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Abstract: Instance segmentation is a challenging task in computer vision, as it requires distinguishing
objects and predicting dense areas. Currently, segmentation models based on complex designs
and large parameters have achieved remarkable accuracy. However, from a practical standpoint,
achieving a balance between accuracy and speed is even more desirable. To address this need, this
paper presents ESAMask, a real-time segmentation model fused with efficient sparse attention, which
adheres to the principles of lightweight design and efficiency. In this work, we propose several key
contributions. Firstly, we introduce a dynamic and sparse Related Semantic Perceived Attention
mechanism (RSPA) for adaptive perception of different semantic information of various targets
during feature extraction. RSPA uses the adjacency matrix to search for regions with high semantic
correlation of the same target, which reduces computational cost. Additionally, we design the
GSInvSAM structure to reduce redundant calculations of spliced features while enhancing interaction
between channels when merging feature layers of different scales. Lastly, we introduce the Mixed
Receptive Field Context Perception Module (MRFCPM) in the prototype branch to enable targets
of different scales to capture the feature representation of the corresponding area during mask
generation. MRFCPM fuses information from three branches of global content awareness, large
kernel region awareness, and convolutional channel attention to explicitly model features at different
scales. Through extensive experimental evaluation, ESAMask achieves a mask AP of 45.4 at a frame
rate of 45.2 FPS on the COCO dataset, surpassing current instance segmentation methods in terms
of the accuracy–speed trade-off, as demonstrated by our comprehensive experimental results. In
addition, the high-quality segmentation results of our proposed method for objects of various classes
and scales can be intuitively observed from the visualized segmentation outputs.

Keywords: instance segmentation; sparse attention; related semantic awareness; mixed receptive
field; context awareness; feature aggregation

1. Introduction

Instance segmentation is a challenging task in computer vision that aims to make pixel-
level dense predictions and distinguish different instances in images. Driven by the progress
of the information age and the practical needs of various application scenarios, instance
segmentation has gained wide-ranging application demands and promising prospects
across diverse industrial and daily-life domains. Notably, in autonomous driving [1],
instance segmentation plays a pivotal role in assisting driving systems to recognize distinct
lane markings, vehicles, pedestrians, and obstacles, thus enabling an accurate assessment
of the surrounding driving environment. Similarly, within industrial production settings,
real-time and precise segmentation of objects captured in video frames from work sites can
effectively mitigate safety risks and enhance production efficiency. Furthermore, in areas
such as medical image segmentation [2] and image editing and enhancement, the quest
for faster and more accurate segmentation results remains a constant aspiration. These

Sensors 2023, 23, 6446. https://doi.org/10.3390/s23146446 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146446
https://doi.org/10.3390/s23146446
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23146446
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146446?type=check_update&version=2


Sensors 2023, 23, 6446 2 of 20

compelling factors motivate our research and development efforts aimed at devising an
instance segmentation method that optimally balances speed and accuracy.

Recent advancements in deep convolutional networks have led to the development
of two-stage models [3–8] such as Mask RCNN and single-stage methods [9–13] such
as YOLACT for instance segmentation. The single-stage methods offer faster inference
times [14] due to their end-to-end architecture, making them more suitable for practical
scenarios. In recent years, the YOLO series of object detection models [15–19], renowned for
their fast and accurate performance, have also developed variants adapted for segmentation
tasks, which further propel the advancement of instance segmentation. However, there
is still room for improvement in the segmentation accuracy of single-stage methods. This
motivates us to think about a question: can we use the advantage of single-stage real-time
and add new mechanisms to improve its segmentation accuracy?

With the emergence of vision transformers [20] in the field of computer vision, sev-
eral models based on vision transformers, such as Mask Transfiner [21], QueryInst [22],
SOLQ [23], and Mask2Former [24], have achieved breakthroughs in segmentation accu-
racy. Self-attention, a core component of transformers [25], allows for better capturing of
long-range dependencies compared to convolutions. However, using global self-attention
throughout the feature extraction process increases the computational complexity and
memory usage of the model exponentially with the input feature map resolution. This
poses challenges for training the model on ordinary hardware devices and results in unsat-
isfactory inference times for downstream tasks.

To address this problem, researching sparse attention strategies as alternatives to
global attention has become a promising direction. In recent years, significant progress has
been made in the development of sparse attention mechanisms. The pioneering work of
Swin Transformer [20] introduced the use of local and shifted windows for self-attention
computations, leading to a significant reduction in computational costs. NAT [26] extracts
features by conducting dot product operations within a window defined by each pixel
and its nearest neighbors. DiNAT [27] expands the receptive field by introducing dilation
operations based on NAT. Despite employing diverse sparse techniques for key-value pair
selection, all of the mentioned methods depend on manually defined rules to determine
attention regions, resulting in the sharing of selected key-value pairs among query regions.
This indiscriminate application of sparse attention in each sub-region fails to attend to
different targets differentially. This inspired us to contemplate the second question: can a
novel sparse attention mechanism be designed to enable the model to perceive different
semantic regions and adaptively search for attention windows?

Furthermore, we noted that the aforementioned models conduct attention operations
using a fixed window size, which imposes constraints on capturing features for objects of
different sizes. Hence, this motivates us to explore how to simultaneously model global,
regional, and local information to better adapt to mask prediction for objects of different
sizes.

To tackle these challenges and questions, this paper proposes a real-time segmentation
model called ESAMask. The objective is to improve the accuracy of the model while
ensuring real-time performance. Combining thoughts on problem one, the proposed model
follows the design paradigm of a single-stage model and introduces novel modules that
are efficient and memory-friendly.

To address the second question, the paper introduces the Related Semantic Perceived
Attention module (RSPA), which dynamically adapts to different semantic regions. RSPA
performs coarse-grained correlation calculations in sub-regions of the graph to reserve a
few key-value regions with high semantic correlation in each query region. Fine-grained
attention operations are then performed on these relevant regions, strengthening the
semantic representation of feature maps.

For the third question, considering that targets in the image have different sizes, the
paper designs the Mixed Receptive Field Context Perception Module (MRFCPM). This
module fuses information from three branches: global content awareness, large-kernel
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region awareness, and convolutional channel attention. By explicitly modeling information
in global, regional, and local scales, this module improves the segmentation accuracy of
multi-scale objects.

In addition, to further reduce the weight of the model, the paper introduces GSIn-
vSAM in the network neck part. GSInvSAM reduces redundant information and enhances
channel information interaction by utilizing GSConv [28] and inverted bottleneck struc-
tures. Leveraging SAM’s [29] non-parametric attention, it assists the pyramid network in
focusing on key feature areas without increasing computational costs.

Combining the above analysis and strategies, the contributions of this paper are
summarized as follows:

(1) We introduce RSPA to the backbone network, which supports differentiated attention
for different semantic features in a sparse, adaptive manner.

(2) We design GSInvSAM, which removes redundant information and strengthens fea-
ture associations between different channels during bidirectional pyramid feature
aggregation.

(3) We added the MRFCPM to the prototype branch, which performs multi-level model-
ing of global, regional, and local representations, which helps to improve the segmen-
tation effect of targets of different scales.

(4) The design of the entire model and each component follows the principles of be-
ing lightweight, effective, and efficient. Experimental results show that our model
achieves a better balance between accuracy and efficiency.

2. Related Work
2.1. Instance Segmentation

Instance segmentation, similar to the object detection task, can be categorized into
two-stage and single-stage methods. The two-stage instance segmentation first extracts a
region of interest (ROI) based on the features learned by the network and then segments
each instance on the ROI [30]. Mask RCNN [3] is the most classic two-stage instance
segmentation model, which adds FCN [31] branches to predict masks based on Faster
RCNN [30]. The remarkable segmentation performance of Mask RCNN has spurred a wave
of technological advancements in the field of instance segmentation. Subsequently, various
extension methods based on Mask RCNN [3] have emerged. PANet [4] introduces a bottom-
up path to FPN and integrates low-level, high-resolution detailed feature information
into the high-level semantic feature map, thus enhancing the fine-grained segmentation
of instances. BMask [8], BPR [7], RefineMask [32], and SharpContour [33] refine the
segmentation mask of Mask RCNN by focusing on boundary refinement. MS RCNN [5]
argues that classification confidence does not directly correlate with segmentation accuracy.
To address this, a new MaskIOU branch is introduced, combining the prediction score
and classification score to evaluate the effectiveness of mask generation. These models
contribute to the enrichment of the two-stage Mask RCNN family from various perspectives.
However, two-stage segmentation methods rely on the selection of a large number of
regions of interest, which to some extent affects the inference speed of the model and fails
to meet the speed requirements in practical applications.

Due to the slow inference speed of the two-stage method and the insufficient simplic-
ity of the model, the single-stage end-to-end segmentation model has gradually attracted
researchers’ interest. YOLACT [9] stands as the pioneering single-stage instance segmenta-
tion model that achieves true real-time performance. Its real-time segmentation capability
is enabled through a simple design that combines the mask coefficient branch and the pro-
totype branch to generate masks. The success of YOLACT has inspired researchers to focus
on enhancing the network’s reasoning speed while simultaneously improving the accuracy
of model segmentation. BlendMask [13] follows the design idea of YOLACT [9], removes
redundant mask branches, and designs a reasonable blender module to fuse high-level
attention branches and low-level details. CenterMask [34] achieves simple, effective, and
real-time segmentation by incorporating a spatial attention-guided masking branch into
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the anchor-free detector. By considering that different instances occupy distinct locations,
Wang et al. propose the segmentation of instances based on location prediction. Hence, the
devised SOLO [35] network partitions the input image into grids of size S × S, wherein
each grid classifies and segments the contained objects. SOLOv2 [36] adds a dynamic
convolution kernel to predict the parameters of the mask head on the basis of SOLO, which
further improves the effect of instance segmentation. The aforementioned single-stage
methods develop compact and end-to-end network architectures from various angles,
continually enhancing their inference speed, which is beneficial for real-time operation
of models in practical application scenarios or on mobile devices. Nevertheless, a good
model should prioritize both fast execution speed and improved segmentation accuracy.
Therefore, this paper leverages the real-time advantages of single-stage models to design an
end-to-end network architecture and introduces novel modules to enhance its performance
in terms of accuracy.

In recent years, the success of self-attention in computer vision has sparked increased
interest in self-attention-based instance segmentation methods. SOLQ [23], proposed by
Dong et al., employs a self-attention-based Swin Transformer [20] for feature extraction.
The extracted features are then fed into a unified query head, enabling joint prediction of
categories, locations, and instances. QueryInst [22], designed by Fang et al., builds upon
Sparse R-CNN [37] and incorporates query embedding and dynamic convolution modules
for multi-task learning. Mask2Former [24] introduces a masked attention approach to
replace a portion of self-attention for decoding multi-level features and directly predicting
instance and semantic masks. Compared to CNN-based models, the aforementioned self-
attention-based segmentation models capture features at a global scale, resulting in higher
segmentation accuracy. However, the self-attention mechanism computes affinities among
all features, leading to significant memory consumption and computational costs, thereby
increasing the training difficulty. Therefore, this paper focuses on lightweight and sparse
attention methods and proposes and introduces an efficient and dynamic sparse attention
mechanism to maximize the benefits of attention operations on model performance while
ensuring memory-friendly and real-time inference.

2.2. Attention for Instance Segmentation

The remarkable feature extraction capabilities of self-attention have made its variants
immensely popular in various vision domains. Liu et al. introduced the Swin Trans-
former [20], which efficiently reduces the computational burden of global attention by
incorporating self-attention and pixel-shifting self-attention operations on non-overlapping
sub-windows. Consequently, it has become a widely adopted backbone network for diverse
visual tasks. Notably, SOLQ [23], Mask2Former [24], and Mask DINO [38] are exemplary in-
stance segmentation algorithms that leverage the Swin Transformer [20] to extract features
and achieve competitive segmentation outcomes.

The idea of window-based self-attention inspired some later work. NA [26] adopts
a sliding window approach to perform self-attention within a window comprising each
pixel and its neighboring pixels. This allows each pixel to modify its receptive field without
pixel shifting while maintaining translation invariance. However, window attention fails
to capture long-range interdependencies, leading to the proposal of DiNA [27]. DiNA
presents a flexible and efficient extension of NA by increasing the step size, akin to dilated
convolution, to expand the window attention range and receptive field without incurring
additional computational costs. These methods share a common characteristic: attention
is applied uniformly across the entire feature map in window units. Nonetheless, this
attention approach treats each window equally, disregarding the discriminative impact of
semantics on different targets. Considering this limitation, this study delves into a dynamic
and adaptive semantic-relevant sparse attention method. This method enables different
query windows to focus on semantically relevant regions with higher correlation, thereby
enhancing the utilization of semantic information for diverse targets.
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In response to the requirements of target discrimination and dense prediction in
instance segmentation, Nguyen et al. introduced BoxeR [39]. BoxeR is a method that
generates interest boxes by employing box attention within a predefined reference window
and predicting its geometric transformation. By enabling spatial interaction between grid
features and attention operations from these interest boxes, BoxeR proves advantageous
for end-to-end object detection and instance segmentation tasks. However, the dependence
on a predetermined reference window size limits its adaptability to objects of varying sizes,
posing algorithmic constraints. Instead, we propose a mixed receptive field module that
combines sparse global attention, window attention, and channel attention, facilitating the
capture of feature information of corresponding sizes for objects of different scales.

3. Methods
3.1. Overall Architecture

To leverage the simplicity and fast inference speed of single-stage segmentation models
while incorporating the advantages of self-attention and long-range modeling, this paper
introduces an effective and efficient real-time segmentation network called ESAMask.
The network architecture is depicted in Figure 1. The backbone network encodes the
input image across multiple stages, gradually transforming spatial information into high-
dimensional channel information. By integrating the designed RSPA module into the
feature map downsampled by a factor of 32, the network can effectively capture semantic
variations during feature extraction without introducing excessive parameters. To enhance
feature fusion across different scales, this study adopts a conventional two-way pyramid
structure. However, a novel GSInvSAM is proposed in this work to replace the commonly
used CSP block. This novel module facilitates effective information fusion and interaction
among different feature layers while reducing redundant parameters and computational
costs. In the prediction head section, an anchor-free decoupling head is employed to
perform classification and detection tasks, reducing the post-processing time associated
with non-maximum suppression (NMS). For the segmentation task, the prototype branch is
primarily responsible for mask prediction. Given the significance of fully utilizing features
in generating accurate masks, a lightweight MRFCPM is designed and integrated into the
prototype branch to cater to the diverse range of feature representations required for targets
of different scales.
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3.2. Related Semantic Perceived Attention

Several current works have designed different windowed attention or sparse attention
mechanisms to alleviate the computationally intensive problem of MHSA. However, most
of them are based on artificially set fixed rules that share a subset of key-value pairs
within all regions indiscriminately and cannot perceive the semantic relevance of targets in
different regions. In this work, we explore a dynamic adaptive and semantically relevant
sparse attention mechanism to design the RSPA module. The main idea of RSPA is to
initially find the top k + k/2 semantically relevant sub-regions corresponding to each
region within all sub-regions globally, remove the irrelevant or less relevant regions, and
finally perform token attention operations within the semantically relevant regions retained
in each region. The execution process of RSPA is shown in Figure 2.
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Figure 2. Illustration of the execution process of Related Semantic Perceived Attention. Blue rep-
resents the query area; yellow represents the first k semantically related areas; red represents the
expansion area corresponding to the last k/2 related regions; and the yellow and red regions are
aggregated into the key-value region corresponding to the query region. RSPA enables GPU-friendly
sparse attention operations by aggregating semantically related regions of the same target.

Region division and related region search. For the input feature map X, we divide
it into M ×M non-overlapping grids. By linearly mapping the partitioned X, the Query,

Key, and Value tensors are obtained (Q, K, V ∈ RM2× HW
M2 ×C). In order to establish semantic

associations for each region, this paper uses a directed graph to construct an adjacency
matrix. Specifically, firstly, the average value of each region is calculated to obtain the
region-level Qm, Km ∈ RM2×C. Then, the affinities between different regions are obtained
by matrix multiplication to construct an adjacency matrix Am ∈ RM2×M2

. This process can
be represented as follows:

Am = Qm(Km)T (1)

where Am represents the semantic correlation between the two regions and T represents
the matrix transpose.

Next, we crop the adjacent region and perform row-level top-k operations to obtain a
semantically related index matrix Sm ∈ RM2×k. The formula is as follows:

Sm = Indexo f Topk(Am) (2)

where the Indexo f Topk operation retrieves the indices of the top k regions with the highest
relevance to each query region, based on the magnitudes of the affinity matrix Am.

Among the k correlation regions, the regions with higher correlation values are most
likely to be located inside the same target, and the regions with the next highest correlation
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values, such as the kth and k − 1th regions, are likely to be located near the target boundary.
In order to improve the perception of the contextual information inside and outside the
target boundary during network feature extraction, we borrow the idea of expansion
convolution and add the expansion regions Dm ∈ RM2×k/2 corresponding to the latter k/2
relevant regions to the semantic relevant regions, where k/2 is rounded down when k is
odd.

Associated region token attention. According to the index matrix Sm and the corre-
sponding expansion region Dm, we can perform token-level attention operations on the
joint key-value pairs of the ith query region and its corresponding top k + k/2 semantically
related regions Sm

(i,1), · · · , Sm
(i,k), Dm

(i,1), · · · , Dm
(i,k/2). Since the relevant regions are scattered

in different parts of the entire feature map, it will be very inefficient if the query region
is followed by the key-value region for attention operation. Therefore, before the atten-
tion operation, we first aggregate key-value pair tensors of relevant regions to perform
GPU-friendly token attention.

The process of the aggregation operation is shown in Formulas (3) and (4):

Kg = gather(K, Sm + Dm) (3)

Vg = gather(V, Sm + Dm) (4)

where the gather operation represents the aggregation of the scattered related regions Sm

and Dm corresponding to the same query region, Kg ∈ RM2× (k+k/2)HW
M2 ×C is the key tensor

after aggregation, and Vg ∈ RM2× (k+k/2)HW
M2 ×C is the value tensor after aggregation.

The process of token attention can be expressed as Equation (5):

O = so f tmax

(
Q(Kg)T
√

C

)
Vg (5)

where C represents the number of channels, which is used to avoid gradient disappearance
and concentration of weights.

3.3. GSInvSAM

The backbone network is usually used as an encoder to extract image features. As the
model level deepens, spatial information is gradually converted to channel information,
and the nonlinear expression ability of the model is becoming stronger and stronger. To
fuse backbone feature information at different scales, various feature pyramid networks
are widely used. However, directly splicing the feature maps of two adjacent layers will
inevitably bring about the problems of information redundancy and lack of interaction
between channels. In order to alleviate the above problems by processing the feature maps
of neck stitching, we propose the GSInvSAM structure based on GSConv [28], inverted
bottleneck, and SimAM [29], as shown in Figure 3.

GSInvBottleneck is the basic block of GSInvSAM. It consists of a GSConv [28] and two
symmetric kernel-1 convolution operations. Among them, GSConv compresses redundant
information by halving the number of channels and deep-wise operations and performs
shuffle operations on channel features to enhance feature interaction. After GSConv, a
symmetric convolution operation of 1 × 1 channel expansion and channel compression is
performed to further strengthen the fusion of channel information. Borrowing ideas from
OSA [40], we aggregate multiple depths of GSInvBottleneck to generate richer gradient
flow information. In addition, we added the Simple Attention Module [29] at the end
of GSInvSAM. Based on the principle of the optimal solution of the energy function,
SimAM [29] assigns different weights to each pixel value of the feature map, which can
capture important feature representations without increasing any parameters.
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3.4. Global Content-Aware Module

Self-attentive mechanisms have achieved remarkable success in capturing long-range
dependencies, especially for intensive prediction tasks. However, due to its large number
of model parameters, it inevitably leads to an exponential increase in computational cost
and memory usage. In order to model global information while improving the inference
efficiency of the model, this paper proposes a memory-friendly Global Content-aware
Module, which contains a lightweight and efficient axial attention branch for extracting
global semantics and a detail extraction branch based on small kernel convolution to retain
local details. The structure of GCAM is shown in Figure 4.
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Figure 4. The calculation process of the Global Content-aware Module.

Axial Attention. To extract global contextual information with low computational
cost, we perform self-attention operations on the horizontal and vertical axes separately
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and aggregate information from both directions. Specifically, we convert the input feature
map X into a Query, Key, and Value tensor. In the direction of the horizontal axis, we
perform average pooling on each row of feature tensors to obtain Q(r), K(r), V(r) ∈ RH×Cqk .
The calculation process of Q(r), K(r), and V(r) can be expressed as follows:

Q(r) =

(
1

W

W

∑
j=1

Q(1, j), · · · ,
1

W

W

∑
j=1

Q(r, j)

)T

(6)

K(r) =

(
1

W

W

∑
j=1

K(1, j), · · · ,
1

W

W

∑
j=1

K(r, j)

)T

(7)

V(r) =

(
1

W

W

∑
j=1

V(1, j), · · · ,
1

W

W

∑
j=1

V(r, j)

)T

(8)

where W denotes the width of the image, j denotes the jth column of the image, and r
denotes the total number of rows of the image.

In the direction of the vertical axis, we perform the same operation on the elements of
each column to obtain Q(c), K(c), V(c) ∈ RW×Cqk . The calculation process of Q(c), K(c), and
V(c) can be expressed as follows:

Q(c) =

(
1
H

H

∑
i=1

Q(i, 1), · · · ,
1
H

H

∑
i=1

Q(i, c)

)
(9)

K(c) =

(
1
H

H

∑
i=1

K(i, 1), · · · ,
1
H

H

∑
i=1

K(i, c)

)
(10)

V(c) =

(
1
H

H

∑
i=1

V(i, 1), · · · ,
1
H

H

∑
i=1

V(i, c)

)
(11)

where H denotes the height of the image, i denotes the i-th row of the image, and c denotes
the total number of columns of the image.

To make feature tensors position sensitive, we introduce axis position embeddings to
sense the position of features. The position embedding vector Eq

(r), Ek
(r) ∈ RH×Cqk is con-

structed by randomly initializing learnable parameters Nq
(r), Nk

(r) ∈ RL×Cqk and performing

linear interpolation. In the same way, Eq
(c), Ek

(c) ∈ RW×Cqk can be obtained. During the
model training process, the position vector can be dynamically updated according to the
actual features. Position-aware axis attention can be expressed as the formula (12):

y(i, j) =
H
∑

p=1
so f tmaxp

((
Q(r)i + Eq

(r)i

)T(
K(r)p + Ek

(r)p

))
V(r)p

+
W
∑

p=1
so f tmaxp

((
Q(c)j + Eq

(c)j

)T(
K(c)p + Ek

(c)p

))
V(c)p

(12)

where p represents the position of the pixel, i represents the horizontal coordinate of the
pixel point, j represents the vertical coordinate of the pixel point, and E represents the
position vector, which is added to the query tensor Q and key tensor K to sense the position
information of the feature map.

The horizontal and vertical tensors with embedded location information are fed sep-
arately into the multi-headed attention module for self-attentive operations. To combine
the feature information in both directions to model the global information, we fuse the
horizontal and vertical features using a simple and efficient broadcast operation. The time
complexity of the axial average pooling is O(H + W)

(
2Cqk + Cv

)
, and the time complex-
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ity of the self-attention is O
(

H2 + W2)(Cqk + Cv

)
. Thus, the axial attention branching

significantly reduces the time complexity of modeling global dependencies.
Detail Extraction. To compensate for the local details lost when global extraction

is performed by axis attention, we designed the Detail Extraction branch to capture and
preserve local information. As shown in Figure 4, the Q, K, V tensor is stitched in the
channel dimension, and local features are extracted by a small kernel depth separable
convolution of 3 × 3. Then, the point convolution with kernel 1 and the corresponding
normalization and activation operations are used to reduce the channel dimension to C.
Finally, the Detail Extraction branch and Axial Attention branch are fused in a multiplicative
manner to achieve a mutual complement of global and local information.

3.5. Mixed Receptive Field Context Perception Module

The generation of prototypes plays a key role in the quality of instance segmentation,
and different prototypes represent different instance information in feature maps. In order
to make the prototype branch of the head be able to fully extract and preserve the features
of the backbone encoding, a novel Mixed Receptive Field Context Perception Module is
designed in this paper. It can jointly capture global, regional, and local representation
information, which is helpful for the segmentation of objects at different scales. The
structure of MRFCPM is shown in Figure 5.
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Figure 5. The pipeline of the Mixed Receptive Field Context Perception Module.

The whole module mainly includes three branches of global attention, regional at-
tention, and channel attention to extract key representation information of large-scale,
medium-scale, and small-scale ranges, respectively. The global attention part uses the
lightweight GCAM designed in this paper to model large-scale and long-distance infor-
mation dependencies. For small-scale targets or local details, standard convolution can
play a good role in feature extraction. Therefore, we directly use ordinary convolution
with a kernel of 3 to capture local features and use a simple SE channel attention block to
strengthen the interaction of channel information in key dimensions. For the extraction
of regional features, the most commonly used is Window Attention. However, in order to
reduce computational costs and maintain the overall lightweight and efficient nature of
the model, this paper did not adopt the approach of window attention. Instead, a Large
Kernel Region-aware Module was designed to extract crucial region-specific information.
The structure of LKRAM is shown in Figure 6.



Sensors 2023, 23, 6446 11 of 20

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 5. The pipeline of the Mixed Receptive Field Context Perception Module. 

The whole module mainly includes three branches of global attention, regional atten-
tion, and channel attention to extract key representation information of large-scale, me-
dium-scale, and small-scale ranges, respectively. The global attention part uses the light-
weight GCAM designed in this paper to model large-scale and long-distance information 
dependencies. For small-scale targets or local details, standard convolution can play a 
good role in feature extraction. Therefore, we directly use ordinary convolution with a 
kernel of 3 to capture local features and use a simple SE channel attention block to 
strengthen the interaction of channel information in key dimensions. For the extraction of 
regional features, the most commonly used is Window Attention. However, in order to 
reduce computational costs and maintain the overall lightweight and efficient nature of 
the model, this paper did not adopt the approach of window attention. Instead, a Large 
Kernel Region-aware Module was designed to extract crucial region-specific information. 
The structure of LKRAM is shown in Figure 6. 

 
Figure 6. The structure of Large Kernel Region-aware Module. 

Large Kernel Region-aware Module. The larger receptive field is the reason why 
window attention has an advantage over ordinary convolution. However, the operation 
of self-attention in the whole window inevitably introduces a large amount of calculation. 
Inspired by large kernel convolution and depth convolution, this paper argues that large 
kernel depth convolution can provide a larger receptive field similar to window self-at-
tention, while greatly reducing computational costs. Therefore, we use a large kernel (e.g., 

Figure 6. The structure of Large Kernel Region-aware Module.

Large Kernel Region-aware Module. The larger receptive field is the reason why
window attention has an advantage over ordinary convolution. However, the operation
of self-attention in the whole window inevitably introduces a large amount of calculation.
Inspired by large kernel convolution and depth convolution, this paper argues that large
kernel depth convolution can provide a larger receptive field similar to window self-
attention, while greatly reducing computational costs. Therefore, we use a large kernel
(e.g., 7 × 7)-based depthwise convolution to extract region information. In addition, we use
a depthwise convolution scaling with a kernel of 1 to perform dilation and compression
operations on each channel to minimize the information redundancy between channels. In
the whole module, two consecutive residual connections are used to ensure the stability of
the gradient, and the Batch Norm (BN) commonly used in convolution is replaced with
Layer Norm (LN) to avoid the problem of weak model generalization caused by BN.

4. Experiments
4.1. Dataset and Evaluation Metrics

The main experiments in this paper are conducted on the MS COCO2017 [41] dataset.
MS COCO2017 contains 80 kinds of objects, including rich and colorful image data of
different scenes in the real world, and is the most general and powerful benchmark dataset
in instance segmentation tasks. The model is trained on a training set (train2017) containing
118 k images and validated on a validation set (val2017) containing 5 k images. The final
results are evaluated on COCO val2017. All experiments are evaluated using COCO’s
standard evaluation metrics, including mean average precision (mAP), APS, APM, and
APL. APS stands for small objects with a size smaller than 32 × 32; APM stands for
medium objects with a size between 32 × 32 and 96 × 96; and APL stands for large objects
with a size greater than 96 × 96. The model evaluates the inference speed using FPS
(frames per second) and time (the time taken for processing a single image). In order to
demonstrate the lightweight nature of the designed components in this study, we employ
the metrics of Params (parameters) and GFLOPs to quantify the model’s parameter count
and computational load, respectively.

4.2. Implementation Details

All experiments in this paper are conducted on a single NVIDIA 3090 GPU with a
memory capacity of 24 GB. The ESAMask is implemented on the PyTorch 2.0 platform
with CUDA 11.7. The training process consists of 200 epochs. During model training,
the image size is set to 640; the batch size is set to 12; and the SGD optimizer is used
for optimization. The initial learning rate is set to 0.01; momentum is set to 0.937; and
weight decay is set to 0.0005. Various data augmentation strategies, such as photometric
distortion, random flipping, and mosaic, are employed to enhance the robustness of the
learned features. Specifically, photometric distortion transforms the input images into the
HSV color space and modifies the values of the three channels (h, s, and v) by ratios of
0.015, 0.7, and 0.4, respectively. Horizontal flipping and mosaic operations are applied
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to the input images with probabilities of 0.5 and 1.0, respectively, to augment the dataset.
Training the model on the COCO dataset takes approximately 7 to 9 days. Some parameters
involved regarding the module proposed in this paper can have different effects on the
experimental results. Therefore, in Section 4.4, we conduct a series of ablation experiments
with different parameter settings to identify the optimal combination. Specifically, after
comparing the results of multiple experiments, the model finally sets the window number
M = 8 and k = 4 for RSPA; the expansion rate r of the reverse bottleneck for GSInvSAM is 2;
and the convolution kernel size of LKRAM is 7 × 7.

4.3. Main Results

In this section, we compare ESAMask with other state-of-the-art methods on the
COCO val set.

Figure 7 presents a comparison between our method and recent state-of-the-art seg-
mentation models in terms of speed and performance. The statistical results depicted in
the chart clearly demonstrate significant advantages of our model in terms of the trade-
off between accuracy and efficiency, surpassing most advanced methods. More detailed
quantitative comparison results are provided in Tables 1 and 2.
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Table 1. ESAMask vs. some typical frameworks on the COCO val set. The ‘-’ means that the
original official paper does not give a corresponding value. ‘Time’ represents the total pre-processing,
inference, and post-processing time (ms) required to complete the segmentation of each image.

Methods Backbone Time FPS mAP APS APM APL

PANet [4] R-50 212.8 4.7 36.6 16.3 38.1 53.1
Mask RCNN [3] R-101 116.3 8.6 35.7 15.5 38.1 52.4
Point Rend [6] R-101 100.0 10.0 38.2 19.1 40.6 55.7

RetinaMask [11] R-101 166.7 6.0 34.7 14.3 36.7 50.5
PolarMask [12] R-101 81.3 12.3 32.1 14.7 33.8 45.2

YOLACT [9] R-101 30.3 33.0 29.8 10.1 32.2 50.1
YOLACT++ [10] R-101 36.9 27.1 34.6 11.9 36.8 55.1
SparseInst [42] R-50 25.0 40.0 37.9 15.7 39.4 56.9

E2EC [43] DLA-34 33.2 30.1 33.8 - - -
SharpContour [33] R-50 82.6 12.1 41.9 24.3 49.4 59.1

QueryInst [22] R-101 163.9 6.1 41.7 24.2 43.9 53.9
Transfiner [21] R-101 153.8 6.5 40.7 23.1 42.8 53.8

Mask2Former [24] R-101 128.2 7.8 44.2 23.8 47.7 66.7
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Table 1. Cont.

Methods Backbone Time FPS mAP APS APM APL

BoxeR [39] R-101 80.0 12.5 43.8 25.0 46.5 57.9
NA [26] NAT 40.2 24.9 44.5 - - -

DiNA [27] DiNAT 40.0 25.0 45.1 - - -

YOLOv5-seg [16] CSPDarknet 21.0 47.6 40.1 22.3 45.4 55.2
YOLOv8-seg [15] CSPDarknet 20.9 47.8 42.6 23.5 47.3 57.8
Ours (ESAMask) CSPDarknet 22.1 45.2 45.4 25.2 49.5 61.1

Table 2. ESAMask vs. some state-of-the-art methods on the COCO val set. The ‘-’ means that the
original official paper does not give a corresponding value.

Methods Backbone Time FPS mAP Params GFLOPs

Mask RCNN [3] R-101 116.3 8.6 35.7 135.0 -
Point Rend [6] R-101 100.0 10.0 38.2 147.2 -

Mask2Former [24] R-101 128.2 7.8 44.2 63.0 293.0

BoxeR [39] R-101 80.0 12.5 43.8 40.1 240.0
NA [26] NAT 40.2 24.9 44.5 85.0 737.0

DiNA [27] DiNAT 40.0 25.0 45.1 85.0 737.0

YOLOv5-seg [16] CSPDarknet 21.0 47.6 40.1 47.9 147.7
YOLOv8-seg [15] CSPDarknet 20.9 47.8 42.6 43.8 220.5
Ours (ESAMask) CSPDarknet 22.1 45.2 45.4 42.6 218.9

The table data provide clear evidence of the competitive advantages of our model
when compared to various state-of-the-art segmentation methods employing different
design paradigms. Specifically, our proposed approach surpasses both two-stage meth-
ods, such as Mask RCNN [3], known for their high accuracy, and Transformer [25]-based
methods such as Mask2Former [24], by achieving further improvements in accuracy while
significantly outperforming them in terms of speed. These results underscore the robust
feature representation capabilities of our model. Additionally, in contrast to renowned
single-stage methods prioritizing speed, such as YOLACT [9], ESAMask maintains supe-
rior accuracy while exhibiting an approximate 10 FPS higher speed. This highlights the
lightweight nature of the modules devised in this paper. By adhering to the principles of
simplicity, effectiveness, and efficiency, our model outperforms the most recent sparse at-
tention backbone network-based methods, including BoxeR [39], NA [26], and DiNAT [27].
Notably, our model demonstrates respective improvements in average precision (AP) of
1.6%, 0.9%, and 0.3% for each method and achieves a higher number of images detected
per second compared to the aforementioned methods. Thus, our approach excels in both
speed and accuracy.

Furthermore, the YOLO family has recently introduced the YOLO-seg [15,16] series
specifically designed for real-time instance segmentation tasks, which has yielded remark-
able outcomes. Comparing our method to YOLOv5-seg [16] and YOLOv8-seg [15], we have
achieved respective improvements of 5.3% and 2.8% in mask mAP, albeit with a correspond-
ing decrease in speed of approximately 2.5 FPS. This reduction in speed can be attributed
to the additional memory access required by the introduced sparse attention mechanism,
which marginally affects the inference speed. Nevertheless, our model remains capable
of ensuring real-time operation while preserving its overall segmentation performance.
We consider this minor decrease in speed to be reasonable. Additionally, by examining
the indicators of APS, APM, and APL in Table 1, our method exhibits varying degrees of
enhancement compared to the baseline model of YOLOv8-seg. This observation indicates
that ESAMask is capable of delivering satisfactory detection results for objects of diverse
sizes.

To demonstrate the lightweight nature of our proposed method more intuitively, this
paper presents a statistical comparison of parameter count (Params) and floating-point
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operations (GFLOPs) among different state-of-the-art (SOTA) models. The results presented
in Table 2 clearly indicate that our method achieves significant reductions in both Params
and GFLOPs when compared to the latest window-sparse attention models, NA [26] and
DiNA [27]. Furthermore, when compared to the baseline model, yolov8-seg [15], our
method demonstrates similar Params and GFLOPs, thus indicating that the approach
developed in this study aligns effectively with the intended objectives of being lightweight
and efficient.

4.4. Ablation Study

Effect of single modules. To assess the efficacy of each proposed component in this
study, we employ yolov8-seg [15] as the baseline model and integrate three distinct mod-
ules: RSPA, GSInvSAM, and MRFCPM. Table 3 illustrates the impact of incorporating
RSPA, which enhances the model’s capacity to capture semantic information during fea-
ture extraction, resulting in a performance increase from 42.6 AP to 43.8 AP. Introducing
the GSInvSAM structure in the neck region led to a reduction of 5.75 M parameters, a
decrease of 19.3 GFLOPs, and an improvement of 0.7% in AP. This outcome highlights the
simultaneous enhancement of performance and the elimination of redundant computa-
tions. Furthermore, by effectively modeling contextual information from various ranges,
MRFCPM achieves a significant accuracy improvement of 0.9 points.

Table 3. Ablation of different components. RSPA: Related Semantic Perceived Attention; MRFCPM:
Mixed Receptive Field Context Perception Module. The ‘

√
’ represents the addition of the correspond-

ing module.

RSPA GSInvSAM MRFCPM mAP FPS Time Params GFLOPs

42.6 47.8 20.9 43.84 220.5√
43.8 46.9 21.3 46.61 220.9√
43.3 48.5 20.6 38.09 201.2√
43.5 45.1 22.2 45.54 237.8√ √
44.6 48.3 20.7 40.86 201.6√ √ √
45.3 45.2 22.1 42.56 218.9

Effect of combination modules. To validate the synergistic effects of the individual
components, we conducted a series of ablation experiments by combining the proposed
modules. As shown in Table 3, when integrating RSPA and GSInvSAM into the baseline
model, the mAP value increased by 2%, accompanied by a 0.5 FPS improvement. With the
inclusion of all three modules, the model achieved a speed of 45.2 FPS while attaining a
45.3 AP. These ablation experiments demonstrate the effectiveness and efficiency of the
designed modules in this study.

Effect of M and k in RSPA. RSPA requires querying k regions with high relevance
from an M × M window to perform sparse attention. To investigate the influence of
different values of M and k on model performance, we integrate the RSPA module into
the yolov8-seg baseline model with varying M and k configurations. Table 4 presents
the results of our experiments, indicating minimal variations in the model’s mAP across
different combinations of M and k. Taking into account speed considerations, we achieve
the highest value of 46.9 FPS when setting M to 8 and k to 4.

Table 4. Effect of M and k in RSPA. ‘M’ represents the number of divided windows. ‘k’ represents the
number of relevant regions.

M k mAP FPS Time

7 4 43.9 45.1 22.2
8 4 43.8 46.9 21.3
8 6 43.9 44.8 22.3
10 6 43.6 45.2 22.1
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Effect of GSInvSAM. To explore effective methods for lightweight network neck
design, we adopt yolov8-seg [15] as the baseline model and conduct a series of experiments
by replacing its C2f module in the neck region with the GSInvSAM composed of different
structures. As shown in Table 5, the model has the lowest number of parameters when
Bottleneck consists of two consecutive GSConv [28], but there is a 0.5% AP degradation in
model performance due to the loss of some valid information. When we combine GSConv
with InvertConv, the model guarantees the inference performance while cutting down the
redundant parameters. We also tried to increase the r of the inverted bottleneck from 2 to
4, and the number of model parameters increased by 3 M, but the performance did not
improve significantly. Therefore, our model is set to r = 2. In addition, when we add the
simple attention module [31] at the end of GSInvSAM, the model improves the performance
by 0.5% without any increase in the number of parameters, which is very beneficial to the
model.

Table 5. Effect of GSInvSAM structure composition on the COCO val set. ‘Base’ represents the original
bottleneck structure of yolov8-seg. ‘r’ represents the expansion rate of the inverted bottleneck.

Bottleneck mAP FPS Time Params GFLOPs

Base 42.6 47.8 20.9 43.84 220.5
GSConv + GSConv 42.1 49.1 20.4 35.10 191.1

GSConv + InvertConv (r = 2) 42.8 48.8 20.5 38.10 201.2
GSConv + InvertConv (r = 4) 42.9 47.9 20.9 40.53 209.4
GSConv + InvertConv + SAM 43.3 48.5 20.6 38.10 201.2

Effect of LKRAM kernel size. LKRAM is a submodule in MRFCPM used to capture
region representations. In order to set an appropriate convolution kernel size, we use the
standard yolov8-seg model as the baseline and add MRFCPM with different k values to
conduct multiple experiments. It can be seen from the experimental results in Table 6 that
as the k value increases from 5 to 7, the mAP gradually increases. And at the same time,
the speed decreases due to the increase in the number of parameters. When k increases
from 7 to 9, the FPS decreases by 0.6, and the AP value only increases by 0.1%. Therefore,
in order to ensure that the accuracy and speed can reach a more balanced state, the model
finally sets k = 7.

Table 6. Analysis of LKRAM kernel size on COCO val set.

k mAP FPS Time Params

Base 42.6 47.8 20.9 43.844
5 43.2 45.3 22.1 45.792
7 43.5 45.1 22.2 45.795
9 43.6 44.5 22.5 45.799
11 43.5 43.9 22.8 45.804

4.5. Visualization of Results

To provide a more intuitive demonstration of the mask generation quality of the
proposed model, a qualitative comparison is conducted between ESAMask and other
classical instance segmentation models. The results are presented in Figure 8, where the
images are divided into three columns representing small, medium, and large targets,
respectively. The visualization results clearly showcase that ESAMask outperforms other
classical methods in terms of segmentation accuracy and quality across targets of varying
scales. Notably, the model in this paper exhibits smoother and more detailed segmentation
along the boundary pixels compared to Mask RCNN [3], Transfiner [21], and similar
approaches. This can be observed in the horse leg segment in Figure 8b and the airplane
wing segment in Figure 8c. Moreover, Figure 8a demonstrates the model’s ability to
accurately segment small and occluded cows, further highlighting its effectiveness in
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handling such challenging scenarios. In contrast to yolov8-seg [15], our model achieves
higher segmentation accuracy and overall segmentation quality. For instance, in Figure 8a,
the original yolov8-seg fails to accurately segment an overlapping cow in the distant
background, while in Figure 8c, the segmentation of the airplane wing in yolov8-seg
contains redundant regions. The segmentation results from various methods collectively
demonstrate that the model proposed in this paper excels in enhancing the segmentation
of large targets, small targets, and edge regions.
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To further demonstrate the segmentation effectiveness of ESAMask across a broader
range of object categories, Figure 9 presents a diverse and comprehensive collection of
visual examples. These examples encompass various scenes, object categories, and scales.
Analysis of the figure reveals that our method excels in distinguishing between different
instances of the same category and visually similar instances of different categories. Notably,
in row 1 (columns 1 and 2), our method accurately discriminates between elephants.
Similarly, in row 2, it successfully segments giraffes, zebras, and horses. Additionally, it
effectively discriminates between shape-similar objects, such as apples and oranges, in row
1 (column 3). Importantly, our method achieves complete segmentation even for larger
objects like buses (row 4, column 1) and trains (row 4, column 2) in street scenes. These
visual examples convincingly showcase the generalization capability of our method in
accurately segmenting objects across diverse categories and scales.
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5. Limitation and Future Work

In this paper, we introduce sparse attention with semantic queries, which, compared to
other fixed-rule window attentions, incorporates additional steps to compute the adjacency
matrix of relevant regions. While this step does not result in a significant decrease in speed,
it unavoidably introduces an increase in parameters and memory access frequency. Further-
more, the inclusion of MRFCPM allows for the simultaneous modeling of global, regional,
and local information, thereby increasing the model’s complexity and computational cost.
In the future, we will explore the application of lightweight methods such as pruning and
quantization to the model, aiming to investigate more efficient sparse attention approaches.
Additionally, inspired by the work of [44], we plan to study effective segmentation methods
for images in challenging conditions such as rainy or foggy weather, to meet the demands
of real-world application scenarios.

6. Conclusions

This paper presents a novel single-stage segmentation method, ESAMask, that aims
to strike a better balance between accuracy and efficiency. To achieve this goal, we follow
the principles of simplicity, lightweightness, and effectiveness and propose three novel
modules: RSPA, GSInvSAM, and MRFCPM. These modules enable ESAMask to generate
high-quality masks with lower computational cost. We extensively evaluate ESAMask and
its components on the MS COCO dataset through quantitative experiments and visualiza-
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tion results. Our results show that ESAMask maintains fast and real-time advantages in
high-accuracy segmentation. We believe that our method can contribute to the development
of faster and more accurate instance segmentation in the future.
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