
Citation: Yang, R.; Chen, Z.; Wang,

B.; Guo, Y.; Hu, L. A Lightweight

Detection Method for Remote

Sensing Images and Its

Energy-Efficient Accelerator on Edge

Devices. Sensors 2023, 23, 6497.

https://doi.org/10.3390/s23146497

Academic Editors: Zhongkai Feng,

Shiping Wen and Cihui Yang

Received: 30 May 2023

Revised: 4 July 2023

Accepted: 12 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Lightweight Detection Method for Remote Sensing Images
and Its Energy-Efficient Accelerator on Edge Devices
Ruiheng Yang, Zhikun Chen * , Bin’an Wang, Yunfei Guo and Lingtong Hu

School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China;
212060164@hdu.edu.cn (R.Y.); 211060043@hdu.edu.cn (B.W.); gyf@hdu.edu.cn (Y.G.);
222060235@hdu.edu.cn (L.H.)
* Correspondence: czk@hdu.edu.cn; Tel.: +86-135-0681-2566

Abstract: Convolutional neural networks (CNNs) have been extensively employed in remote sensing
image detection and have exhibited impressive performance over the past few years. However,
the abovementioned networks are generally limited by their complex structures, which make them
difficult to deploy with power-sensitive and resource-constrained remote sensing edge devices. To
tackle this problem, this study proposes a lightweight remote sensing detection network suitable
for edge devices and an energy-efficient CNN accelerator based on field-programmable gate arrays
(FPGAs). First, a series of network weight reduction and optimization methods are proposed to
reduce the size of the network and the difficulty of hardware deployment. Second, a high-energy-
efficiency CNN accelerator is developed. The accelerator employs a reconfigurable and efficient
convolutional processing engine to perform CNN computations, and hardware optimization was
performed for the proposed network structure. The experimental results obtained with the Xilinx
ZYNQ Z7020 show that the network achieved higher accuracy with a smaller size, and the CNN
accelerator for the proposed network exhibited a throughput of 29.53 GOPS and power consumption
of only 2.98 W while consuming only 113 DSPs. In comparison with relevant work, DSP efficiency at
an identical level of energy consumption was increased by 1.1–2.5 times, confirming the superiority
of the proposed solution and its potential for deployment with remote sensing edge devices.

Keywords: remote sensing; lightweight neural network; CNN accelerator; field-programmable gate
arrays (FPGAs)

1. Introduction

The use of object detection technology with remote sensing images is aimed at obtain-
ing a specified region of interest from an image based on a specific algorithm to determine
its location and category. The early target detection algorithms for remote sensing images
employed artificial design features, but they could not capture abstract semantic features
effectively. Thanks to the development of deep learning and computer vision over the past
few years, numerous high-precision object detection models based on convolutional neural
networks (CNNs) have been proposed for remote sensing image processing, which has no-
tably improved the efficiency of feature extraction from remote sensing images, and object
detection from remote sensing images based on deep learning has also developed rapidly.
It has been extensively employed in ship detection [1–3], meteorological environment
detection [4,5], husbandry monitoring [6,7], road extraction [8–10], and other fields.

Conventional image processing algorithms should transmit remote sensing images
back to the ground station server for centralized processing [11]. This processing method is
significantly limited by the computing power of the ground station server and the commu-
nication delay between the remote sensing platform and the ground station and cannot keep
up with the speed of remote sensing image acquisition, resulting in considerable amounts
of image data being idle or even discarded and a serious waste of resources [12]. Edge
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computing can be adopted to address the inherent delay problem in centralized processing
methods: the processing of remote sensing image data can be pushed from the ground
station server to the remote sensing edge device, and image processing algorithms can be
applied close to the data source to avoid the computing power bottlenecking arising from
transmission delay. Edge computing has the advantages of low latency, high feasibility, and
good real-time performance. Accordingly, remote sensing image processing algorithms
with high-computational consumption characteristics are more suitable for migration to
edge devices. Detection algorithms for remote sensing edge devices have been actively
researched recently [13–16].

As CNNs have been continuously advancing, the increasing number of network layers
has enhanced the network feature extraction ability, and the number of parameters and
the size of the model have been also increased. Many researchers have investigated how
to reduce the parameters and calculations of CNN algorithms. One method is to design a
lightweight structure for the network (e.g., ShuffleNet [17] and MobileNet [18]), and vari-
ous researches have also made improvements based on these lightweight networks [19,20].
Zhao et al. [19] replaced the backbone of YOLOv4 with ShuffleNetv2. Saiful Bahri et al. [20]
replaced the backbone of the SSD network with MobileNetv2. Both achieved high accuracy
with a smaller size. However, the above-mentioned networks require additional hardware
optimization if they are to be deployed in edge devices because the depth-wise separable
convolution they adopt causes a large number of memory access events in the edge de-
vice hardware, resulting in problems such as high energy consumption and low energy
efficiency. Another effective method refers to pruning the models [21,22]. Gale et al. [21]
proposed a sparse optimization strategy with ImageNet and well reduced the number
of parameters. Jorge et al. [22] removed nearly 99.5% of parameters while keeping the
networks trainable. However, the above-described methods significantly affect the accuracy
of CNN models, and they may not even conform to the needs of practical applications
involving edge devices.

Thus, how networks can be lightweight and deployed with edge hardware platforms
while ensuring high precision has become a new challenge [23]. To tackle this problem,
some researchers have designed lightweight network architectures suitable for edge de-
vices [24,25]. Ma et al. [24] proposed a lightweight detector for remote sensing images.
Fu et al. [25] proposed a fast detection model for UAV edge devices and achieved high
accuracy. However, these lightweight methods often only meet the availability require-
ments of edge device processing but cannot guarantee real-time detection performance.
Accordingly, the acceleration of network inference is necessary.

Common high-performance acceleration platforms include graphics processing units
(GPUs), central processing units (CPUs), and so forth. However, these devices are dif-
ficult to deploy in embedded edge devices due to their high power consumption, and
thus field-programmable gate arrays (FPGAs), and application-specific integrated circuits
(ASICs) with low power consumption have been widely employed to enhance computing
performance. The ASIC is characterized by a high degree of customization, high R&D
costs, and a long R&D cycle, and thus it cannot be applied to object detection, where the
model is constantly changing [26]. FPGAs include considerable programmable logic units
while exhibiting a static global reconfiguration, the ability for pipeline parallel comput-
ing, and high energy efficiency, allowing them to be applied to the object detection field
where the algorithm model is changing rapidly and must conform to the energy efficiency
requirements of edge devices [27].

However, existing FPGA accelerators tend to trade area for performance, i.e., exploit-
ing more hardware resources to obtain higher computing throughput, whereas energy
efficiency is rarely increased. For instance, Zhang et al. [28] proposed a high-performance
accelerator for deep convolution neural networks, consuming 2833 DSPs and achieving
a power consumption of 26 W. Li et al. [29] proposed an efficient remote sensing images
detection framework and its high-throughput accelerator based on the FPGA, and a power
of 19.52 W and 1152 DSPs were consumed. Such hardware resource consumption is unac-
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ceptable on remote sensing edge devices with strict power limits. Thus, an energy-efficient
CNN accelerator with less hardware resource consumption should be urgently developed.
In addition, existing research on FPGA accelerators has only deployed the target detection
network at the hardware level, whereas the necessity of lightweight algorithms has been
ignored [30,31]. Sledevič et al. [30] proposed a CNN core architecture for VGG networks.
Hareth et al. [31] proposed a 2D PE array to accelerate convolutional operations in AlexNet.
To conform to the deployment requirements of these networks, researchers have to use
more hardware resources, which also means higher power consumption. Therefore, if the
accelerator can be co-optimized at the software and hardware levels, a higher throughput
may be achieved with lower power consumption.

Following the above discussion, a lightweight remote sensing image detection model
and its high-efficiency hardware acceleration solution are proposed. The overall contribu-
tions are summarized as follows:

• Based on YOLOv3, several network lightweight methods are proposed:
• Using lightweight GhostNet as a feature extraction network.
• Compressing the model by channel pruning and restoring the precision by knowledge

distillation.
• Performing fixed-point quantization of parameters to reduce the difficulty of network

hardware deployment.
• An energy-efficient CNN accelerator is designed based on the lightweight methods:
• According to the characteristics of the optimized network, different convolutional

computation engines for different modules are designed to increase the efficiency of
computing resources.

• The SE attention mechanism in the network in hardware friendly aspects is optimized
to expedite the network inference.

• For data storage optimization, a dual cache mechanism and convenient memory access
storage method are adopted to reduce memory access overhead.

The rest of this study is organized as follows. In Section 2, the specific principles
and methods of the solution are introduced, including network lightweight and CNN
accelerator design. In Section 3, the experimental results and performance evaluation
are presented. In Section 4, the innovation and limitations of this solution, as well as its
possible applications and implications are discussed. In Section 5, a conclusion of this study
is drawn.

2. Materials and Methods
2.1. Improved Lightweight Ghost-YOLOS Network
2.1.1. Network Structure

The YOLO (You Only Look Once) algorithm solves object detection as a regression
problem [32]. This algorithm conforms to the main principle of outputting the class
probability, location, bounding box, and other information of the respective object in
the input images using an independent end-to-end network. The YOLOv3 inherits the
advantages of a fast detection speed, high-detection accuracy and strong generalization
ability of the previous two generations of the YOLO network, while adding three object
detection scales that are capable of detecting large-scale objects, medium-scale objects and
small-scale objects [33]. Nevertheless, the parameters amount of YOLOv3 is excessively
large, and the model occupies excessive resources, such that it is difficult to transplant
to edge devices for real-time data processing. The original YOLOv3 model structure is
improved to reduce the complexity of the model and parameters.

The original YOLOv3 network comprises two parts, i.e., backbone and YOLO head.
In this study, the GhostNet network structure is employed, and the Darknet-53 backbone
feature extraction network in YOLOv3 is replaced with it. Figure 1 presents the optimized
network structure.
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Figure 1. Improved Ghost-YOLO network structure. SE module means Squeeze and Excitation mod-
ule, which is only present in the GBN structures at layers 4, 5, 10, 11, 12, 14 and 16 in GhostBottleNeck.
Dw Conv module means depthwise separable convolution.

GhostNet network structure is proposed by Han et al. [34]. The main improvement con-
forms to Ghost module, which can make the whole network of the amount of computation
and the number of parameters notably reduced without changing the convolutional output
feature map size and channel size. The comparison between conventional convolution and
Ghost module is shown in Figure 2.
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If the input feature diagram is expressed as H×W ×C, then the output is H′ ×W ′ ×M;
the input is divided into n layers, the size of the convolution kernel is k× k, then the calcu-
lation amount of common convolution and Ghost convolution is shown in Equations (1)
and (2). From the calculation of the Ghost module, it can be found that, through the mod-
ule, replacing the common convolution can effectively reduce the network computational
complexity. Moreover, the GhostNet network also introduces an SE attention mechanism
module into its GhostBottleNeck module structure, which tends to increase the specificity
and utilization of features.

CALCcommon_conv = H′ ×W ′ ×M× k× k× C (1)

CALCghost_conv = H′ ×W ′ × M
n
× k× k× C + (n− 1)× H′ ×W ′ × M

n
× k× k (2)

Although the number of parameters of the YOLOv3 g network structure is significantly
less than that of the original network, it is still difficult to deploy in low-cost embedded
devices. Accordingly, the overall network structure should be compressed to reduce the
resources and memory occupied by it.

2.1.2. Model Pruning

To compress the size of the model, this study first prunes the Ghost-YOLO network.
The channel pruning method, based on the BN layer, is adopted for network model prun-
ing [35]. Figure 3 presents the pruning method. The network model is modified by
constantly adjusting the compression ratio of channel pruning. Moreover, the spatial com-
plexity of the cropped model and the requirements of edge device hardware deployment
are reduced.
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2.1.3. Knowledge Distillation

Channel pruning will cause some loss to the accuracy of model inference prediction.
Thus, the knowledge distillation method is employed in the precision restoration and fine-
tuning of the trimmed Ghost-YOLOP network. The pruned model, Ghost-YOLOP, serves as
the student model, and the unpruned model, Ghost-YOLO, is adopted as the teacher model.
For the classification loss of Ghost-YOLO, the knowledge distillation method employed by
Hinton [36] for classification is adopted. For the loss of bounded regression, Chen’s [37]
regression loss method for Faster RCNN is used. The process is presented in Figure 4.
Compared with the conventional knowledge distillation method [36], the calculation of
the loss function of the improved knowledge distillation method should calculate the
classification loss, the regression loss, as well as the intermediate layer loss.
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2.1.4. Network Quantization

The model obtained by channel pruning and knowledge distillation employs 32-
bit floating-point data. Compared with complex floating-point arithmetic, fixed-point
arithmetic in the FPGA and other devices, this new model exhibits the advantages of less
hardware resource consumption (e.g., DSP and LUT), a higher working frequency and fast
arithmetic speed, such that the floating-point data of the model should be converted into
fixed-point data. Moreover, the research shows that [38,39] a 16-bit fixed-point quantization
for the convolutional neural network model is capable of accelerating the model while
maintaining good recognition accuracy. Thus, in this study, dynamic fixed-point 16-bit
quantization [40] is adopted to quantify the weight and bias parameters of the model,
input and output feature graphs and intermediate results, with the aim of reducing the bit
width of data and the amount of computation and data transmission. The above-described
method primarily seeks the optimal exponent-marker through traversal, as expressed
in Equation (3).

expQ = argmin
n

∑
i=0

∣∣∣Qi
f loat −Qi

(bw,expw)

∣∣∣ (3)

where expQ denotes the exponent-marker with the least loss of precision after quantization,
n represents the amount of data that should be quantified, Qi

f loat expresses the original

floating-point value of the i− th number, Qi
(bw,expw)

denotes the i− th number under bit
width bw and exponent-marker expw, which is quantized to a fixed-point number first, and
then converted back to a new floating-point value.

2.2. FPGA-Based Hardware Accelerator

In this section, the proposed FPGA-based hardware accelerator is elucidated, whose
block scheme is shown in Figure 5. The system comprises three parts, i.e., Double Data
Rate (DDR) Synchronous Dynamic Random Access Memory (SDRAM), Processing System
(PS) and Programmable Logic (PL).
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Figure 5. CNN accelerator architecture. The main part comprises buffer, processing engines, post-
processing module and output module. The buffer section adopts dual cache design. The accelerator
operates in a modular sequence in most cases. The symbols “H, W” mean the height and weight, the
symbols “Ci, Co” mean the number of input and output channels, and the number of channels, and
the symbol “K” means the size of convolution kernel.

Despite the lightweight processing of neural networks, the memory footprint of the
network (approximately 16 Mbit) is still much larger than that of low-cost FPGA’s available
on-chip memory (less than 1 Mbit). Accordingly, we use DDR to store the feature maps
and weights in the network inference process.

The PS part controls the whole accelerator of the PL part by transmitting instructions
through the data interface module, such as controlling the enable of each module to execute
the streaming operation in the network model. Moreover, BRAM receives the optimal
weight data after training on the PC side and the original input image in batches through
the data interface, and writes the weight and image data into the data transmission buffer.
To realize the efficient utilization of bandwidth, data, weight, and output buffers, it adopts
a “ping-pong” structure to transmit data without any slack.

The PL part is used for convolutional network calculation. It is mainly composed of
some Processing Elements (PE), which can carry out convolution calculation of different
modes with the received data. The other part is post-processing. First, the adder tree is used
to sum and merge the data after the convolution operation. Then, the obtained results are
processed by batch normalization (BN) and activation, which uses Leaky ReLU function to
determine the threshold of pixel value. Lastly, according to the current convolution mode,
is the Ghost Module, which is used to determine whether to concatenate the identity of the
input feature map or use the SE module.

The PE array primarily comprises some Multiplication Accumulators (MACC), and its
architecture is illustrated in Figure 6, where the respective PE unit processes the multiplica-
tion of an input feature map and a set of weights.
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Figure 7 shows the hardware implementation details of the post-processing module.
The adder tree is mainly composed of adders and flip-flops, and its main function is to
accumulate the processing results of the PE unit. If the parallelism of PE array is n, then
the clock cycle required for processing is N = log2n. The BN and leaky ReLU module is
mainly composed of multipliers, adders, and multiplexers. The scaling multiple, bias and
activation coefficient in the module are stored in the BRAM in advance and read in turn
during calculation.
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2.2.1. Data Storage Optimization

In the Ghost-YOLOS network, the computing of the respective layer requires frequent
reading and writing of data to the off-chip DDR, which will lead to the degradation of
hardware accelerator computing performance due to data transmission delay. Thus, the
data reading and storage methods should be optimized.

Dual cache is developed to reduce the transfer time for reading data from DDR to
on-chip and for writing computed results from on-chip back to DDR. The specific structure
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of dual cache design is presented in Figure 8. On the first and second clock cycle, the
input data is stored in cache 1 and cache 2 through the input data selector. Moreover,
the data in cache 1 is output to the convolution arithmetic unit through the output data
selector. In the third clock cycle, the input data is stored in cache 1, and the previous
operations are repeated successively to achieve data pipeline-processing and shorten the
time of data transmission from off-chip to on-chip. The size of input cache and output
cache is calculated by Equations (4) and (5).

Nin =
Tix × Tiy × dw

MBRAM
× Tn (4)

Nout =
Tox × Toy × dw

MBRAM
× Tm (5)

where MBRAM denotes the size of data that can be stored in a piece of BRAM, and dw
represents the data bit width in I/O feature maps.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 28 
 

 

Figure 7. CNN accelerator post-processing module design. The symbol “Fx” indicates the x-th 
output feature, which comes from the output of the PE array. Scaling factor and bias are used for 
batch normalization. Activation coefficient is the coefficient of activation function. The symbol “…” 
indicates that we omit the repetitive process. 

2.2.1. Data Storage Optimization 
In the Ghost-YOLOS network, the computing of the respective layer requires fre-

quent reading and writing of data to the off-chip DDR, which will lead to the degradation 
of hardware accelerator computing performance due to data transmission delay. Thus, 
the data reading and storage methods should be optimized. 

Dual cache is developed to reduce the transfer time for reading data from DDR to 
on-chip and for writing computed results from on-chip back to DDR. The specific struc-
ture of dual cache design is presented in Figure 8. On the first and second clock cycle, the 
input data is stored in cache 1 and cache 2 through the input data selector. Moreover, the 
data in cache 1 is output to the convolution arithmetic unit through the output data se-
lector. In the third clock cycle, the input data is stored in cache 1, and the previous oper-
ations are repeated successively to achieve data pipeline-processing and shorten the time 
of data transmission from off-chip to on-chip. The size of input cache and output cache is 
calculated by Equations (4) and (5). 

ix iy w
in n

BRAM

T T d
N T

M
× ×

= ×  (4) 

ox oy w
out m

BRAM

T T d
N T

M
× ×

= ×  (5) 

where BRAMM  denotes the size of data that can be stored in a piece of BRAM, and wd  
represents the data bit width in I/O feature maps. 

 
Figure 8. Dual cache design. 

The total delay time for completing a convolution operation with or without the 
dual cache design is shown in Equations (6) and (7). 

without _ dc read compute writeT T T T= + +  (6) 

_ max( , , )with dc read compute writeT T T T=  (7) 

The Ghost-YOLOS network has considerable convolution operations and frequent 
DDR memory access. By consuming twice the BRAM logic resources, the dual cache de-
sign can significantly reduce latency due to data transfer, thereby improving accelerator 
performance. 

The method of array segmentation is adopted to store the data of feature maps and 
weights in the BRAM to solve the problem that excessive data may lead to bottlenecking 
the data access. The above-described method is capable of increasing the local memory 
bandwidth, and it can be combined with the dual cache design to enhance the perfor-
mance of the system’s ability to read and write data. 

Figure 8. Dual cache design.

The total delay time for completing a convolution operation with or without the dual
cache design is shown in Equations (6) and (7).

Twithout_dc = Tread + Tcompute + Twrite (6)

Twith_dc = max(Tread, Tcompute, Twrite) (7)

The Ghost-YOLOS network has considerable convolution operations and frequent DDR
memory access. By consuming twice the BRAM logic resources, the dual cache design can
significantly reduce latency due to data transfer, thereby improving accelerator performance.

The method of array segmentation is adopted to store the data of feature maps and
weights in the BRAM to solve the problem that excessive data may lead to bottlenecking
the data access. The above-described method is capable of increasing the local memory
bandwidth, and it can be combined with the dual cache design to enhance the performance
of the system’s ability to read and write data.

Figure 9 presents the block storage of input feature map data. The input feature map
falls into blocks on the width, height, and the number of channels. The respective block of
data is stored in BRAM in accordance with the order of reading. In the BRAM, the data is
stored from low address to high address. Furthermore, the row parameter index and the
plane parameter index of the input feature map data are stored in the register.

Corresponding to the storage format of the input feature map, the respective weight
in the convolutional kernel is divided and stored in the identical form to match the data of
the input feature map for the convolution operation. The weight is iterated and follows the
order of the number of input channels, the number of output channels, filter height and
filter width, and is stored in the block cache (Figure 10).
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2.2.2. Convolution Architecture with High Parallelism

Convolution calculation occupies most of the calculation in the convolutional neural
network, so PE array is the core component of the FPGA convolutional neural network
accelerator, and how to use the resources of the PE array is an important indicator of
the performance of the hardware accelerator. In the Ghost-YOLOS network, there is
not only common convolution, but also depth-wise separable convolution, which is in
the GhostBottleNeck module. Accordingly, to make full use of hardware resources and
complete computation with a high-parallelism degree, this study designs different ways of
using the PE array’s resources for different convolution modes.

For common convolution, the PE array employs parallel computation at the channel
level, and the architecture is illustrated in Figure 11. In the identical clock cycle, the
respective row of the PE array reads the convolve window at the identical position on the
input feature map of R channels, whereas the respective column reads the convolution
kernel weights of C input feature maps and then performs the convolution calculation in
pairs. The computing resources employ a total of R× C groups of the PE units. After K× K
clock cycles, the convolution results of a set of convolve windows and convolution kernels
are determined, and then the convolve window is moved for all convolution calculations
on the current feature map before inputting the next channel feature map.
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For depth-wise separable convolution, the design for common convolution cannot ex-
hibit a high degree of parallelism. Depth-wise separable convolution comprises depth-wise
convolution and pointwise convolution [41]. For depth-wise convolution, the respective
output feature map is generated by convolving the single-channel input feature map with
the corresponding unique convolution kernel. Thus, compared with the conventional
common convolution, the channel parallel features, scalable by depth-wise convolution,
are reduced by one dimension.

Figure 12 presents the process of depth-wise convolution and its application in the
common convolution PE array. In the PE array, only the input channel feature maps and
weights of the PE units on the diagonal are corresponding. As indicated by the above result,
only R computing units are adopted in the depth-wise convolution calculation process,
and R× (R− 1) computing units exhibit the non-enabled state, such that the maximum
hardware utilization efficiency is not achieved.
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Accordingly, to ensure that the computing engine shares the same PE array architecture
with the common convolution in depth-wise convolution, and to ensure higher efficiency of
computing resources during operation, the deep convolutional mode carries out additional
data management through the controller, as shown in Figure 13.
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Figure 13. PE array architecture in depth-wise convolution mode. The symbol “Q” means the parallel
factor of different input images.

First, the PE array is divided into Block Processing Elements (BPE) with a parallelism
degree of Q, where Q is the parallel factor of different input images. Then, each BPE obtains
the feature maps of different input channels and the weights of data and corresponding
channels from the feature map and weight buffer, respectively. Meanwhile, BPE contains R
group of Window Processing Element (WPE) for multiplication calculation. Computations
of a single sliding window are processed in parallel in each WPE.

In the identical clock cycle, the computational architecture first loads R× P weights
from the weight buffer per column. When the channels of the input feature map remain
unchanged, the identical batch of weights are employed for the respective convolution
calculation, such that the weights can remain unchanged. Next, P pixels of a single convolve
window on R input channel feature maps of Q allows different images to be read from the
data buffer, respectively, and transferred to different PE’s for multiplication calculation.
Thus, the parallel multiplication calculation of the PE array can be increased to P× R×Q.
The moving mode of the convolve window also gives priority to traversing the whole
feature map, and then calculating the feature map of the next set of input channels until Q
different input images have completed the convolution operation.
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2.2.3. SE Module Hardware Optimization

The SE attention mechanism is critical in GhostBottleNeck, and it appears in layer 4, 5,
10, 11, 12, 14, 16 GBN modules of the Ghost-YOLOS network. The basic architecture of the
SE attention mechanism is illustrated in Figure 14, wherein both FC layers are equivalent
to an unbiased linear transformation of the input of the previous layer, which can directly
use the convolution computing structure mentioned in Section 2.2.2 for parallel operation,
and the ReLU function can be implemented by a selector in hardware. Accordingly, it is the
global pooling layer and the Sigmoid function that require hardware optimization.
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Global pooling refers to a squeeze operator in the SE module. Two methods (i.e.,
average pooling and max pooling) are available for the global pooling module, with little
difference in the effect on the result [42], whereas the operation of the two methods turns
out to be highly different in hardware. In general, average pooling primarily employs
multiplication and addition operations, which are difficult to complete in a clock cycle,
whereas max pooling only comprises one logical operation, i.e., comparing the size of input
data, which has simple logic and is suitable for running in the FPGA. Thus, we choose to
use max pooling and the two-dimensional (2D) pooling separation method to optimize its
operational logic, and its hardware implementation architecture is shown in the Figure 15.

Compared with the conventional 2D pooling operation implemented in hardware,
one-dimensional (1D) operation has more concise control logic, can avoid a lot of redun-
dant calculation, and is more conducive to hardware implementation. Accordingly, we
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decompose the 2D pooling into 1D horizontal pooling and 1D vertical pooling. In this
module, a flip-flop is set to cache the data after horizontal pooling. Moreover, pooling
operators of multiple windows can be operated simultaneously to speed up the global
pooling process.
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To further accelerate, in addition to the parallel pipeline of multiple pooling windows,
the parallel operation of dataflow constraint horizontal pooling and vertical pooling is
also adopted. The parallel pipeline based on the dataflow constraint does not need to wait
for horizontal pooling to complete before vertical pooling. If the output of the horizontal
pooling can be passed to the vertical pooling for operation, both work simultaneously,
notably improving the efficiency of the operation.

Sigmoid function is one of the activation functions commonly used in neural networks,
but its exponential property makes it difficult to implement in hardware. Thus, we perform
a piecewise quadratic approximation to increase its hardware friendliness, where the coeffi-
cients can be stored in the on-chip BRAM in advance. We divided the positive semi-axis
of Sigmoid function into six subintervals, and the function representation after piecewise
quadratic approximation is shown in Table 1. In the FPGA, the division operation can be
implemented using shifters to reduce resource consumption. The maximum deviation from
the original function after approximation falls into a scope of 0.003, as shown in Figure 16.

Table 1. The fitting function after piecewise quadratic approximation for FPGA.

Interval Fitting Function Fitting Function for FPGA

(0, 0.5] f (x) = 0.2452x+0.5005 f (x) = (1004 x+2050)/4096
(0.5, 2.45] f (x) = −0.0446x2 + 0.2852x + 0.4908 f (x) = (−183x2 + 1168x + 2010)/4096
(2.45, 4] f (x) = −0.0172x2 + 0.1506x + 0.6533 f (x) = (−70x2 + 617x + 2676)/4096
(4, 5.6] f (x) = −0.0039x2 + 0.0483x + 0.8503 f (x) = (−16x2 + 198x + 3483)/4096

(5.6, 7.5] f (x) = 0.0018x+0.9862 f (x) = (7 x+4039)/4096
(7.5, +∞) f (x) = 1 f (x) = 4096/4096



Sensors 2023, 23, 6497 15 of 27

Sensors 2023, 23, x FOR PEER REVIEW 15 of 28 
 

 

Table 1. The fitting function after piecewise quadratic approximation for FPGA. 

Interval Fitting Function Fitting Function for FPGA 
(0, 0.5] ( ) 0.2452 +0.5005f x x=  ( ) (1004 + 64205 090) /f x x=  

(0.5, 2.45] 20.0446 0.2852 0.49 8) 0(f x x x− += +  2( 183 1168 2010) / 4096( )f x x x= − + +  

(2.45, 4] 20.0172 0.1506 0.65 3) 3(f x x x− += +  2( 70 617 2676) / 4096( )f x x x= − + +  

(4, 5.6] 20.0039 0.0483 0.85 3) 0(f x x x− += +  2( 16 198 3483) / 4096( )f x x x= − + +  

(5.6, 7.5] ( ) 0.0018 +0.9862f x x=  6( ) (7 +4 403 099) /f x x=  

(7.5, +∞) ( ) 1f x =  ( ) 4096 / 4096f x =  

 

  
(a) (b) 

Figure 16. (a) Comparison between Sigmoid function and fitting function. (b) The deviation of the 
fitting function and the Sigmoid function. 

3. Results 
3.1. Experimental Settings 
3.1.1. Dataset 

To evaluate the remote sensing performance of the Ghost-YOLOS lightweight model 
and verify the feasibility of the CNN hardware accelerator results, aerial DOTAv1.0 and 
UAV Visdrone2019 datasets were used for the experimental evaluation. 

The VisDrone2019 [43] dataset is a large UAV perspective dataset. In the official da-
ta, there are 6471 images in the train set, 1580 images in the test set and 548 images in the 
validation set, with a total of 11 categories. The samples in this dataset have the following 
characteristics: (1) the objects in small areas are densely distributed; (2) the background is 
complex, and there is target occlusion, insufficient light, and interference from objects of 
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3. Results
3.1. Experimental Settings
3.1.1. Dataset

To evaluate the remote sensing performance of the Ghost-YOLOS lightweight model
and verify the feasibility of the CNN hardware accelerator results, aerial DOTAv1.0 and
UAV Visdrone2019 datasets were used for the experimental evaluation.

The VisDrone2019 [43] dataset is a large UAV perspective dataset. In the official data,
there are 6471 images in the train set, 1580 images in the test set and 548 images in the
validation set, with a total of 11 categories. The samples in this dataset have the following
characteristics: (1) the objects in small areas are densely distributed; (2) the background is
complex, and there is target occlusion, insufficient light, and interference from objects of a
similar shape, etc. (3), and many objects are occluded. Accordingly, this dataset is suitable
to verify the performance of the Ghost-YOLOS network in detecting small objects. Some
sample pictures of the validation set are shown in Figure 17a.
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The DOTAv1.0 [44] dataset contains 2806 aerial images, approximately 4000 × 4000
in size, with a total of 188,282 instances across 15 categories. We split all images into
small patches of 1024 × 1024 resolution during training, and used the validation set of this
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dataset as a test in the experiment. Some sample pictures of the validation set are shown
in Figure 17b.

3.1.2. Experimental Environment

The whole experiment is divided into two parts: Ghost-YOLOS lightweight network
construction and FPGA hardware acceleration. The network construction and training are
mainly completed on a Personal Computer (PC). To be fair, the training parameters of all
experiments are set to be the same. The stochastic gradient descent method is used for
training, the resolution of input images is adjusted to 416 × 416 through preprocessing,
and the batch size is set to 8. All models are trained with 200 epochs. The maximum
learning rate is 1× 10−2 when the minimum is 1× 10−4, and the decreasing mode is cosine
decreasing. The experimental environment of PC is detailed in Table 2.

Table 2. Experimental environment of PC.

Environment Versions or Procedure

CPU Intel(R) Core(TM) i7-8700 K, 3.70 GHz
GPU NVIDIA GeForce RTX 2080 Ti, 11 GB Memory

CUDA v11.3
Python v3.9.7
PyTorch v1.11

OS Windows 10

To evaluate the performance of the hardware accelerator, the SoC Xilinx ZYNQ Z7020
is used for CNN implementation. In addition to the FPGA chip, the system is equipped
with 1 GB DDR3 SDRAM for storing feature maps and weight parameters. The whole
project is built based on Vivado 2018.3 and Vivado HLS 2018.3. The Vivado HLS part
implemented is based on C++, which is used for high-level synthesis of IP core of the
preprocessing and post-processing module. The Vivado part is implemented based on
Verilog for the construction of the convolution computing module PE and the synthesis
and implementation of the overall project. The clock cycle of the entire system is set at 150
MHz. Figure 18 shows the hardware configuration for the experiment.
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3.2. Experimental Results
3.2.1. Ablation Experiment of Ghost-YOLOS Network

Ablation experiments are performed to verify the effectiveness of the respective class of
improvements in the Ghost-YOLOS network. Figure 19 presents the trend of the mAP and
loss function value of DOTA and Visdrone2019 datasets trained using the Ghost-YOLOS
network before quantization. All curves are smoothed for better observation of trends.
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Table 3 lists the Ablation Experiment results of the two datasets. The original YOLOv3
serves as baseline, and the Ghost-YOLOS is the final version after the improvements are
added. Based on the YOLOv3, a total of four improvements are added, expressed in
the following.

Table 3. Ablation experiment results on the two datasets.

Model Dataset mAP
(%) (*,*)

Parameters
(M) (*)

Size
(MB) (*)

YOLOv3

DOTA
v1.0

55.61 61.52 248.0
+GhostNet 63.41 (+7.80, +7.80) 23.52 (38.23%) 179.0 (72.18%)
+Model Pruning 60.48 (−2.93, +4.87) 6.71 (10.91%) 25.3 (10.20%)
+Knowledge Distillation 62.90 (+2.42, +7.29) 6.67 (10.84%) 25.1 (10.12%)
+Quantization 62.65 (−0.25, +7.04) 6.67 (10.84%) 12.6 (5.08%)

YOLOv3

VisDrone2019

22.07 61.48 248.0
+GhostNet 27.48 (+5.41, +5.41) 23.49 (38.21%) 179.0 (72.18%)
+Model Pruning 24.62 (−2.86, +2.55) 5.85 (9.52%) 30.2 (12.18%)
+Knowledge Distillation 26.83 (+2.21, +4.76) 5.81 (9.45%) 30.1 (12.13%)
+Quantization 26.61 (−0.22, +4.54) 5.81 (9.45%) 15.4 (6.21%)

Note: (*,*) represents (mAP increased by this model compared with the previous model, mAP increased by this
model compared with the initial model); (*) represents (the percentage of the model parameters compared with
the initial model).

First, the backbone of YOLOv3 is replaced with GhostNet from DarkNet53. Under the
effect of this improvement, the mAP is increased by 7.80%, the number of model parameters
is reduced by 61.77%, and the model size is reduced by 72.18% on the DOTA dataset.
Additionally, this improvement leads to the increased mAP by 5.41%, the reduced number
of model parameters by 61.79%, and the reduced model size by 72.18% on the VisDrone
dataset. As indicated by the improvement of a wide variety of indicators, GhostNet
outperforms DarkNet53 in YOLOv3, suggesting the effectiveness of this improvement.

Second, channel pruning is performed on the model to reduce the number of parame-
ters. On the DOTA dataset, this improvement leads to the reduced number of parameters
of the model by 71.65% and the reduced size of the model by 85.24%. Moreover, the mAP
of the model is reduced by 2.93%. Under the effect of this improvement, the number of



Sensors 2023, 23, 6497 18 of 27

parameters of the model is reduced by 72.57% on the VisDrone dataset, and the size of the
model declines by 83.18%. Furthermore, the mAP of the model is reduced by 2.86%. Al-
though the overall accuracy is affected, the number of parameters and the size of the model
are notably reduced, such that the memory consumption and the difficulty of hardware
deployment are reduced.

Third, knowledge distillation is adopted to recover the accuracy lost after model
pruning. On the DOTA dataset, this improvement leads to the improved model mAP by
2.42%; on the VisDrone dataset, the model mAP is improved by 2.21%. Compared with the
model before pruning, the accuracy loss of the model after knowledge distillation falls into
a scope of 0.7%, suggesting the effectiveness of knowledge distillation in accuracy recovery.

Fourth, the 16-fixed quantization of the weights and feature map parameters is per-
formed, thus leading to a reduced model size by approximately 50% on both datasets with
a 0.3% loss of accuracy. Through this improvement, the resource consumption of neural
network hardware deployment is notably reduced, and the overall inference speed of the
network is increased.

3.2.2. FPGA Accelerator Performance

A series of parallelism experiments are set (Table 4) to explore the optimal parallelism de-
gree. To confirm the effectiveness of the proposed depth-wise convolutional computation archi-
tecture, a controlled experiment is set without using depth-wise convolutional architectures.

Table 4. The performance of CNN accelerator with different parallelism degrees.

Experiment 1 2 3 4

Common Convolution Parallelism
(C × R) 8 × 8 10 × 10 13 × 13 10 × 10

Depthwise Convolution Parallelism
(P × R × Q) 9 × 2 × 3 9 × 2 × 6 9 × 6 × 3 N/A

Resource Redundancy 7 8 7 N/A

Throughput (GOPS) 18.24 29.53 36.48 22.16

DSP Blocks 69 113 174 105

DSP Efficiency
(GOPS/DSP) 0.264 0.261 0.210 0.211

Note: Resource Redundancy means the difference between Common Convolution Parallelism and Depthwise
Convolution Parallelism, which represents the amount of redundant resources in one operation when the hardware
resources of the other operation are fully utilized.

As revealed by Experiment 1, 2 and 3 with the increase of the parallelism, the through-
put of the CNN accelerator is also increased with the usage of the PE units. However,
the DSP efficiency reaches its maximum under the ordinary convolution parallelism of
8 × 8. The reason for the above result is that in the Ghost-YOLOS, the output channels
of the 16 GBN modules reach 16, 24, 24, 40, 40, 80, 80, 80, 80, 112, 112, 160, 160, 160, 160,
and 160. As indicated by this result, the number of output channels is a multiple of 8,
such that selecting 8 as the parallel factor can make the convolutional layers with different
numbers of channels or step sizes develop a unified data acquisition logic. A total of 11 of
the 16 GBN modules have output channels that are multiples of 10, such that choosing a
parallel factor of 10 also exhibits high-DSP efficiency, only 0.003 less than a parallel factor
of 8. Thus, the proposed CNN accelerator selects 10 as its parallelism factor to achieve
higher computational throughput. The comparison of experiments 2 and 4 suggests that the
throughput of the CNN accelerator is improved by 33.2% with the depth-wise convolution
computing architecture, such that the effectiveness of the design of this study is confirmed.

Table 5 presents the hardware resource consumption of the CNN hardware accelerator.
For the full CNN accelerator, the consumption of LUT, FF, BRAM, and DSP reaches 36,528,
30,252, 84, and 113, respectively. Most of the BRAM resources are adopted to cache
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the feature map and weight parameters in the DDR, and most of the DSP resources are
employed to develop the PE computing unit. As indicated by the result of in the ZYNQ7020
with very limited hardware resources, the proposed lightweight network can still be
deployed with less than 70% hardware utilization, suggesting that the scheme of this study
is promising in the deployment of edge devices.

Table 5. The hardware resource consumption of the CNN hardware accelerator.

Resource LUT FF BRAM_36K DSP

Available 53,200 106,400 140 220
Consumption 36,528 30,252 84 113
Utilization (%) 68.66 28.43 60.00 57.73

Moreover, the performance of the CNN accelerator is evaluated for computing power
and power consumption. For computing power, Giga Operations per Second (GOPS) serves
as the evaluation metric in this study, suggesting the number of operations performed by
the accelerator per unit time. Vivado’s internal power estimator is employed for power
consumption. The CNN accelerator computing performance reaches 29.53 GOPS at the
clock frequency of 150 MHz by inferencing all pictures in the validation set of both datasets.
The power consumption of the whole system reaches 2.982 W, where the static power
of the hardware is 0.336 W, and the power efficiency is 9.90 GOPS/W. As revealed by
the above-described result, the proposed CNN accelerator is capable of meeting a good
computational performance overhead with low power consumption, thus conforming to
the low-power edge device deployment requirements.

In addition, the target detection performance of the accelerator is examined (e.g.,
inference time and detection accuracy). For the DOTA dataset, 5297 images in the validation
set are tested, and an average inference time of 0.32 s per image, a mAP of 62.58%, and a
total accuracy loss of less than 0.5% are finally obtained compared with the original model.
For the VisDrone2019 dataset, 548 images in the validation set are tested, and an average
inference time of 0.28 s per image, a mAP of 26.55%, and a total accuracy loss of less than
0.6% are obtained compared with the original model. The CNN accelerator is capable of
completing the network inference with a small loss of accuracy, and the fast speed can also
conform to the real-time requirements. Figure 20 illustrates some detection results.
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Then, we compared the proposed CNN accelerator computing power with that the
CPU and GPU, as shown in Table 6. The power consumption of the CPU and GPU in
network inference is 95 W and 250 W, respectively, which are 32× and 84× higher than the
power consumption of the 2.98 W proposed CNN accelerator. Compared with a high-power
CPU and GPU, our FPGA is more suitable for low-power edge device deployment.

Table 6. Evaluation results on CPU, GPU and proposed CNN accelerator.

CPU GPU FPGA

Device Intel(R) Core (TM)
i7-8700 K

NVIDIA GeForce RTX
2080 Ti

Xilinx ZYNQ
Z7020

Technology (nm) 14 10 28

Frequency (MHz) 3700 1350 150

Power (W) 95 250 2.98

Batch Size 1 1 1

mAP (%) 1 62.65 62.65 62.58

Throughput
(GOPS) 32.35 467.22 29.53

Power Efficiency
(GOPS/W) 0.34 1.87 9.90

Power Efficiency
Ratio 1× 5.50× 29.11×

Note: 1 The mAP is for DOTA dataset to evaluate the performance of the three devices. Batch Size means the
number of samples used for an inference.

Although the throughput of CPU and GPU is higher than that of the proposed CNN
accelerator, both of them perform worse than the proposed CNN accelerator for power
efficiency. It can be seen that, with a batch size equal to 1, although the CPU and GPU clock
frequencies are 24.7× and 9.0× higher than that of FPGA, respectively, the proposed CNN
accelerator achieves 29.11× better power efficiency than that of CPU, and even achieves
about 5.29× better power efficiency than that of GPU. The high power efficiency represents
the excellent computational performance of the proposed CNN accelerator, making it not
only capable of being deployed in edge devices with limited resources, but also capable of
completing faster computations with less power.

For object detection tasks, the accuracy of the proposed CNN accelerator falls into a
scope of 0.1% compared with that of the CPU and GPU. We consider that such accuracy loss
is mainly due to the hardware optimization of the SE module and the accuracy limitation
of floating-point arithmetic, and this accuracy loss is acceptable in practical applications.

3.3. Performance Comparison

To better show the performance of the proposed lightweight network and hardware
accelerator, we set up a series of comparative experiments. First, we compared the perfor-
mance of the Ghost-YOLOS network with other networks on the same data set, including
accuracy, calculated amount, and number of parameters, as shown in Table 7. We compared
the performance of the Ghost-YOLOS network with some classical models [45–48], and
some recent innovative models [49–53] on the DOTA and VisDrone datasets.

For the DOTA dataset, The RetinaNet used in Ref. [45] has considerable parameters
and its accuracy is not as good as some commonly used networks. The YOLOv4-tiny
network used by Ref. [46] has 0.8 M fewer parameters than our Ghost-YOLOS, but its
accuracy is 4.4% lower than our network. The YOLOv5s network used by Ref. [47] has 0.7%
higher accuracy than Ghost-YOLOS. However, the number of parameters and GFLOPs are
0.5 M and 2.17 higher than those of Ghost-YOLOS, respectively, and the YOLOv5s network
has considerable residual structures, which will increase the number of memory accesses in
hardware, and is not conducive to the acceleration of network inference. Refs. [45,49] have
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improved on the original network and achieved better detection performance. However,
the improvement of Faster-RCNN in Ref. [45] still has the characteristic that the number
of parameters is too large. The R2-YOLOS proposed in Ref. [49] performs better than our
network for detection accuracy, but its parameter quantity and computation amount are
1.67× and 3.40×more than that of Ghost-YOLOS, respectively, which is too large to meet
the real-time detection requirements of edge equipment. Compared with the conventional
two-stage detection algorithm, the one-stage detection algorithm adopted by Ghost-YOLOS
has a smaller size and less computation, and because of the replacement of the backbone,
the model can achieve higher accuracy.

Table 7. Comparison of performance on the DOTA and VisDrone dataset.

Model Backbone Dataset mAP
(%)

Parameters
(M) GFLOPs

IMP-FRCNN [49] ResNet50

DOTA
v1.0

58.0 N/A 134.5
RetinaNet [45] ResNet101 38.9 55.4 179.5

YOLOv4-tiny [46] CSPDarknet53 58.3 5.9 N/A
YOLOv5s [47] CSPRepResNet 63.5 7.2 10.58

R2-YOLOS [50] ResNet50 66.3 11.2 28.58
Ghost-YOLOS (ours) GhostNet 62.7 6.7 8.41

FRCNN [48] ResNet50

VisDrone
2019

13.5 41.17 134.5
RetinaNet [45] ResNet101 8.9 55.4 179.5

RFNet [51] ResNet50 15.2 79.57 N/A
VAMYOLOX-X [52] CSPDarkNet53 24.5 104.6 510.4

LV-YOLOv5 [53] CSPRepResNet 25.6 36.6 38.8
Ghost-YOLOS (ours) GhostNet 26.6 5.8 7.63

Note: N/A means we did not find the exact data in the references.

For the VisDrone dataset, we obtained the best performance from the Refs. [45,48,51–53].
We achieved the highest accuracy of 26.6% with the lowest parameter count of 5.8 M and
GFLOPs of 7.63. This is because the splicing structure of the Ghost module and the SE
attention mechanism make our network have a stronger effect on small target detection.
The performance of our network in two datasets shows that Ghost-YOLOS can play a
good performance in aerial and UAV object detection, and its lightweight calculation and
parameter amount makes it very suitable for deployment in edge devices with limited
computing resources.

In addition, we compared the proposed CNN accelerator with previous works [54–59],
as shown in Table 8. Ref. [54] proposed a CNN accelerator which used network compres-
sion and layer-chaining techniques. Ref. [55] designed a highly flexible and reconfigurable
accelerator, which mainly focuses on the problem that transposed convolution, dilated
convolution and depth-wise convolution have low utilization in the common convolution
engine. Ref. [56] proposed an energy-efficient architecture for super-resolution images.
However, the hardware implementation in Refs. [54–56] consumes 1536, 607, and 1512
DSPs, respectively, which is 13.6×, 5.4×, and 13.4×more than that of the proposed solu-
tion. It is difficult to implement in the case of limited hardware resources, and their DSP
efficiency is lower than the proposed CNN accelerator. Ref. [57] designed a composite
hardware accelerator, which proposed a multiple single computing engine architecture
based on a row-level pipelined streaming strategy. The accelerator achieves the TOPS-level
of throughput with extremely high DSP efficiency. However, such excellent performance
brings great hardware resource consumption. The design consumes 3395 DSPS and reaches
14.36 W power, which is 30.04× more and 4.8× higher than that of our accelerator, re-
spectively. This limits its application in power-sensitive scenarios. Ref. [58] proposed a
self-adaptive CNN accelerator, which can modify its architecture while inferencing the
networks. Ref. [59] proposed an automatic CNN deployment solution on resource-limited
devices. Both works [58,59] used less DSP resources to implement the inference of the
CNN. However, the accelerator in Refs. [58,59] only achieves 10.25 GOPS and 22.17 GOPS
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throughput, respectively. Compared with the design where the whole network is repeatedly
stacked with modules in the order of the respective layer, the proposed CNN accelerator
can perform different types of convolution computing using a single PE array, such that
the efficiency of hardware resources can be significantly increased.

Table 8. Comparison of proposed CNN accelerator with previous works.

Architecture [54] [55] [56] [57] [58] [59] Our work

FPGA Intel
Arria 10

Intel
Arria 10

Xilinx
XC7K410T VX980T Xilinx

ZYNQ Z7020
Xilinx
AC701

Xilinx
ZYNQ Z7020

Model StyleNet ENet CNN+
DCNN VGG16 Tiny YOLO IMP YOLOv2 Ghost-YOLOS

Network Complexity
(GFLOPS) 37.60 3.68 3.30 15.47 5.41 379.55 8.41

Quantization 16-Fixed 16-Fixed 13-Fixed 8/16-Fixed 16-Fixed 8-Fixed 16-Fixed

Frequency
(MHz) 200 200 130 150 150 200 150

DSP Blocks 1536 607 1512 3395 99 94 113

Throughput
(GOPS) 335.0 97.2 390 1000 10.25 22.17 29.53

Power
(W) 5.90 N/A 5.38 14.36 N/A 3.407 2.98

Power Efficiency
(GOPS/W) 56.76 N/A 72.49 69.64 N/A 6.51 9.90

DSP Efficiency
(GOPS/DSP) 0.218 0.160 0.258 0.295 0.104 0.236 0.261

Note: N/A means we did not find the exact data in the references.

In brief, our accelerator has lower power consumption and higher DSP efficiency in the
identical scale processing engine. Compared with the previous works, the proposed CNN
accelerator has a better balance in throughput, resource and power, and is more suitable for
deployment in edge devices with limited resources and strict power requirements.

4. Discussion

The YOLO series network has evolved into numerous versions thus far, and YOLOv3
does not exhibit the optimal performance among these versions. However, it is selected as
the original network in this study due to the comprehensive consideration of the throughput
and resources of the accelerator. The network backbone after YOLOv2 has an excessive
amount of residual blocks, which will hinder hardware processing. Cross-layer operation
represents multiple memory access for hardware, which will cause extra memory overhead
and hardware resource consumption (especially LUT and FF). Accordingly, its backbone
network is replaced with GhostNet. Subsequently, special attention should be paid to the
neck and head parts of YOLO. YOLOv4 employs SPP (Spatial Pyramid Pooling) + PANet
(Path Aggregation Network) for the neck part compared with YOLOv3, which improves
the precision while increasing the network depth and the number of parameters. YOLOv5
adds more residual structure and concatenate modules, thus hindering the hardware
implementation of the network.

Moreover, GhostNet exhibits excellent performance on YOLOv3 by significantly re-
ducing its parameter count while achieving comparable accuracy to YOLOv5s. However,
the performance of YOLOv4 and YOLOv5 is not significantly improved. Experiments are
performed on the DOTA dataset, and the results suggest that YOLOv4-Ghost only achieves
a 1.6% increase in accuracy compared with the original network, while YOLOv5-Ghost only
achieves an improvement of 0.7%. Given hardware resource consumption and performance
comprehensively, the YOLOv3 network is ultimately selected as the base model. This
decision is made following a thorough evaluation of multiple factors, which comprises the
trade-off between hardware feasibility, resource constraints, accuracy, and performance.
Although the subsequent versions of the YOLO network may exhibit increased accuracy,
our choice of YOLOv3 as the original network best conforms to specific requirements.
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After the original network is lightened, the Ghost-YOLOS network is deployed into
Xilinx ZYNQ Z7020, and a series of hardware optimizations are performed for network
characteristics. 1. Because depth-wise convolution and common convolution exist in
Ghost-YOLOS network, a reconfigurable convolution operation array is designed to save
hardware resources. 2. To reduce the delay of data transmission between memory and
processing unit, a series of memory access optimization schemes are designed for BRAM.
3. Due to the poor hardware friendliness of SE attention mechanism, the approximate
implementation of activation function and optimization scheme of maximum pooling. As
indicated by the experimental results, our optimization scheme can improve the throughput
and energy efficiency of the accelerator.

After comparison, certain limitations are identified in the application of proposed
lightweight network and CNN accelerator:

• The pruning and distillation methods used in this study are strictly affected by the
model and cannot improve the detection accuracy of the model itself, so it is necessary
to use more lightweight methods targeted at the model structure.

• Floating-point computation is not applicable to FPGA, so data quantization is very
necessary. However, the quantization method employed in this study inevitably
causes precision loss, such that a more fine-grained quantization method should be
developed to reduce the effect on precision.

• The solution in this study proposes a reconfigurable convolution computing array to
perform convolution computing of different modes. However, the hardware resource
limitation of the FPGA applied leads to the inability of parallelism to expand to a higher
dimension, such that inevitable resource redundancy is caused. Accordingly, chips
with richer hardware resources may achieve higher resource utilization efficiency.

Based on the innovation and limitation of the proposed solution, several possible uses
and effects are indicated:

• The proposed accelerator operators include common convolution, deep convolution,
SE attention mechanism, full connection and Max pooling, etc., which are not only
suitable for Ghost-YOLOS network, but also applicable to any network consisting of
stacks of these modules (e.g., MobileNet and ShuffleNet). Hardware acceleration of
this type of network can be achieved only by changing the task scheduling at the PS
side, which offers novel ideas for the application of FPGA technology in deep learning.

• The proposed solution has the characteristics of low power consumption, high energy
efficiency, high throughput and high precision, such that it can be applied to the field
of remote sensing object detection. Additionally, it can be integrated with advanced
sensors, Internet of Things (IoT) and human–computer interaction technologies (e.g.,
mobile robots and exploration vehicles) to expand its application prospects.

5. Conclusions

In this study, a lightweight remote sensing image detection model, Ghost-YOLOS,
and its energy-efficient CNN accelerator solution are proposed based on the FPGA, which
comprises model optimization methods and a hardware acceleration architecture.

Through the optimization of the model, the model parameters and size are primarily
reduced as much as possible, while the accuracy can be ensured, with the aim of adapting
to the edge devices deployment. Accordingly, GhostNet, a lightweight feature extraction
network, is introduced, and channel pruning is conducted on the whole model. A knowl-
edge distillation method is adopted to recover the accuracy lost by the parameter number
reduction. Lastly, 16-bit fixed-point quantization is performed prior to deployment in
the hardware.

An efficient CNN accelerator is proposed for hardware acceleration. A reconfig-
urable PE array with high parallelism is developed in accordance with the characteristics
of different convolution in the Ghost-YOLOS network, which is capable of performing
different types of convolution computing according to the control signal. The SE atten-
tion mechanism in the GBN module is optimized at the hardware level, comprising 2D
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pooling separation and Sigmoid activation function hardware implementation. For data
storage optimization, different storage methods are designed following to the characteris-
tics of feature maps and weights, and a dual cache design is implemented to save memory
access overhead.

Compared with the design that the whole network is repeatedly stacked with modules
in the order of the respective layer, the CNN accelerator developed in this study exhibits
the structure of a single convolution computing array, which is capable of performing
different types of convolution computing based on the control signal, such that the on-
chip physical resources can be saved, with the aim of carrying out more dimensions of
parallelism expansion.

In general, in comparison with the original YOLOv3 network, the mAP of the Ghost-
YOLOS on the aerial dataset DOTAv1.0 is increased by 7.04%, the number of parameters
only accounts for 10.84% of the original model, and the model size is reduced to 5.08%.
Moreover, on the UAV dataset VisDrone2019, the mAP of the Ghost-YOLOS is improved
by 4.54%, the number of parameters only takes up 9.45% of the original model, and the
model size declines to 6.21%. Accordingly, the Ghost-YOLOS outperforms YOLOv3 in
efficiency, and it more significantly applies to deployment on edge devices with limited
computing resources.

Subsequently, the Ghost-YOLOS network is well deployed on Xilinx ZYNQ Z7020
using the proposed CNN acceleration scheme. As indicated by the experimental results,
the power of the proposed CNN accelerator only reaches 2.98 W, and the DSP consumption
only reaches 113. The object detection of the two datasets achieves the throughput of the
CNN accelerator of 29.53 GOPS, the power efficiency of 9.90 GOPS/W, as well as the DSP
efficiency of 0.261 GOPS/DSP. As indicated by the comparison with the previous works, the
proposed solution is characterized by low power consumption, low resource consumption,
and high efficiency, thus becoming promising in the deployment of remote sensing edge
devices with strict power requirements and limited resources.

In further research, the existing pruning and knowledge distillation schemes will
be replaced, and more lightweight methods will be designed for the network structure.
Moreover, the hardware of higher versions of YOLO networks will be optimized, and more
hardware-friendly quantization schemes will be designed.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
CPU Central Processing Unit
SE Squeeze and Excitation
BN Batch Normalization
ASIC Application Specific Integrated Circuit
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MACC Multiplication Accumulators
PE Processing Engine
WPE Window Processing Engine
BPE Block Processing Engine
DDR Double Data Rate
SDRAM Synchronous Dynamic Random-Access Memory
BRAM Block Random-Access Memory
PL Programmable Logic
PS Processing System
mAP mean Average Precision
GOPS Giga Operations per Second
DSP Digital Signal Processor
LUT Look-Up Table
FF Flip-Flop
PC Personal Computer
R&D Research and Development
IoT Internet of Things
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