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Abstract: This work is focused on the preliminary stage of the 3D drone tracking challenge, namely
the precise detection of drones on images obtained from a synchronized multi-camera system. The
YOLOv5 deep network with different input resolutions is trained and tested on the basis of real,
multimodal data containing synchronized video sequences and precise motion capture data as a
ground truth reference. The bounding boxes are determined based on the 3D position and orientation
of an asymmetric cross attached to the top of the tracked object with known translation to the object’s
center. The arms of the cross are identified by the markers registered by motion capture acquisition.
Besides the classical mean average precision (mAP), a measure more adequate in the evaluation
of detection performance in 3D tracking is proposed, namely the average distance between the
centroids of matched references and detected drones, including false positive and false negative
ratios. Moreover, the videos generated in the AirSim simulation platform were taken into account in
both the training and testing stages.

Keywords: drone detection; unmanned aerial vehicle; deep learning; motion capture; Vicon; YOLO;
drone localization

1. Introduction

The popularity of drones has increased significantly in recent years. One of the main
reasons for this is the advancement of technology, which has led to smaller, more affordable,
and user-friendly devices. This allows them to be used in both professional and amateur
applications [1]. The miniaturization of sensors and cameras has made it possible to equip
drones with high-resolution cameras, GPS, and other sensors that enable them to collect
data and perform tasks that were previously impossible or very difficult to achieve. Thanks
to that, they can be used to survey large land areas, inspect buildings and structures, and
even deliver packages [2].

The increasing popularity of drones also has its downsides. There is a potential risk to
privacy, as they can be used to gather sensitive information or to spy on people without
their knowledge or consent [3]. Additionally, they can also pose a risk to air traffic, as
they can collide with other flying objects or distract pilots. Furthermore, drones can be
weaponized and used for terrorist attacks, smuggling of illegal goods, and espionage [4].
Therefore, it is essential to develop drone detection mechanisms to minimize these risks.

Actually, detecting drones is quite a challenging task because they are small, lightweight,
and can fly at high speeds, which makes them difficult to spot against complex backgrounds
such as trees or buildings [5]. Additionally, they can fly at high and very low altitudes,
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making them hard to detect using radar and other sensors. Currently, there are many
methods to detect drones, but they are often not accurate enough and expensive.

One group of drone detection methods is the use of radar systems and sensors [6,7].
These methods have some benefits but some limitations as well. For example, radar
can be jammed [8] or blocked by buildings, or sensors can have difficulty distinguishing
drones from other small flying objects such as birds, making it difficult to detect drones
accurately [9]. Moreover, these solutions require additional detectors and sensors, which
makes them more expensive.

Primarily, 3D drone tracking is of high practical relevance, for instance, for the game
industry or for security systems [10]. This means that the 3D positions of the flying
drones in successive time instances are determined. Their 3D tracking can be implemented
on the basis of multi-camera video registration, as visualized in Figure 1. If the drones’
positions are known, along with internal and external camera parameters, it is possible to
reconstruct the 3D coordinates. In the case of multiple drone tracking, object matching on
different images has to be performed using, for instance, epipolar geometry or a selected
optimization technique. The first and crucial stage of such a system is drone detection
on 2D images, in which bounding boxes are determined. If properly found, their centers
correspond to the mean 2D position and are taken for further 3D reconstruction.

Figure 1. Multi-camera drone registration. Determined bounding boxes and epipolar lines are
visualized.

Recently, detection methods on images using neural networks have gained significant
popularity [5,11]. One of the main reasons for that is their high accuracy and speed of
detection. Their efficiency is caused by the fact that they can be trained to identify drones
in a wide range of conditions and environments. This is because training datasets can
be populated with data containing instances that make detection difficult [12]. These
include changes in lighting conditions, the drone disappearing from the camera’s field
of view, changes in the angle at which the drone is seen by the camera, and many more.
Additionally, neural networks can be updated and retrained as new models are released,
which allows them to adapt to new objects.

Currently, there are many solutions using neural networks for object detection. Each of
these approaches has distinctive features that make it possible to select the right solution for
the requirements of a given task. For example, YOLO [13] is an object detection algorithm
that predicts bounding boxes and class probabilities in a single pass, making it ideal for
real-time detection. On the other hand, Densenet201 [14] excels in image recognition tasks,
focusing on high accuracy rather than real-time performance. It is characterized by its
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dense connectivity, where feature maps from preceding layers are concatenated to the
current layer. This design promotes feature reuse and enables efficient gradient flow during
training. Another technique could be background subtraction with MobileNetV2 [15].
It focuses on detecting objects in dynamic scenes by first extracting foreground objects
using background subtraction and then applying MobileNetV2 for object detection. This
approach can be useful in scenarios where object motion plays a significant role, but it
is slower than the YOLO algorithm. There are advantages and disadvantages to each of
these methods, so a series of tests should be conducted to identify the right one for the
given task.

The far-reaching goal of the presented research is related to the construction of a 3D
drone tracking system operating on multi-camera video registration. The main application
of the mentioned system is its use in augmented reality systems. These systems will operate
in closed spaces like sports halls, hence the need to also ensure the safety of the drones so
that they do not collide during flights with multiple drones in a limited confined space. In
order to perform tracking in three-dimensional space, drones must first be detected; hence,
this work is focused on precise drone detection in 2D images. The proper technique is
selected, trained, and evaluated based on both simulated video sequences generated in
the AirSim environment and real multi-camera video data with synchronized, multimodal
reference data acquired by the Vicon system [16]. New algorithms needed to be developed
to determine the accurate position of the drone in a 3D space. The contribution of this
paper focuses on the following elements:

• The use of markers to create a different asymmetrical cross for each drone for 3D
position reconstruction to enable the accurate localization of drones in a 3D space.

• The development of a projection algorithm from 3D to 2D for multiple cameras, which
enables the precise and automatic labeling of a real dataset.

• The proposition of custom metrics (Mean Centers’ Distance, MCD) for assessing the
quality of drone detection based on a comparison of bounding box centers.

• Preparation and sharing of databases containing simulation and real data for deep
neural network training and testing.

• Analysis of speed and precision for multiple YOLOv5 settings.
• Comparison of the performance of YOLOv5 and YOLOv8 on our datasets.

The structure of this article is as follows: Section 2 contains a review of the literature in
terms of drone detection using deep neural networks. The next section (Section 3) presents
information about the prepared dataset. Section 4 contains the description of the utilized
methods. The experimental results are presented in Section 5. Finally, the summary and
conclusions are given in Section 6.

2. Related Work

The most widely discussed drone detection methods in recent research related to
deep neural networks are those using the YOLO (You Only Look Once) algorithm. YOLO
is a popular method for detecting objects due to its speed and efficiency. Its real-time
performance, high accuracy, and simplicity make it suitable for a wide range of applications.
The authors of [17] applied YOLOv4 to detect drones and distinguish them from birds.
The task was challenging due to the high similarity of the detected objects. The authors
used about 10,000 images to train the neural network. Analyzing the public portions of the
dataset, it can be noticed that most of the images contain drones in the foreground of the
scenery. This, combined with the detection threshold of about 0.35, allowed the authors
to obtain high-accuracy results of 83% and a mAP of 84%. An analogous application of
YOLOv4 is described in [18], where training using a neural network was performed on
similar images in terms of complexity, but the dataset itself contained more than half as
many images as in the previous case. This contributed to about a 10–20% worse accuracy
than in the previously discussed work. A distinguishing feature of this work is that
the model was also tested on their proprietary dataset that consisted of footage taken
during a drone flight. With the footage, the authors were able to determine the model’s
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processing efficiency, which was around 20 fps. However, the comparison to other solutions
is difficult, as it depends on both the GPU used for the computations and the model itself.
The described papers show the YOLOv4 algorithm to be promising for drone detection;
however, in our case, we need more accurate detection results carried out under heavier
scenery conditions.

Another approach was presented by the authors of [14]. They used the Densenet201
neural network to detect three types of drones. The neural network was trained using a
synthetic dataset created by the authors. For this purpose, they developed a data generation
method that made it possible to produce synthetic data with labels in a short time. To
test the model, they used footage of the drone’s flight, which often showed scenery where
the drone was depicted in the central part of the image. The presented method achieved
an accuracy of 92.4% and a mAP of 88.8%. Although the tests were performed using
recordings, the results of the detection speed were not shown. Despite fairly high detection
accuracy scores, the algorithm is too slow for real-time drone detection using several
Full-HD cameras simultaneously.

This paper [19] demonstrates that the MobileNetV2 convolutional neural network can
provide comparable results in drone and bird detection to those previously discussed. What
distinguishes their approach is the division of the detection process into two separate stages.
First, the detection of moving objects based on background subtraction [20] is performed,
and then the classification of drones and birds is carried out using the convolutional
neural network. This method has one major limitation related to the fact that the moving
background strongly affects the detector’s performance. The aforementioned method
allowed the authors to obtain a mAP score of 70% using a threshold of 0.5. In contrast,
the detection speed was only 9 fps, which may be highly dependent on the GPU. The
complexity of the operations needed to perform detection is too high to allow for the
real-time processing of video from several Full-HD cameras.

In [21], the performance evaluation of the 2D object tracking registered by the drone’s
camera is based on Vicon measurements. This is a different problem than that of 3D
drone tracking faced in this paper. Moreover, the results are presented in a graphical form,
without providing any quality measures.

Although there are many publications discussing drone detection, there is still a lack
of research presenting well-tested solutions in challenging conditions with reliable perfor-
mance evaluations for the purpose of 3D tracking. In this paper, a novel YOLOv5 deep
convolutional neural network, hybrid data simulated in the AirSim Platform, and multi-
modal data registered by the Vicon system are used. This made it possible to automatically
create a large number of labeled data, which are applied to train the neural network and
perform detailed tests of the model’s performance and precision.

It is worth paying attention to the need to verify machine learning systems, in par-
ticular neural networks, using formal methods based on mathematical foundations. The
authors of [22] reviewed the categories of formal methods (abstract interpretation, seman-
tic static analysis, model checking, proof assistants, deductive verification, model-based
testing, and design by refinement) and briefly described the methods used for neural
networks, decision tree ensembles, and support vector machines. It should be emphasized
that this review was not limited to already-trained models, but also included the phases
of data preparation and model training, often omitted in these type of studies. Particular
attention was paid to the problem of local robustness against adversarial perturbations.
For convolutional networks, the CNN-Cert framework was referred to, the mathematical
foundations of which are given by [23]. The next consistent step in the application of formal
methods is the verification of an ML-based complex system-of-systems, which is considered
by [24], illustrating their approach with an example based on the flight of autonomous
UAVs in formation.
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3. Dataset Preparation

In the training and testing of the YOLOv5 network, primarily real and multimodal data
registered in the Human Motion Lab (HML) of the Polish-Japanese Academy of Information
Technology are used. Moreover, they are extended by simulated video sequences generated
in the AirSim Platform. All the data are freely available at http://bytom.pja.edu.pl/drones/
(accessed on 10 July 2023).

The summary of captured sequences containing numbers of cameras and tracked
drones as well as video resolution, duration, and frames per second are presented in Table 1.
The spatial arrangement of cameras is depicted in Figure 2. The synthetic datasets contain
videos from eight cameras, while the real ones contain data from only four corner cameras.

y

x

(0,0)

cam_4

cam_1cam_2

cam_3cam_5

cam_6

cam_8cam_7

Figure 2. Top view of the laboratory scene with the position of cameras.

Table 1. Summary of collected datasets.

Dataset #Drones #Drones Models Duration [s] Flight Pattern

Synthetic data, 1920 × 1080@25fps, 8 cameras

AirSim_1 4 1 10 horizontal

AirSim_2 10 1 10 synchronized

AirSim_3 10 1 10 synchronized

AirSim_4 8 1 20 synchronized

AirSim_5 6 1 20 synchronized

AirSim_6 8 1 20 asynchronous

AirSim_7 8 3 20 synchronized

AirSim_8 8 3 20 sinusoidal asynchronous

AirSim_9 8 3 20 sinusoidal asynchronous

AirSim_10 2 1 20 free

Real data, 1924 × 1082@25fps, 4 cameras

HML_1 1 1 78 free

HML_2 1 1 60 free

HML_3 2 1 90 free

3.1. Real Multimodal Data

In the measurements, the Vicon system was used as the gold standard. It provides
a motion capture acquisition based on a set of infrared cameras that reconstruct the 3D
positions of moving markers. Moreover, the system is equipped with four calibrated RGB
cameras synchronized with the motion capture registration. It is capable of capturing

http://bytom.pja.edu.pl/drones/
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high-precision multimodal data at high frame rates and can track multiple objects or people
simultaneously. The Vicon includes a software suite that allows users to process and analyze
the motion capture data and export them to well-known formats. These properties made
Vicon an ideal solution to train and validate detections performed by neural networks.

To achieve this, markers are attached at the top of tracked drones. They form an
asymmetric cross structure with known proportions, as visualized in Figure 3.

(a) (b)

Figure 3. Markers forming asymmetric cross attached to a drone. To distinguish the drones from each
other, each cross is different. (a) 3D model with local coordinate system XYZ. (b) Example of a drone.

A motion capture system computes their 3D coordinates in subsequent time instants,
which allows for the determination of the 3D drone position and orientation in the following
way: In the first stage, the center of the cross is established, and markers are identified.
This is realized by comparing distances between the markers. Due to the limited precision
of the measurements, we cannot assume that the arms of the cross are coplanar. Thus, we
compute the position of the center marker as the projection of point B from Figure 3a on the
AC line segment. Then, versors of the local drone coordinate system XYZ are determined
using the following formulas:

x̂ =

−→
EA
|EA| (1)

ŷ =

−→
ED
|ED| (2)

ẑ = x̂× ŷ (3)

Having information concerning the i-th drone size; the 3D coordinates of bounding
box vertices Vi

l = (Vi
l,x, Vi

l,y, Vi
l,z) in the local system XYZ; its reference point—the origin of

the local system, which is the center E of the cross; as well as the plane orientation pointed
by versors x̂, ŷ and ẑ, the 3D coordinates of the vertices Vi

g in the global system can be
calculated.

Vi
g = Vi

l,x · x̂ + Vi
l,y · ŷ + Vi

l,z · ẑ + E (4)

Finally, the vertices of the 3D bounding box are projected on the 2D image based on
internal and external camera parameters. Thus, we obtain a 2D bounding box, being the
ground truth data for the neural network. The process is visualized in Figure 4, in which
markers of the motion capture system are labeled in blue, vertices of the 3D bounding box
in green, and extracted 2D bounding box in red.
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Figure 4. Bounding box extraction based on the motion capture measurements. Markers and 2D and
3D bounding boxes are labeled with blue, green, and red colors, respectively.

Three separate recordings, each with a different flying quadrotor drone, were used for
training and testing. The selected models are a custom-made one with the CUBE Orange
flight controller (Figure 5a), an “X500 V2”-based one with HolyBro 6C (Figure 5b), and a
DJI Mavic 2 (Figure 5c). In total, around 18 000 frames were obtained using four calibrated
and synchronized RGB cameras with Full HD, 25 fps.

(a) (b) (c)

Figure 5. Physical drones used in the dataset. (a) Custom made. (b) X500 V2. (c) DJI Mavic 2.

3.2. Simulated Data

To generate simulated data, the AirSim [25]—an open-source, high-fidelity platform
for preparing animation with autonomous systems, including drones, cars, and other
vehicles—was chosen. It uses the Unreal Engine and provides realistic physics and sensor
models for accurate simulation with reference ground truth data.

We replicated the coarse appearance of the HML laboratory in the virtual reality
in which our simulations were located. The setting with eight cameras performing 2D
projections was applied. This means that for every animation, eight video sequences
were obtained. Due to the animation created, the 3D positions of the drones were known.
This makes it possible to extract 2D masks and bounding boxes processed by the neural
network. An sample simulation frame with the corresponding drone masks, viewed from
the perspective of two selected cameras, is depicted in Figure 6.
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Figure 6. AirSim simulation with eight flying drones. Two selected video frames (at the top) with
corresponding drone masks (at the bottom), were obtained at the same time from different cameras.

Ten simulations with a different number of flying drones (2–8) and 20 s of duration
were prepared. A DJI Mavic model 2 (Figure 7a) and a custom-designed one (Figure 7b)
were used in the animations. Eight virtual camera streams were created with 25 fps each,
providing a total of about 40,000 synthetic images for training and testing.

(a) (b)

Figure 7. Virtual drones used in the dataset. (a) DJI Mavic 2. (b) Custom designed.

4. Methods

For the purpose of drone detection, the YOLOv5 architecture was chosen. To enlarge
the training dataset and make it more representative, data augmentation was carried out.
In the performance evaluation, the classical mAP measure as well as the one designed to
be more adequate for assessing the usability of the detection in 3D object tracking were
applied. Some details are described in the following subsections.

4.1. YOLOv5

The high performance of deep neural networks in image recognition is caused by the
availability of huge datasets and extensive computational resources. The generalization of
their work is achieved by the multilayer architectures containing convolutional and fully
connected layers. The neuron weights are updated by the gradient descent procedure and
the backpropagation algorithm.

One of the most popular algorithms using convolutional neural networks for object
detection in images and videos is YOLO (You Only Look Once). Among other applica-
tions, it has been used in face mask recognition [26], object detection on drone-captured
scenarios [27], and heavy goods vehicle detection [28]. What sets it apart from most other
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solutions is its performance. It is a single-shot algorithm, meaning that it makes predictions
for all objects in an image or video frame in a single pass. This makes it well-suited for
real-time object detection on video, where speed is critical.

The YOLOv5 version that uses PyTorch instead of the Darknet framework was selected.
The network structure contains three main components: a backbone, a neck, and a head,
as shown in Figure 8. In the backbone, the new CSP-Darknet53 architecture was applied.
It uses the C3 layer, which is a simplified version of the used CSP Bottleneck layer, by
removing one of the four main convolutions from inside of CSP Bottleneck layer. To reduce
the number of parameters, truncation of the gradient flow is performed. The CSP networks
preserve DenseNet’s feature reuse qualities and reduce the redundant gradient information
that normally occurs, which helps to increase the inference speed [29]. In the neck block, a
modified version of the PANet (Path Aggregation Network) with C3 layers and the SPPF
(Spatial Pyramid Pooling Fast) have been used [30]. The SPPF is an improved, faster version
of the popular SPP with an increased flow of information, making it easier to locate pixels
correctly. The head block is the same as the one used in YOLOv3 and YOLOv4, which
contains three convolution layers that are used to predict the location of bounding boxes
and calculate the scores. In our case, the head block was modified by performing the
transfer learning, which starts the training with pre-trained weights achieved for the COCO
dataset. The transfer learning may result in a less precise network, which is originally
adapted to a different detection problem. However, in most cases, it allows us to obtain
satisfactory results with fewer training samples and with a lower computational cost and
minimize the probability of network overfitting.

Figure 8. Simplified architecture of the YOLOv5.

4.2. Data Augmentation

In order to avoid overfitting, the training process has been enhanced by synthetic im-
ages. Primarily, two base datasets were prepared. The first one contained about 300 images
with drones cropped from the randomly taken video frames. In the case of the HML record-
ings, this was performed manually using graphics utility, while for AirSim simulations,
it was performed automatically on the basis of the generated masks (see Figure 6). The
second dataset contains background images. We combined both of them by randomly
placing drones in background images. Moreover, some extra affine transformations were
applied, and some examples of such synthetic images are shown in Figure 9.
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Figure 9. Examples of synthetic images.

Furthermore, data augmentation was employed on-the-fly, together with the loading
of the dataset for neural network training. As in the previous case, a set of transformations
provided by the Albumentations library [31] were implemented. Techniques such as
random cropping (30%), resizing (20%), flipping (50%), noise (20%), and brightness (60%)
were applied randomly to each image with indicated probabilities.

4.3. Evaluation Metrics

The classical measure for the assessment of the performance of the detection repre-
sented by bounding boxes is mean average precision (mAP). It is based on the intersection
over union (IoU) ratio calculated for the matched predicted and reference regions. For
the given confidence value of the recognized object by the YOLO network, the IoU is
thresholded to determine the true and false positives as well as false negatives. Thus,
precision (positive predictive value) and recall (true positive rate) measures can be com-
puted. Analyzing different confidences, the area under the precision/recall curve, called
average precision, is calculated. To accomplish this task, eleven-point interpolation method
is selected, where eleven points are evenly placed on the recall axis, and the average of
corresponding precision values is computed. Moreover, to obtain a monotonic curve,
smoothing is carried out in such a way that every precision value is substituted by the
maximum calculated for recalls equal to or greater than the current one. Finally, mean
average precision is determined as the mean obtained by different thresholds applied for
the IoU ratio. In a default variant, nine uniformly distributed values in the range (0.1, 0.9)
are taken into consideration. In the more restrictive one, only the range (0.5, 0.9) is analyzed,
which means that detections covering less than 50% of the reference objects are rejected
and treated as false.

However, from the point of view of 3D object tracking in which 3D coordinates in the
global system of the central point are reconstructed, the measure analyzing the IoU ratios
of the detected and reference bounding boxes is far from perfect. This is mostly due to the
fact that drones usually have some small vertical elements like antennas, landing legs, etc.
(see Figure 5a), which, when included in the bounding box, shift its center from the center
of the base. On the other hand, when they are not included in the bounding box, they
make the bounding box smaller than that of the reference, and the IoU is low even though
the drone’s position may be perfectly matched. Therefore an alternative approach in the
form of Mean Centers’ Distance (MCD) has been proposed in order to achieve a better
quality of drone tracking, which will be the main goal of the future study. It calculates
the mean distance between centers of bounding boxes, processed in the successive stages
of the 3D reconstruction. Similarly to the mAP measure, it requires matching detection
with the closest ground truth object; however, instead of IoU values, now it is based on
centers’ distances. Considering the situation in which there are more references or detected
objects, false negatives and positives may occur. To determine them, a distance threshold is
applied in order to reject too-distant matches. Unmatched detected and reference objects
are considered false positives and negatives, respectively. The threshold value influences
the measure calculated, and it should be chosen depending on the expectations. If a shorter
mean distance is demanded, the lower threshold must be selected, but the side effect is a
greater number of false positives and negatives. To visualize these relationships, graphs,
determined by applying different distance thresholds, are presented.
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It is more convenient to interpret false positives and negatives if they are expressed
on a relative scale rather than an absolute one. In the classical variant, this is achieved by
normalizing them by the total number of negatives and positives, respectively. However, in
the faced problem, the true negatives are unknown. Thus, we divide both measures by the
number of all positives. The resultant values are called false positive (FPR) and negative
(FNR) rates.

5. Results

To assess the detection performance, disjoint training and testing sets were prepared.
In the preprocessing stage, images are scaled, preserving the aspect ratio to match the input
resolution of the neural network. In the postprocessing phase, they are upscaled back to
their original Full-HD resolution. Moreover, pixel values are standardized. Overlapping
and resultant bounding boxes are eliminated on the basis of a non-maximum suppression
procedure. Quality measures are calculated, and their analysis is conducted separately for
the AirSim and HML data.

In Table 2, the mAP values for the default (0.1, 0.9) and more restrictive (0.5, 0.95)
IoU ranges, obtained by the neural network operating on images with default resolution
640× 640, are depicted. The detections are pretty accurate only for the AirSim sequences
with mAP values greater than 0.8. They are much less precise for the HML videos. In
particular, the mAP@0.5:0.95 is very low, which means that most detections have an IoU
ratio below 0.5.

Because of much worse performance in the case of the HML data, additionally, higher
resolutions (736× 736 and 1024× 1024) of the images processed by the YOLO network were
investigated. Despite much greater computational expansiveness, the obtained recognition
improvement is insignificant.

Table 2. Mean average precision for IoU ranges (0.1, 0.9) (mAP@0.1:0.9) and (0.5, 0.95) (mAP@0.5:0.95)
obtained in the AirSim and HML validation with a different resolution for the processed input image.

Resolution mAP@0.1:0.9 mAP@0.5:0.95

AirSim 640× 640 0.89 0.83

HML

640× 640 0.41 0.09

736× 736 0.43 0.11

1024× 1024 0.44 0.12

The results of the achieved Mean Centers’ Distance and false positive and negative
rates for matching distance thresholds 10, 20, and 30 are presented in Table 3, and complete
dependencies between MCD, FNR, and FPR are visualized in Figure 10. The distances
are expressed in image pixels in Full-HD resolution. Once again, much better results are
obtained for AirSim data. The drones are detected with only 3–4 pixels of mislocation. The
false negative and positive rates are insignificant—a tiny percentage of detected and actual
objects remains unmatched. It is more troublesome for the real videos recorded in the HML
lab. MCD, FNR, and FPR measures are higher, which means mislocations are greater, and
the number of undetected and incorrectly recognized drones is larger. In spite of that, the
results are quite satisfactory for HML data as well. The average and median lengths of
the reference bounding boxes’ diagonals are 270 and 210, respectively. This means that
the highest mean relative mislocation for matching threshold 30, which corresponds to
acceptable false rates lower than 13%, is only about 5.5% or 7% percent.

The results obtained for the sizes of the processed images 640× 640 and 736× 736 are
pretty similar. Surprisingly, for the highest resolution 1024× 1024, the least-accurate drone
detection is achieved, even though it gives the best coverage of the matched bounding
boxes, as described by the mAP values from Table 2.
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Table 3. MCD, FNR, and FPR for AirSim and HML validation with a different resolution of the
processed input image, obtained for various threshold values applied in the matching procedure.

Threshold Metrics
AirSim HML

640 × 640 640 × 640 736 × 736 1024 × 1024

10

MCD 3.71 px 6.78 px 6.74 px 6.86 px

FNR 0.07 0.78 0.77 0.79

FPR 0.05 0.78 0.75 0.84

20

MCD 4.03 px 12.57 px 12.64 px 12.85 px

FNR 0.03 0.31 0.31 0.31

FPR 0.02 0.29 0.31 0.36

30

MCD 4.16 px 15.38 px 15.15 px 15.40 px

FNR 0.02 0.12 0.13 0.12

FPR 0.01 0.12 0.11 0.17

The balance between the expected Mean Centers’ Distance and one of two remaining
metrics (false positives or false negatives) can be influenced, as presented in Figure 10,
which is particularly useful for the HML data. For instance, the reduction of the mean
drone mislocation below ten pixels causes approximately 35% of drones to be undetected
and 45% of detections to be rejected.

(a) (b)

(c) (d)

Figure 10. Mean Centers’ Distance in relation to false positive and negative rates for the AirSim and
HML data. The resolution of the processed images by the YOLO network is 640× 640. (a) AirSim,
MCD/FNR. (b) AirSim, MCD/FPR. (c) HML, MCD/FNR. (d) HML, MCD/FPR.
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The large differences in detection results between the AirSim and HML recordings
led us to test a different neural network architecture. For this purpose, YOLOv8 models
were trained using the datasets described earlier. The detection results of the new models
compared to those previously obtained using YOLOv5 are shown in Table 4. Similar
to YOLOv5, the results for YOLOv8 were significantly better when tested on AirSim
recordings than when testing on HML. The mAP results were found to be slightly better for
YOLOv8. However, the MCD results for HML, which are more relevant in this case, proved
to be worse than for YOLOv5. The bounding box centers were fitted about 1px worse than
was the case with YOLOv5; in addition, the FNR and FPR metrics using a threshold of 10
and 20 showed worse results, which could significantly hamper further work.

Table 4. Comparison between YOLOv5 and YOLOv8 for 640× 640 resolution.

Threshold Metrics
AirSim HML

YOLOv5 YOLOv8 YOLOv5 YOLOv8

10

MCD 3.71 px 2.15 px 6.78 px 6.92 px

FNR 0.07 0.06 0.78 0.83

FPR 0.05 0.02 0.78 0.84

20

MCD 4.03 px 2.28 px 12.57 px 13.48 px

FNR 0.03 0.04 0.31 0.35

FPR 0.02 0.01 0.29 0.36

30

MCD 4.16 px 2.35 px 15.38 px 16.51 px

FNR 0.02 0.04 0.12 0.09

FPR 0.01 0.01 0.12 0.10

–
mAP@0.1:0.9 0.89 0.90 0.41 0.49

mAP@0.5:0.95 0.83 0.88 0.09 0.15

6. Summary and Conclusions

In this paper, the problem of drone detection on 2D images as the first stage of a 3D
object tracking system is presented, where YOLOv5 network and transfer learning are
applied to accomplish the task. In the training and validation, simulated data prepared
in the AirSim Platform, as well as real multimodal data registered in the HML lab, are
used. To automatically label real video sequences, the method of establishing the 3D drone
orientation based on the positions of the markers of the asymmetric cross is proposed. In
the evaluation, the classical mean average precision as well as the measure that determines
the mean distance between matched bounding box centers are used.

The obtained results are impressive for the AirSim video sequences and are still
acceptable for the HML ones. Primarily, the difference may be explained by a much larger
simulated dataset in comparison to the real one. Moreover, as seen in Figures 1, 4 and 6, a
simpler background was prepared in the AirSim, and simulated data are not influenced by
any acquisition noise, which makes the detection easier.

It was expected that we would achieve greater improvement in the detection when
the images processed by the YOLO network were of higher resolution; however, there
was only a slight improvement reflected by mAP values. Still, as explained in this paper,
the mAP does not fully correspond to the measure that compares drone centers, which is
of greater importance in the case of drone tracking. The insignificance of improvement
may have been caused by a greater number of parameters of the network when processing
images with higher resolutions, which suggests that the learning is more demanding and
may require a larger training set.

Similar tests were performed on the newest YOLOv8, where significantly better results
were expected than when using the YOLOv5 model. In the example described in this paper,



Sensors 2023, 23, 6396 14 of 16

the tests showed YOLOv8 was advantageous for the MCD metric only for the AirSim
dataset. Based on the results of the HML recordings included in Table 4, which are more
important in our case due to the target use of the algorithm in real-world conditions and
because the detection times of the individual models were very similar, YOLOv5 was
selected for further work.

However as mentioned before, even the results obtained from the HML data are still
promising from the point of view of 3D object tracking, which is our next challenge, as the
distances are relatively small. Moreover, we can control the matching between detections
on different cameras in a quite analogous way as in the proposed evaluation procedure.
By applying the threshold for distances to epipolar lines, we can expect to achieve similar
dependencies as the ones presented in Figure 10.
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