cannot accurately capture the intrinsic patterns of change in the data due to the mix of
trends, periodicity and nonlinearity. Frequency domain analysis methods, such as empirical
mode decomposition (EMD) [23] and variational mode decomposition (VMD) [24], which
decompose data according to their frequency characteristics, are commonly used in data
processing to describe data features more effectively. Compared to EMD, VMD is much
more robust to sampling and noise, thus it is often used in prediction tasks as part of data
analysis and processing.

In view of the above points, we develop a novel transformer-based neural network
named TFSformer for the precise prediction of hip and knee joint angles utilizing plantar
pressure data. There are several primary structures designed in TFSformer. (1) We construct
a 1D convolution-based encoder to extract essential information in both temporal and
force-space dimensions. (2) We design a multi-channel attention mechanism, inspired by
the multi-head attention mechanism employed in transformers. We extend the data by
one dimension and define this as the channel dimension. Then, the size of the channel
dimension is incrementally increased by a 2D convolution operation, and each sublayer
within the channel dimension serves as a single attention head. (3) The deep multi-channel
attention structure is further constructed by adding a pooling layer between two multi-
channel attention layers, which is capable of reducing the memory usage and calculation
consumption while retaining important information. In addition, the original data are
decomposed by VMD before being input into the decoder part of the model. Our main
contributions are summarized as the following:
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• We propose a gait prediction method in terms of plantar pressure data and deep
learning. The predicted joint angles are capable of compensating for the sensor delay
and serving as a reference for the controller.

• We introduce the transformer-based model, TFSformer, which effectively integrates
features from both temporal and force-space dimensions. The proposed model features
a high performance in gait prediction tasks, achieving the minimum mean absolute
errors of 0.0683, 0.0685 and 0.0677 in three tasks set in our experiment, respectively.

• We construct a dataset containing data from 35 volunteers, providing a data foundation
for network training and evaluation.

The rest of this paper is organized as follows: Section 2 presents a comparative
review of the relevant research on gait patterns for lower limb exoskeleton robots and
transformer-based networks for time series issues. Section 3 introduces the gait pattern
dataset established for the research and provides detailed principles of the theory basis.
Section 4 presents the architecture of the proposed model. Section 5 gives the details of the
experiment setup and experiment results. Finally, Section 6 summarizes the research work
and outlines future plans.

2. Related Work
2.1. Gait Analysis for Lower Limb Exoskeleton Robots

Gait analyses play a pivotal role in the field of lower limb exoskeletons with two pri-
mary objectives: providing human factor references for controller design and adjusting the
reference trajectory of the robot based on the wearer’s motion intention. Numerous studies
have been dedicated to analyzing gait in this context to further advance the development
of lower limb exoskeletons.

To address the time delay problem of sensor measurements, human gait information
and patterns are learned based on a Gaussian process model to predict joint angles [25]. The
predicted angles and predicted uncertainty indicators were set as the reference parameters
of the variable conductance controller by Chen et al. Based on the joint angle data, walking
speed and body parameters, Wu et al. established mapping relationships between the body
parameters and the gait features to generate individualized gait patterns [26]. Utilizing the
angle of hip and knee joints and plantar pressure data, Wu et al. used a graph convolutional
network model to classify the gait phase for a lower limb exoskeleton robot [27]. For
children with cerebral palsy, Kolaghassi et al. implemented four deep learning models
(LSTM, FCN, CNN and a transformer) to predict joint angles and proposed an approach
for adaptive trajectory generation based on a dataset consisting of flexion–extension angles
of the hip, knee and ankle in the sagittal plane [28]. Huang et al. attached an intelligent
inertial measurement unit (IMU) to the surface of a shoe to sample the acceleration data of
foot movements and proposed an online detection algorithm to identify the gait phase [29].
For the speed adaptation control of exoskeletons, Zhang et al. proposed a method for
walking speed learning and generalization, combining the advantages of RNNs and a
sequence-to-sequence structure [30]. In simulation and offline experiments, they used
sinusoidal signals and walking data from three subjects to evaluate the performance of
the model.

As indicated above, deep learning has become a mainstream method in gait analyses
for its superiority in handling non-linear problems. Furthermore, compared to RNNs and
CNNs, transformer-based models are relatively less used in gait analyses.

2.2. Transformer-Based Network for Time Series Issue

Sensor data are a type of time series data. Processing methods in time series issues are
able to provide a reference for handling sensor data.

Wang et al. applied a transformer model to predict stock markets [31]. The results
showed that the transformer exhibits a higher prediction accuracy than traditional deep
learning models like CNNs and RNNs. The network proposed by Chen et al. for multi-
variate time series anomaly detection uses a transformer-based architecture to model the
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temporal dependency [32]. Kim et al. proposed a prediction-based unsupervised time
series anomaly detection using a transformer [33]. The encoder, modeled by transformer
layers, accumulates the hierarchical information from the sequence model, while they uti-
lized a one-dimensional convolution operation to replace the original decoder architecture
to extract common information. The temporal fusion transformer (TFT) is a multi-scale
prediction model incorporating a static covariate encoder, a gated selection method and a
self-attention mechanism to capture short-term and long-term time correlations [34]. In
the TFT, LSTM is used for local processing and multi-head attention is used to integrate
information. Based on the Probsparse self-attention mechanism and the self-attention
distilling operation, an informer reduces the time complexity and memory usage com-
pared to a transformer [35]. An autoformer decomposes the initial data into seasonal and
trend cyclical parts using an auto-correlation mechanism to extract valid information [36].
The Fourier-enhanced block and wavelet-enhanced block in the FEDformer were used to
capture important structures in time series through frequency domain mapping [37].

The studies above demonstrate that the transformer structure is suitable for time
series problems and features a strong flexibility, which is able to be combined with other
networks. Most transformer variants retain the core characteristics, i.e., a sequence-to-
sequence structure and an attention mechanism. Similarly, in this article, we construct a
transformer-based network to predict the angles of hip and knee joints.

3. Preliminary

This section introduces the work undertaken in relation to the construction of the
dataset used in this paper firstly, then elucidates the methodologies and theoretical frame-
works that underpin our proposal, providing a thorough understanding of the conceptual
and methodological foundations upon which the proposed model is built.

3.1. Data Acquisition and Preprocessing
3.1.1. Data Acquisition

The dataset for the research consists of joint angle data and plantar pressure data
associated with the process of human walking. To establish a precise and comprehensive
dataset, we designed an experimental setup utilizing state-of-the-art equipment, including
the high-precision Nokov 3D infrared passive optical capture system in combination with
four Bertec force measurement platforms. This meticulously constructed experimental
scenario allowed us to accurately capture and analyze the desired data points, ensuring
a robust and reliable foundation for the research. Figure 1a showcases the experimental
scenario: eight infrared cameras are placed close to the wall, forming an oval shape to
surround the measurement area and four force measurement platforms are meticulously
positioned in a sequential arrangement at the center of the measurement area.

Figure 1. The layout of the experimental scenario and position of reflective markers.



Sensors 2023, 23, 6547 5 of 17

A total of 35 healthy volunteers were recruited to participate in the gait acquisition
experiments. During the data collection experiments, the subjects were instructed to
maintain their hands by their sides to avoid obstructing the markers, and they walked at
their self-perceived most comfortable speed and stride length, ensuring the natural pattern
of the collected gait data. The reflective markers, which were captured by infrared cameras,
were affixed to the hip joints, knee joints and ankle joints of subjects. Figure 1b depicts the
marker placements which were meticulously arranged to accurately capture the kinematic
data for the gait analysis.

3.1.2. Data Preprocessing

The raw data obtained from the experimental equipment inevitably exhibit certain
limitations or imperfections. Thus, the raw data were further preprocessed with the
following principles to ensure the integrity and accuracy of the dataset:

• For data with small portions missing, typically not exceeding five samples, cubic
spline interpolation was applied to fill the data and ensure data continuity.

• For the data with severely missing values or excessive noise, all data were deleted to
ensure the availability of reliable data.

• To further reduce the noise and enhance the quality of the data, a filtering operation
with a cut-off frequency of 60 Hz was applied.

These procedures were rigorously implemented to ensure that the dataset obtained
for this research was of the utmost quality, ensuring the integrity and accuracy of the
research findings.

Figure 2 displays the bilateral plantar pressure curves and corresponding walking
posture. During walking, the feet alternately touch the ground and the body’s gravity shifts
from one lower limb to the other, the plantar force changing with the gravity change.

Figure 2. Plantar pressure.

The data collected by the motion capture device are joint coordinate data, while joint
angle data are more applicable in the design of controllers. Therefore, the joint angle data
were further calculated using the inverse dynamics kinematic principle. As shown in
Figure 3, the lower limb can be simplified to a two-link model. The hip angle and the knee
angle were set to q1, and q2, respectively. The coordinate data of hip, knee and ankle joints
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were set to (xh, zh), (xk, zk) and (xa, za), respectively. The specific calculation is as denoted
in Equation (1):

q1 = atan(
xk − xh
zh − zk

),

q2 = q1 − atan(
xa − xk
zk − za

).
(1)

Figure 3. Two-link model.

Assume that the current moment is t0 andthe plantar pressure and joint angles are
denoted as Ft0 and Qt0 , respectively (Equation (2)), where f 1t0

x , f 1t0
y , f 1t0

z represent the
plantar pressure of left foot on the x, y and z axes, and f 2t0

x , f 2t0
y , f 2t0

z represent the right.
qt0

1 , qt0
2 , qt0

3 , qt0
4 denote the joint angles of the left hip joint, left knee joint, right hip joint

and right knee joint. In each prediction, the plantar pressure during the previous n sam-
pling time was used to predict the joint angles during the next k sampling time. Namely,
[Qt0 , · · · , Qtk ] was predicted based on [Ft−n , Ft−n+1 , · · · , Ft−2 , Ft−1 ]. For the training of the
model, [Qt0 , · · · , Qtk ] is the target and [Ft−n , Ft−n+1 , · · · , Ft−2 , Ft−1 ] are the input data. There-
fore, we further divide data via the moving window approach. The details are presented in
Figure 4.

Ft0 = [ f 1t0
x , f 1t0

y , f 1t0
z , f 2t0

x , f 2t0
y , f 2t0

z ]
T

Qt0 = [qt0
1 , qt0

2 , qt0
3 , qt0

4 ]
T .

(2)

Figure 4. Moving-window-based data division.

3.2. Variational Mode Decomposition

Decomposing data according to frequency domain characters is capable of distinctly
distinguishing the trend, periodicity and noise that are mixed in the time domain. In the
process of obtaining the decomposed components, VMD determines the frequency center
and bandwidth of each component by iteratively searching for the optimal solution of
the variational model, which enables us to segment the frequency domain of the signal
adaptively and separates each component effectively.
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VMD decomposes the input signal S into K intrinsic node functions Uk(t), k ∈ [1, K].
The constrained variational problem is described in Equation (3):

min
{Uk},{ωk}

∑k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗Uk(t)

]
e−jωkt

∥∥∥2

2

s.t ∑k Uk = S.
(3)

The constraint means that the sum of all modes is equal to the original signal. The
symbol ∂(t) denotes the partial derivative operation on time. δ(t) refers to the Dirac
distribution. Uk and ωk denote the set of all modes and the set of central frequencies
corresponding to these modes. To solve the constrained variational problem, a quadratic
penalty term and Lagrange multipliers are introduced to transform the problem into an
unconstrained problem in VMD (Equation (4)).

L({Uk}, {ωk}, λ) = α ∑k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗Uk(t)

]
e−jωkt

∥∥∥2

2
+
∥∥∥S(t)−∑K

k=1 Uk(t)
∥∥∥

+
〈

λ(t), S(t)−∑K
k=1 Uk(t)

〉
,

(4)

where α is the penalty parameter and λ is the Lagrangian multiplier. Uk(t), ωk and λ are
updated by the Altering Direction Multiplier Method (Equation (5)).

Ûn+1
k (ω) =

Ŝ(ω)−∑i 6=k Ûi(ω)+ λ̂(ω)
2

1+2α(ω−ωk)
2 ,

ωn+1
k =

∫ ∞
0 ω|Ûk(ω)|2dω∫ ∞

0 |Ûk(ω)|2dω
,

λ̂n+1(ω) = λ̂n(ω) + τ
(

Ŝ(ω)−∑k Ûn+1
k (ω)

)
,

(5)

where Ûn+1
k (ω), Ŝ(ω), Ûi(ω), λ̂n+1(ω), Ŝ(ω) are the Fourier transforms of the correspond-

ing components. n represents the number of iterations in the solution process. Based on
the above solution formula, the decomposed modes are obtained.

3.3. Basic Transformer Architecture

The transformer adopts three foundational components: positional encoding, a multi-
head attention mechanism and a feed-forward network. The three modules endow the
transformer with a strong feature processing ability for sequence tasks and provide the
backbone of our model.

3.3.1. Multi-Head Attention Mechanism

The attention mechanism is the core component of a transformer. Self-attention
captures information about the whole segment of data and learns correlations between
different parts. The self-attention mechanism used in the transformer is Scaled Dot-Product
Attention. The computation equation is set as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

where Q, K and V are obtained by a linear operation based on the same input.
In order to learn deeper and more diverse features, multi-head self-attention is applied

in the transformer.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO,

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
,

(7)

where h is the number of attention heads and i ∈ (1, h). Wi
Q, Wi

K, Wi
V and WO can be

regarded as the weight matrices of the linear operation.
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3.3.2. Feed-Forward Network

The feed-forward network comprises two fully connected layers followed by an
activation layer. It is defined in Equation (8):

FFN(x) = max(0, xW1 + b1)W2 + b2 (8)

where W1, W2 and b1, b2 denote the weight matrices and bias of linear operation, respec-
tively. max(0, ·) refers to the ReLU function. A feed-forward module further integrates the
features and enhances the nonlinearity of the network.

3.3.3. Positional Encoding

To handle the problem that the chronological information will be weakened by parallel
input operations, the transformer proposes a position encoding method using the properties
of sine and cosine functions to retain relative and absolute position information about the
input data (Equation (9)).

PE(pos,2i) = sin
(

pos/100002i/dmodel
)

,

PE(pos ,2i+1) = cos
(

pos/100002i/dmodel
)

.
(9)

For plantar force data, pos indicates the moment that data are located in temporal
dimension, and i means the position of features encoded at each moment. dmodel denotes
the size of the force-space dimension. This method guarantees the uniqueness of each
location code value, the consistency of the distance between adjacent location code values
and the adaptability to the length of the data.

3.4. Convolutional Neural Networks

A CNN is a kind of feed-forward neural network with a deep structure. The con-
volution operation is the core part of a CNN, which denotes performing inner product
operations on local input data and filters. After calculating the local input data within a
data window, the data window shifts and slides along the given direction and stride until
all data are calculated. The direction and dimensionality of the convolutional operation
affect the data features learned by the convolutional layers.

4. The Gait Prediction Model

Based on the idea that learning characters form different dimensions of data and ex-
ploring the relationship in different dimensions are two effective ways of extracting valid
information, and combining the advantages of the methods introduced in Section 3, we
propose the gait prediction model (TFSformer) to integrate the information in plantar pres-
sure data and predict joint angles. As Figure 5 illustrates, the model adjusts the transformer
architecture while retaining the “sequence-to-sequence” structure. For the encoder part,
the input data are plantar pressure data with positional encoding, and 1D convolution
is utilized to construct this part. For the decoder part, the data decomposed by VMD
are applied as the input. To merge the information in different dimensions, we propose
multi-channel attention and a deep-multi-channel attention structure based on a multi-head
self-attention mechanism. The details of the model are described as follows.

4.1. One-Dimensional Convolution-Based Encoder

The force data involve two dimensions: the temporal and force-space dimensions.
To uncover both the temporal features and the relationships between forces in different
axes, 1D convolution operations are applied in different directions concerning both dimen-
sions of the data, which allows the network to learn features from different perspectives.
By utilizing this approach, we are able to extract the most relevant and informative features
from the force data, which are then used for further analysis.
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Figure 5. Architecture of the gait prediction model.

As shown in Figure 6, the inputs of the encoder part are the raw data with positional
encoding. Convolution operations are performed along the temporal dimension first and
then along the force-space dimension, expanding the data dimensions while learning fea-
tures from different dimensions. Specifically, the kernel sizes of the convolution layers in
T_Conv1D and F_Conv1D are all set to 3, and the stride and padding are set as 1. Further-
more, as described in Figure 5, residual connections around T_Conv1d and F_Conv1d are
employed. Convolutional layers with both the kernel size and stride set to 1 are utilized
to adjust the dimension size. In addition, to tune the data distribution and accelerate the
convergence speed, we employ a batch normalization layer after the active layers.

Figure 6. Convolutional diagram of the encoder module. C1 represents the one-dimensional convo-
lutional operation performed along the temporal dimension and C2 denotes the one-dimensional
convolutional operation performed along the force-space dimension. [t, t1, t2, t3] and [ f , f1, f2, f3]

represent the lengths of the temporal and force-space dimensions, respectively. In our research, t, t1,
t2 and t3 are set as 32, 64, 128 and 256, respectively, and f , f1, f2 and f3 are designed as 6, 36, 108 and
256 in turn.

4.2. Multi-Channel Attention-Based Decoder

The original data are decomposed by VMD before being input into the decoder. For
plantar pressure data decomposition, k in Section 3.2 is set as 3. As Figure 7 shows, the high
frequency decomposed mode (third component) displays the rapidly changing part of
the original data. The other decomposed modes (first and second component) review the
overall trends of the original data.
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Figure 7. Decomposed modes.

In contrast to the structure of the encoder, the decoder is designed based on an attention
mechanism. The first linear layer in the decoder is utilized to expand the width and length
of the input data. Then, multi-head self-attention, mentioned in Section 3.3.1, is used to
learn the relationships between different parts of the data in the temporal dimension. To
further extract features from the two dimensions simultaneously, multi-channel attention
and a deep multi-channel attention structure are designed. In addition, the feed-forward
layers introduced in Section 3.3.2 are employed to enhance the nonlinearity of the model
and tune the weight of data.

4.2.1. Multi-Channel Attention

In multi-head attention, the matrices Q, K and V are obtained by the linear operation
performed on the last dimension of the input. The linear layers are capable of remapping
and weighting local features of the data, while being relatively weaker at extracting features
compared to the convolutional layers. In contrast to 1D convolution, 2D convolution
learns information in two dimensions at the same time, which matches the purpose of
exploring the relationship between the temporal and force-space dimensions. However,
the dimensionality of time series limits the application of 2D convolution.

In view of these two problems, we propose multi-channel attention. As shown in
Equation (10), the data are extended by one dimension first. The extended dimension is
defined as the channel. Then, 2D convolution is utilized to learn deep, varied informa-
tion from the temporal and force-space dimensions of the data. The size of the channel
dimension is incrementally increased by the convolution operation. Each sublayer in the
channel dimension is considered as a single attention head. Multi-channel attention not
only enhances the nonlinearity of the model but facilitates feature fusion and extraction in
both dimensions.

Qc = Conv2d(Q.unsqueeze(1))
Kc = Conv2d(K.unsqueeze(1))
Vc = Conv2d(V.unsqueeze(1))

MultiChannel(Qc, Kc, Vc) = softmax
(

QcKT
c√

dk

)
Vc

(10)

4.2.2. Deep Multi-Channel Attention Structure

Inspired by the classical architecture of a CNN, we applied deep multi-channel atten-
tion, which increases the channel number while distilling the information in the temporal
and variable dimensions. As shown in Figure 8b, a pooling layer is added between two
multi-channel attention layers. Pooling layers integrate the features in a small adjacent
area, preventing useless parameters from increasing the time complexity on the one hand,
and enhancing the integration of features on the other [38].
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Figure 8. Multi-channel attention.

The specific parameter settings for the decoder module are as follows: (1) the linear
layers map the decomposed data dimension to (32, 256, 256), which is the same as the
output of the encoder. (2) The four multi-channel attention blocks deepen the channels in
turn to 8, 16, 32 and 64 through 2D convolutional layers. The kernel sizes of these layers
are all set to (3, 3), the stride is set to (1, 1) and padding is denoted as 1. (3) The pooling
operation we employed is Maxpooling. The kernel size of the pooling layer is denoted as
(2, 2), and the stride is set to 2. (4) The output dimensionality of the feed-forward network
is the same as the input’s and the dimensionalities of the inner layer are 1024 and 256,
respectively.

5. Experiment and Results
5.1. Experimental Setup

In this section, we present the experimental setup which is fundamental to the experi-
mental design and methodology, including the experimental strategies, dataset partition
and hyperparameter settings.

5.1.1. Experimental Strategies

In order to verify the performance of TFSformer, we conducted two experiments:
single-step prediction and multi-step prediction. To highlight the superiority of the pro-
posed TFSformer, we made comparisons with three representative neural networks: a
CNN, a transformer, and a CNN transformer. The architecture of the comparison models is
detailed as follows:

• CNN model: The CNN model is constructed by removing the decoder modules from
the proposed TFSformer. Furthermore, the output of the CNN is structured by two
linear layers.

• Transformer model: The transformer network for the comparison experiment is de-
rived from the initial transformer architecture developed for a natural language
processing (NLP) task in [22]. In contrast to the NLP task, the dimensions of the inputs
in our research are fixed. Furthermore, the padding is unnecessary in the experiments.
Thus, the primary transformer in [22] is adjusted by excluding the padding mask
mechanism. Furthermore, all the information in the inputs is visible at each moment
rather than partly invisible as it is in NLP tasks. Thus, the attention-mask mechanism
is not employed as well.
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• CNN transformer model: The network is constructed on the basis of the transformer
network above by replacing the encoder module with a convolutional operation,
which is the same as the encoder structure in our proposal. This is to demonstrate the
efficiency of the decoder mechanism in TFSformer.

5.1.2. Dataset Partition

Experiments were conducted based on the dataset introduced in Section 3.1. Three
volunteers’ data were randomly selected from the dataset as the test set. The data of the
remaining 32 people were divided into the training set and the validation set in the ratio of
8:2, respectively.

For the single-step prediction experiment, the parameters n and k mentioned in
Figure 4 were set to 32 and 1, respectively. For the multi-step prediction experiment, we
specified two subtasks, namely n = 32, k = 3 and n = 32, k = 6. The data capacities for
the training, validation and test sets are displayed in Table 1.

Table 1. Experimental data capacity.

Single-Step
Prediction

(k = 1)

Multi-Step
Prediction

(k = 3)

Multi-Step
Prediction

(k = 6)

Training set 40,864 40,234 39,289
Validation set 8392 8362 8167

Test set 6150 6058 5920

5.1.3. Hyperparameter Settings

To ensure the validity of the comparison experiment, we set the same hyperparameters
in all experiments. The batch size was set as 32. The initial learning rate was set to 0.0001
and the optimizer we used was AdamW. The loss we used in the training was the mean
absolute error (MAE). In addition, both the mean squared error (MSE) and the MAE were
set as evaluation indicators (Equation (11)).

MSE =
1

4n

n

∑
i=1

(
Qi − Q̂i

)2,

MAE =
1

4n

n

∑
i=1

∣∣Qi − Q̂i
∣∣. (11)

5.2. Experimental Results

Table 2 displays the experimental results of all models. The best results of each
experiment are highlighted in bold. Based on an analysis of the data, the following
observations are derived: (1) In the single-step prediction task, the mean MSE of TFSformer
decreases by 10.83%, 15.04% and 4.74% and the mean MAE decreases by 20.40%, 29.09%
and 10.43% compared with the CNN, transformer, and CNN transformer, respectively. (2)
In the multi-step prediction task with k = 3, TFSformer achieves the lowest MAE. On the
other hand, the MSE of TFSformer outperforms that of the CNN and CNN transformer,
while it is 5.06% higher than the transformer. (3) In the case of k = 6, TFSformer yields
higher than 5.47% MAE and 4.00% MSE reductions compared with the other models.

Further conclusions are drawn as follows:

• The transformer model exhibited an inferior performance in single-step prediction,
while the CNN model demonstrated a weaker prediction ability compared to the
other three models in multi-step prediction tasks. These results suggest that each
individual approach, either a convolutional operation or an attention mechanism, has
limitations. Furthermore, combining the strengths of both approaches contributes to
obvious improvements in the network’s ability to capture temporal features.
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• The phenomenon that TFSformer outperforms the CNN transformer in all tasks fully
demonstrates the superiority of the multi-channel attention-based decoder mechanism
in our proposal.

Table 2. Experimental results.

Models TFSformer CNN Transformer CNN-Transformer

Metric MAE MSE MAE MSE MAE MSE MAE MSE

Task1

Hl 0.0525 0.0035 0.0645 0.0070 0.0667 0.0065 0.0590 0.0063
Hr 0.0479 0.0043 0.0614 0.0066 0.0664 0.0070 0.0579 0.0062
Kl 0.0725 0.0085 0.0818 0.0112 0.1053 0.0196 0.0743 0.0089
Kr 0.1004 0.0148 0.0989 0.0146 0.0831 0.0108 0.0956 0.0135
M 0.0683 0.0078 0.0766 0.0098 0.0804 0.0110 0.0717 0.0087

Task2

Hl 0.0487 0.0038 0.0602 0.0060 0.0542 0.0046 0.0581 0.0061
Hr 0.0523 0.0043 0.0598 0.0061 0.0506 0.0040 0.0617 0.0071
Kl 0.0805 0.0112 0.0833 0.0120 0.0873 0.0127 0.0777 0.0101
Kr 0.0925 0.0137 0.0989 0.0150 0.0829 0.0103 0.1005 0.0149
M 0.0685 0.0083 0.0756 0.0098 0.0689 0.0079 0.0745 0.0095

Task3

Hl 0.0449 0.0048 0.0549 0.0050 0.0520 0.0043 0.0522 0.0050
Hr 0.0559 0.0032 0.0643 0.0067 0.0543 0.0044 0.0574 0.0060
Kl 0.0841 0.0113 0.0721 0.0088 0.0801 0.0108 0.0790 0.0109
Kr 0.0858 0.0106 0.1075 0.0175 0.0889 0.0119 0.0979 0.1412
M 0.0677 0.0075 0.0747 0.0095 0.0688 0.0078 0.0716 0.0090

Task1, Task2 and Task3 represent the single-step prediction task (k = 1), multi-step prediction task (k = 3) and
multi-step prediction task (k = 6) in turn. Hl , Hr , Kl , Kr and M represent the left hip joint, right hip joint, left
knee joint, right knee joint and average value, respectively. The values in bold denote the best results of each
experiment.

In conclusion, TFSformer has a superior predictive ability, particularly for hip motion
prediction, and though the MES and MAS are slightly larger in knee joint prediction,
the errors are within acceptable limits. Additionally, the prediction errors of knee joints
are slightly higher than hip joints due to the significant personal difference in knee joint
movements during walking.

Taking into account differences in gait due to physical metrics and individual habits,
we took data from about one gait period from the results obtained based on the data
of three subjects in the single-step prediction task to further compare and analyze the
performance of different models. The basic information of the subjects is shown in Table 3,
and the prediction results of subject 1, subject 2 and subject 3 are displayed in Figures 9–11.
Subgraphs (a)–(d) demonstrate the results of the right hip joint, left hip joint, right knee
joint and left knee joint, respectively. From the figures, it is noticeable that:

• TFSformer (the orange line) is capable of capturing the change in joint angles around
poles well, while the errors of the CNN (the green line) and the transformer (the red
line) are slightly larger.

• In Figures 9a,b and 10, apparent oscillations are observed in the prediction values of
the CNN transformer (the purple line).

• During the interval within the gentle angle change, the prediction value of TFSformer
is relatively smooth and in line with the true changing trends.

According to the analysis above, the proposed model TFSformer exhibits the best
comprehensive performance. Except for the transformer model in the multi-step prediction
task when k = 3, TFSformer achieves the highest average accuracy in all prediction tasks.
Even for multi-step prediction tasks when k = 3, TFSformer obtains the lowest MAE. More
importantly, TFSfomer demonstrates a strong robustness and stability, predicting the gait
trajectory of different people with small errors regardless of individual gait diversity.
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(a) Right hip joint (b) Left hip joint

(c) Right knee joint (d) Left knee joint

Figure 9. Gait prediction results on the data of subject 1.

(a) Right hip joint (b) Left hip joint

(c) Right knee joint (d) Left knee joint

Figure 10. Gait prediction results on the data of subject 2.
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(a) Right hip joint (b) Left hip joint

(c) Right knee joint (d) Left knee joint

Figure 11. Gait prediction results on the data of subject 3.

Table 3. Basic information of subjects.

Height
(cm)

Weight
(kg)

Thigh Length
(cm)

Shank Length
(cm)

Gender Age

Subject 1 178.0 68.3 40.2 40.3 male 27
Subject 2 164.1 58.2 36.5 36.2 female 24
Subject 3 176.3 74.5 38.9 40.1 male 26

6. Conclusions

In this paper, we propose a transformer-based model, TFSformer, to predict bilateral
hip joint and knee joint angles through the plantar pressure. Specifically, we design a 1D
convolution-based encoder to learn features in different dimensions and use multi-channel
attention to extract characteristics from temporal and force-space dimensions simultane-
ously. Furthermore, a deep multi-channel attention structure is employed to reduce the
memory and computing consumption. In addition, VMD is utilized to discompose the data
while retaining the original information to distinguish trends and variations in the data.
Finally, to verify the performance of the proposed method, we built a gait capture platform
and constructed a gait dataset with data from 35 volunteers. Based on this gait dataset, we
conducted comparative experiments. Although FTSformer does not achieve the optimal
performance with overwhelming superiority in all tasks, the results show that FTSformer
exhibits the strongest comprehensive performance, not only predicting joint angles accu-
rately in both multi-step prediction and single-step prediction tasks, but featuring a high
robustness regardless of gait diversity. In practical applications, the proposal is capable of
compensating for sensor delays and providing references for controllers, thus improving
collaboration between humans and robots. In the future, we plan to further optimize the
model and work on integrating the gait prediction model with controller design to further
confirm its validity.
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