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Abstract: The accurate prediction of vehicle speed is crucial for the energy management of vehicles.
The existing vehicle speed prediction (VSP) methods mainly focus on road vehicles and rarely
on off-road vehicles. In this paper, a double-layer VSP method based on backpropagation neural
network (BPNN) and long short-term memory (LSTM) for off-road vehicles is proposed. First of
all, considering the motion characteristics of off-road vehicles, the VSP problem is established and
the relationship between the variables in the problem is carefully analyzed. Then, the double-layer
VSP framework is presented, which consists of speed prediction and information update layers. The
speed prediction layer established by using LSTM is to predict vehicle speed in the horizon, and the
information update layer built by BPNN is to update the prediction information. Finally, with the
help of mining truck and loader operation scenarios, the proposed VSP method is compared with the
analytical method, BPNN prediction method, and recurrent neural network (RNN) prediction method
in terms of speed prediction accuracy. The results show that, under the premise of ensuring the real-
time prediction performance, the average prediction error of the proposed BPNN-LSTM prediction
method under two operation scenarios reduces by 48.14%, 35.82% and 30.09% compared with the
other three methods, respectively. The proposed speed prediction method provides a new solution
for predicting the speed of off-road vehicles, effectively improving the speed prediction accuracy.

Keywords: vehicle speed prediction; BPNN; LSTM; non-road vehicles

1. Introduction

Transportation plays an important role in social and economic development, which
is the foundation of a country’s rapid and sustainable development. With the progress of
society, it is difficult for traditional transportation technology to cope with the increasing
traffic pressure [1]. The intelligent transportation system (ITS) emerges with the help of big
data and artificial intelligence [2,3]. Accurate vehicle speed prediction (VSP) is not only an
important component of ITS, but also the key to achieving energy optimization.

At present, in terms of on-road vehicles, the existing VSP methods are mainly divided
into mechanism modeling and data-driven methods [4]. The mechanism modeling method
is to predict the information of the target driving condition according to traffic flow theory,
which mainly includes dynamic models, macro models, and micro models [5,6]. However,
in the actual situation, the vehicle motion process is affected by its own motion state and
external traffic state, which makes it difficult for the VSP model established by mechanism
modeling method to effectively reflect the real motion process of the vehicle. Therefore, the
data-driven VSP methods, such as the Markov model and artificial neural network (NN)
model [7], have been proposed, which can predict the future speed of the vehicle based
on the current and historical condition information [4,8]. In other words, the data-driven
VSP method gives full play to the role of current and historical traffic data, and weakens
the dependence on complex physical traffic models. For the Markov model, the dimension
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of the Markov probability transfer matrix (MPTM) will rapidly increase with the increase
in the vehicle motion state, resulting in a larger calculation and limiting its vehicle speed
prediction effect. For this purpose, the neural network speed prediction model represented
by the backpropagation NN (BPNN), convolutional neural network (CNN), and recurrent
NN (RNN) has been proposed. Although BPNN and CNN have a strong fitting ability for
nonlinear systems, the continuity system between data will weaken their predictive ability.
Furthermore, the increase in time series length will lead to the disappearance and explosion
of the gradient of the RNN, limiting the speed prediction effect of the RNN. Therefore,
with the advantage of information inheritance, the long short-term memory (LSTM) and
gated recurrent unit (GRU) of RNN variants [1] have been widely used in speed prediction
models evolving according to time series.

Recently, under the traction of the national dual-carbon policy, construction machinery
has also moved towards the development of electrification. The driving conditions of
new-energy construction machinery also need to be analyzed, especially for mine cluster
operations. However, the exiting VSP methods mainly focus on road vehicles, rarely
aiming at non-road vehicles. The successful application of the VSP method in road vehicles
provides an effective solution for non-road vehicles to achieve energy conservation and
emission reduction [9]. Under normal circumstances, the non-road vehicles mainly drive
on roads with random structure and lack sufficient traffic information, making the speed
prediction of non-road vehicles more difficult than road vehicles. Therefore, taking mine
operation as a scenario, this paper makes full use of the working conditions of non-road
vehicles and proposes a double-layer speed prediction method based on BPNN-LSTM
for non-road vehicles. First of all, the vehicle motion state data is collected and analyzed
to clarify the impact of slope and load on vehicle speed and acceleration. On this basis,
we build the offline working condition database. Then, a road state prediction model is
established by using a BPNN. Then, a vehicle speed prediction model based on BPNN-
LSTM is proposed, containing speed prediction and information update layers. The speed
prediction layer is built using LSTM to predict vehicle speed in the horizon, and the
information update layer is established by the BPNN to update the prediction information.
Finally, the speed prediction effect of the proposed method will be verified on the hardware
in loop (HIL) platform.

Accordingly, the structure of this paper is as follows. The works related to VSP are
reviewed in Section 2. Section 3 gives the prediction problem model and the analysis of
working condition characteristics. The double-layer speed prediction method based on
BPNN-LSTM is established in Section 4. The discussion of the simulation and results are
shown in Section 5. The conclusion and future work are shown in Section 6.

2. Related Works

In order to realize energy optimization management, it is very important for the
energy management strategy to accurately predict the information of future working
conditions [10]. In other words, selecting a reasonable VSP method is critical to non-road
vehicles. The existing VSP methods are mainly divided into mechanism modeling and
data-driven methods.

Generally, the mechanism modeling of VSP is established according to the vehicle kine-
matics or motion relationship between vehicles. Specifically, Gong et al. [5] built a simple
VSP model based on vehicle kinematics by analyzing vehicle acceleration, deceleration and
maximum speed. Considering the influence of traffic flow on the motion state of individual
vehicles, the VSP model based on traffic flow was subsequently proposed [11–13], and
the traffic flow speed was regarded as the future speed of the vehicle. Morlock et al. [14]
further used the collected traffic data to analyze the probability of stop modes of individual
vehicles, and built the acceleration and deceleration models. However, for the individual
vehicle, compared with macro traffic flow, the motion states of neighbor vehicles are more
likely to affect its driving speed in the actual traffic situation, and the VSP model based on
car-following was designed in [15,16]. The speed values of front vehicles were regarded as
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the future speed trajectory of the self-vehicle. By means of the advantages of the Internet of
Things (IOT), Jisu et al. [17] detected the current position of the vehicle through roadside
sensors, and estimated the velocity by using a Kalman filter. In order to further improve
the speed prediction accuracy, the adaptive extended Kalman filter (AEKF) algorithm for
VSP was designed in [18]. Contrasted with the conventional extended Kalman filter (EKF)
algorithm, the AEKF algorithm improves the precision of the mean square error (MSE) and
mean absolute error (MAE) by 57.4% and 32.4%, respectively.

Then, taking account of the randomness and nonlinearity of the vehicle motion state,
various types of data-driven VSP models were presented with the help of the prediction
ability of a probability transfer matrix and artificial NN. For example, considering that
the change process of vehicle motion states has obvious Markov characteristics, the VSP
model based on the Markov chain was presented in [19], estimating the future vehicle
speed by constructing the MPTM of vehicle motion states. Ding et al. [20] assumed that
the vehicle acceleration at each moment had nothing to do with historical information
and was only determined by current information, and established a speed-acceleration
MPTM to predict the short-term vehicle speed sequence. Jaewook et al. [21] utilized a
Markov chain with speed constraints to design a speed prediction algorithm, achieving
a 3.8041 km/h root-mean-square error (RMSE) with a prediction horizon of up to 200 m.
Yang et al. [22] selected the vehicle speed, acceleration, jerk, road lane, traffic speed and
volume to characterize the driver’s driving behavior, and designed an Oriented Hidden
Semi-Markov Model (Oriented-HSMM) to learn and predict the driver’s driving preference
sequences. Nevertheless, the dimension of the MPTM rapidly increase with the increase in
the vehicle motion state, making the real-time calculation of the MPTM become worse and
limiting its vehicle speed prediction effect.

For that, the VSP model based on an NN was eventually proposed. For ensuring the
VSP accuracy, Ladan et al. [23] utilized the sliding window time series (SWTS) to determine
the prediction window size, and proposed an evolutionary least learning machine (E-LLM)
to predict the short-term vehicle speed sequence. In [24], a two-level prediction system
based on an NN and hidden Markov model (HMM) for VSP was designed. Yan et al. [25]
analyzed the influence of historical vehicle speed and its corresponding acceleration, steer-
ing information, location and driving date on the future speed, and established a VSP model
based on a deep NN (DNN). Considering the impact of the driver–vehicle–road system on
the actual speed profile, a VSP model was established by combining niche immune genetic
algorithm-support vector machine (NIGA-SVM) and genetic algorithm-support vector
machine (GA-SVM) prediction algorithms in [26], improving the accuracy and timeliness
of vehicle speed forecasting. In view of the time-varying and nonlinear nature of vehicle
speed, a CNN-based architecture with two-channel input was proposed for predicting
short-term speed [27]. Katariya et al. [28] designed the temporal convolutional networks
(TCNs) for VSP, which can provide more robust time prediction with less computation
compared with traditional CNNs. In [1], to overcome the limitations of the single prediction
method, a short-term traffic speed prediction model was presented by combining an im-
proved TCN and graph convolution network (GCN). The time dimension and local spatial
dimension features were extracted by the improved TCN, and the topological relationship
between road nodes was extracted by GCN. Finally, both spatial and temporal features were
combined with road parameters to achieve accurate short-term traffic speed prediction. In
addition, the BPNN has also been used for VSP [29–32]. For instance, in [29], a long-term
VSP model was designed by using a BPNN, which employed a genetic algorithm (GA) to
optimize model parameters to improve the accuracy of speed prediction. Guo et al. [30]
designed an adaptive particle swarm optimization–least squares support vector machine
(APSO-LSSVM) for VSP, and utilized a BPNN to establish a local high-precision nonlinear
fitting relationship between the predicted value and deviation, achieving a correction of
the prediction value. Making full use of the advantages of Markov and the BPNN, Ref. [32]
designed an extraction method suitable for fixed-route vehicle speed. The results show that
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the combined prediction model can improve the prediction accuracy by 25.3% on average
compared with the Markov prediction model.

Additionally, the vehicle state changes continuously with time or space, i.e., the
information between adjacent states is inherited. Therefore, the RNN, LSTM, and GRU,
possessing the advantage of information inheritance, have been used for VSP up until the
present [7,8,33,34]. In [7], the RNN was used to establish the VSP model for an ego-vehicle,
whose prediction accuracy and execution time were compared with the Markov chain
model. To predict the vehicle speed, Zhang et al. [33] built an inflated 3D inception LSTM
network by combining the spatiotemporal vision information and vehicle motion states,
achieving a high accuracy of speed prediction in various traffic densities. A freeway traffic
speed prediction model based on a GRU was established in [8] to realize traffic flow speed
prediction for freeways. Zafar et al. [34] used LSTM and a GRU to build a speed prediction
model for a road segment, which outperforms the rest with an RMSE of 4.5 and mean
absolute percentage error (MAPE) of 6.67%. Xu et al. [35] analyzed the speed prediction
effect of a multi-layer perception NN (MLPs-NN), LSTM-NN and GRU-NN. The results
show that the prediction ability of GRU-NN is more prominent.

Based on above analysis, the existing VSP methods mainly focus on road vehicles,
rarely aiming at non-road vehicles. Moreover, the working conditions of non-road vehicles
are more complex and changeable, with complex operating scenarios and strong periodicity.
As a result, to overcome the shortcomings of the existing VSP methods, this paper proposes
a double-layer speed prediction method based on BPNN-LSTM for non-road vehicles.

3. Methodology
3.1. Problem Description

The non-road vehicle generally works in closed working areas. Therefore, its driving
state is mainly affected by the vehicle itself and the road structure. According to vehicle
theory, when the vehicle is regarded as a particle, its motion state can be expressed by the
following kinematics equation: {

v =
.
l

a =
.
v

(1)

where l, v and a are denoted by the driving distance, vehicle speed and acceleration,
respectively. Furthermore, when the vehicle is seen as an individual system, as shown in
Figure 1, its state space equation in discrete time domain can be written as (assuming the
time step is 1 (s))

v(t + 1) = v(t) +
Treq(t)
rwh ·m

− Ca · ρa · A · v(t)2

2m
− g(ρr · cos θ + sin θ) (2)

where t, rwh, m, Ca, ρa, A, g, ρr and θ show the moment, wheel radius, vehicle mass, air drag
coefficient, air density, frontal area, gravitational acceleration, rolling resistance coefficient
and slope angle, respectively. While the clutch is rigidly connected to the gearbox, the
required torque Treq of wheels can be shown as

Treq(t) = Tps(t) · igb(t) · id · ηch (3)

where Tps, igb, id and ηch denote the output torque of the power source, gear ratio of gearbox,
driveline reduction ratio and system mechanical transmission efficiency, respectively.

For the variables that affect v shown in (1)–(3), id and ηch are fixed values after the
vehicle system is designed completely. Considering that environmental factors change
slightly during driving, rwh, m, Ca, ρa, A, g and ρr are also considered as fixed values in this
paper. In other words, the variables that affect vehicle speed mainly include Tps, igb, θ and
a. Here, Tps is strongly related to the pedal degree controlled by the driver, characterized
by the pedal degree p. In addition, igb relating to gear signal is a logical variable. p, θ and a
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are continuous variables changing with t. Therefore, the speed prediction process can be
written as

v̂(t + j) =


figb(t+j−1)(v(t), p(t), θ(t), a(t)), j = 1

figb(t+j−1)
(
v̂(t + j− 1), p̂(t + j− 1), θ̂(t + j− 1), â(t + j− 1)

)
, j ≥ 2 and j ∈ N+

igb(t + j− 1) ∈ [1, 2, 3, . . . , n]

(4)

where v̂, p̂, θ̂ and â are the predictive variables. j and n are the prediction horizon size
and maximum gear of gearbox, respectively. Namely, the essence of VSP is to determine
function figb(t+j−1).
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Figure 1. Powertrain topology of a vehicle.

For clarifying the relationship between v and p, θ and a under different gears, we take
an 80-ton mining truck as the research object, to analyze the impact degree of p, θ and a on
v under off-road conditions in the next section.

3.2. Working Condition Data Collection and Analysis

We chose the cement mine located in Fujian Province as the operating scenario, as
shown in Figure 2. The single cycle distance is about 3 km. The working condition data of
an 80-ton mining truck with a five-speed gearbox was collected continuously for 30 days,
and the specific data information of p, θ, a and v are shown in Figure 3.

As shown in Figure 3, in view of the nonlinearity of the collected parameters, the
Spearman data statistics tool [36] is employed to analyze the correlation between parameters
in this paper. The Spearman tool uses the following equation to analyze the impact degree
of multiple parameters on a single parameter, for providing a basis to fit the nonlinear
relationship between parameters.

rs = 1−
6

M
∑

i=1
d2

i

M(M2 − 1)
, rs ∈ [−1, 1] (5)

where rs shows the related coefficient of two parameters. di represents the rank difference
of two parameters. M denotes the number of samples. According to the principle of
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Spearman, rs = 0, rs > 0 and rs < 0 indicate that there is no correlation, positive correlation
and negative correlation between the two parameters, respectively.
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After calculation, the relationship between each mentioned parameter (i.e., p, θ and a)
and v under different gears are shown in Figure 4. It is thus clear that the related coefficients
of p, θ and a on v are not 0, showing that the influence of p, θ and a on v is obvious. As



Sensors 2023, 23, 6385 7 of 21

mentioned above, with the help of the fitting ability of NNs to nonlinear systems, a two-
layer speed prediction framework based on BPNN-LSTM is proposed in the next section.
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4. Vehicle Speed Prediction Based on BPNN-LSTM

In this section, the double-layer VSP framework is presented, which includes speed
prediction and information update layers. The speed prediction layer established by using
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LSTM is to predict vehicle speed in the horizon, and the information update layer built
using a BPNN is to update the prediction information.

4.1. BPNN Prediction Models of p̂ and θ̂

As known from (4), for achieving speed prediction in the prediction horizon, p̂, θ̂
and â need to be obtained in advance. Here, once the vehicle speeds at adjacent times
are known, â can be determined according to (1). For p̂ and θ̂, although they can be
considered as changing over time, their change process is not affected by short-term
historical information. In this paper, the BPNN is employed to establish the prediction
models of p̂ and θ̂. According to the relationship between the number of input and output
parameters, which satisfies (11) in [37], this paper selects a BPNN with 1-5-1 structure, as
shown in Figure 5. The corresponding model can be described as

Hin = x×W1 + θ1

Hou = f (Hin)

y = h(Hou ×W2 + θ2)

(6)

where x and y represent the input and output vectors of BPNN, respectively. W1 and W2
describe the weight vectors of the input-layer to hidden-layer and hidden-layer to output-
layer, respectively. θ1 and θ2 show the threshold vectors of the hidden-layer and output-
layer, respectively. f and h represent the activation functions of the hidden-layer nodes and
output-layer nodes [37], here selecting the tansig and purelin functions, respectively. The
above variables can be further expressed as

x = por θ

W1 = [W11, W12, W13, W14, W15]

θ1 = [θ11, θ12, θ13, θ14, θ15]

W2 = [W21, W22, W23, W24, W25]
T

θ2 = θ2

y = p̂or θ̂

(7)
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Then, using the collected slope angle and pedal degree data to train weights and
thresholds in (6), the prediction models of p̂ and θ̂ are determined.

In contrast, the change process of v possesses the following characteristics:



Sensors 2023, 23, 6385 9 of 21

(1) The short-term historical speed influences current speed and future speed, i.e., infor-
mation inheritance;

(2) The impact of long-term historical speed on current speed will be reduced, i.e., infor-
mation forgetting.

The NNs that do not consider the continuous relationship between data hardly charac-
terize these characteristics, while the LSTM can effectively represent this process. Thus, the
VSP model based on the LSTM network is built in the next section.

4.2. LSTM Vehicle Speed Prediction Network

The framework of LSTM is shown in Figure 6a, regarded as a cell consisting of
forgetting, input and output gates. Here, the forget gate controls the impact of historical
information on current information. The input gate controls the current state of the cell by
using the current input signal and the cell state at the last time. The output gate determines
the output of the cell. The transmission relationship of these three gates is as follows:

ft = σ(U f xt + W f ht−1 + b f ) (8)


it = σ(Uixt + Wiht−1 + bi)

at = tanh(Uaxt + Waht−1 + ba)

Ct = Ct−1 � ft + it � at

(9)

{
ot = σ(Uoxt + Woht−1 + bo)

ht = ot � tanh(Ct)
(10)

where xt denotes the input variable matrix at time t. σ expresses the activation function,
replaced by a Sigmoid function in this paper. Both U and W with subscript represent the
weight matrix. b with subscript shows the bias matrix. Ct and ht are the cell state and state
output at time t, respectively. ft indicates the memory degree of Ct−1 at time t. � denotes
the Hadamard product. When U, W, b, Ct−1, ht−1 and xt are defined, ht can be calculated.
According to Figure 6b, the output yt of the LSTM network can be obtained by

yt = σ(Vht + c) (11)

where V and c indicate the weight and bias matrixes of network output node, respectively.
It can be seen from (8)–(10) that the LSTM network state information at the previ-

ous moment is inherited by the network outputs at the next moment. This inheritance
relationship can effectively characterize the speed prediction model evolved by time se-
ries. Therefore, taking the speed, pedal degree, slope angle, and acceleration as inputs
and the predicted speed as outputs, this paper establishes a VSP model by means of an
LSTM network. Specifically, the VSP network based on LSTM is shown in Figure 7. Here,
xt in (8)–(10) and yt in (11) can be further expressed as xt = [v(t), p(t), θ(t), a(t)]T and
yt = v̂(t + 1), v̂ represents the predicted vehicle speed.

Obviously, once U, V, W, b and c of the LSTM network are determined, we are able to
use (8)–(11) to realize the speed prediction online. Furthermore, for ensuring the prediction
accuracy of the LSTM network, the gradient descent method is used to train and update U,
V, W, b and c until the prediction error L meets the target value: L = 1

2

τ

∑
t=1
‖Lt‖2 ≤ ε

Lt = yt − ŷt

(12)



Sensors 2023, 23, 6385 10 of 21

where ŷt is the real value of yt, and τ is the training data sequence size. ε is the target error.

To facilitate analysis, L is divided into two parts: error
←
L t from time 1 to time t and error

→
L t from time t + 1 to time τ, namely,

L =


←
L t +

→
L t, t < τ

←
L t, t = τ

(13)
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Then, the parameter training and learning process is analyzed. Firstly, considering the
information inheritance of the LSTM, Ct and ht are derived by L, shown as


δt

h = ∂L
∂ht

= ∂
←
L τ

∂yτ

∂yτ

∂hτ
= |yτ − ŷτ |

.
σ(Vhτ + c)V

δt
C = ∂L

∂Ct
= ∂

←
L τ

∂yτ

∂yτ

∂hτ

∂hτ
∂Cτ

= δτ
h � oτ �

(
1− tanh2(Cτ)

) , t = τ


δt

h = ∂L
∂ht

= ∂
←
L t

∂yt

∂yt
∂ht

+ ∂
→
L t

∂ht+1

∂ht+1
∂ht

= |yt − ŷt|
.
σ(Vht + c)V + ∂ht+1

∂ht
δt+1

h

δt
C = ∂L

∂Ct
= ∂

←
L t

∂yt

∂yt
∂ht

∂ht
∂Ct

+ ∂
→
L t

∂Ct+1

∂Ct+1
∂Ct

= δt
h � ot �

(
1− tanh2(Ct)

)
+ δt+1

C � ft+1

, t < τ

(14)

Because σ is the Sigmoid function in this paper, ∂ht+1
∂ht

can be further expressed as

∂ht+1

∂ht
=

∂[ot+1 � tanh(Ct+1)]

∂ht
=

∂ot+1

∂ht
� tanh(Ct+1) + ot+1 �

∂tanh(Ct+1)

∂ht
(15)

Herein, 
∂ot+1
∂ht

= ot+1 � (1− ot+1)Wo

∂tanh(Ct+1)
∂ht

=
[
1− tanh2(Ct+1)

]
∂Ct+1

∂ht

(16)

∂Ct+1
∂ht

= ∂[Ct� ft+1+it+1�at+1]
∂ht

= ∂[Ct� ft+1]
∂ht

+ ∂[it+1�at+1]
∂ht

= ∂[Ct� ft+1]
∂ht

+ ∂it+1
∂ht
� at+1 + it+1 � ∂at+1

∂ht

(17)

Furthermore,
∂[Ct � ft+1]

∂ht
= Ct � ft+1 � (1− ft+1)W f (18)

∂it+1

∂ht
� at+1 = it+1 � (1− it+1)� at+1Wi (19)

it+1 �
∂at+1

∂ht
= it+1 �

(
1− a2

t+1

)
Wa (20)

We let ∆C = ot+1 �
[
1− tanh2(Ct+1)

]
, (15) can be written as

∂ht+1
∂ht

= ot+1 � (1− ot+1)� tanh(Ct+1)Wo + ∆C� Ct � ft+1 � (1− ft+1)W f + . . .

∆C� it+1 � (1− it+1)� at+1Wi + ∆C� it+1 �
(
1− a2

t+1
)
Wa

(21)

Then, the gradient variations of W f , U f , b f , Wa, Ua, ba, Wi, Ui, bi, Wo, Uo, bo, V and c
can be shown as 

∂L
∂W f

=
τ

∑
t=1

δt
C � Ct−1 � ft � (1− ft)hT

t−1

∂L
∂U f

=
τ

∑
t=1

δt
C � Ct−1 � ft � (1− ft)xt

∂L
∂b f

=
τ

∑
t=1

δt
C � Ct−1 � ft � (1− ft)

(22)



∂L
∂Wa

=
τ

∑
t=1

δt
C � it �

(
1− a2

t
)
hT

t−1

∂L
∂Ua

=
τ

∑
t=1

δt
C � it �

(
1− a2

t
)
xt

∂L
∂ba

=
τ

∑
t=1

δt
C � it �

(
1− a2

t
)

(23)
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∂L
∂Wi

=
τ

∑
t=1

δt
C � at � it � (1− it)hT

t−1

∂L
∂Ui

=
τ

∑
t=1

δt
C � at � it � (1− it)xt

∂L
∂bi

=
τ

∑
t=1

δt
C � at � it � (1− it)

(24)



∂L
∂Wo

=
τ

∑
t=1

δt
h � tanh(Ct)� ot � (1− ot)hT

t−1

∂L
∂Uo

=
τ

∑
t=1

δt
h � tanh(Ct)� ot � (1− ot)xt

∂L
∂bo

=
τ

∑
t=1

δt
h � tanh(Ct)� ot � (1− ot)

(25)


∂L
∂V =

τ

∑
t=1
|yt − ŷt|yt(1− yt)ht

∂L
∂c =

τ

∑
t=1
|yt − ŷt|yt(1− yt)

(26)

Further, W f , U f , b f , Wa, Ua, ba, Wi, Ui, bi, Wo, Uo, bo, V and c can be updated by using
the following equation:

ψt+τ = ψt − η · ∂L
∂ψ

(27)

where ψ represents one of the forms of W f , U f , b f , Wa, Ua, ba, Wi, Ui, bi, Wo, Uo, bo, V and
c. η ∈ (0, 1] denotes the learning factor.

After determining the forward transmission and reverse learning process of the LSTM,
the collected data can be used to train the LSTM network, and the trained network can be
used for online speed prediction.

4.3. Double-Layer VSP Model Based on BPNN-LSTM

As shown in Figure 4, the influence of p, θ and a on v is different under different gears.
In order to improve the VSP accuracy, in this paper, a double-layer VSP architecture based
on BPNN-LSTM is presented, shown in Figure 8, including vehicle speed prediction layer
and information update layer. Here, the off-line databases are used to train the LSTM
network and BPNN. Firstly, according to current igb(t), the vehicle speed prediction layer
selects the trained LSTM network corresponding to gear. Then, based on current v̂, p̂, θ̂ and
â, the next moment speed v̂(t + 1) is predicted online by using the selected trained LSTM
network from the VSP layer. The information update layer includes BPNN prediction
models of p̂ and θ̂, and the kinematic model of â. Here, the next moment p̂(t + 1) and
θ̂(t + 1) is predicted by using the trained BPNN prediction models of p̂ and θ̂. The next
moment â is predicted by utilizing the equation (1). Namely, the information update layer
is used to update v̂, p̂, θ̂ and â. The specific flow diagram of the proposed algorithm is
shown in Figure 9. Correspondingly, the specific implementation process is as follows.

Step 1: By means of Equations (12) to (27), the LSTM network utilizes the databases of
different gears to train network parameters and obtain the LSTM network parameters of
different gears. On the basis of Section 4.1, the BPNN uses the slope angle and pedal degree
data of different gears to train their network parameters, and obtain BPNN parameters of
different gears for p̂ and θ̂, respectively.

Step 2: The predictive horizon size j is determined.
Step 3: According to current igb(t), the VSP layer selects the trained LSTM network pa-

rameters of the corresponding gear and loads them into the LSTM network. The trained BPNN
parameters of the corresponding gear for p̂ and θ̂ are loaded into their respective networks.
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Step 4: Based on LSTM network, the VSP layer uses current v(t), p(t), θ(t) and a(t) to
predict next moment speed v̂(t + 1) online.

Step 5: By means of the BPNN prediction models of p̂ and θ̂, and vehicle kinematics
equation, the information update layer utilizes p(t), θ(t) and a(t) to predict p̂(t+ 1), θ̂(t+ 1)
and â(t + 1), and updates the input information of the VSP layer in the next moment.

Step 6: If t < j, then back to Step 4; Otherwise, back to Step 2 until the trip is complete.

5. Results and Discussion

In this section, for verifying the speed prediction effect of the proposed double-layer
VSP method, the analytical method, BPNN prediction method, and RNN prediction method
will be simulated and compared with the double-layer VSP method under the same experi-
mental conditions.

5.1. Experimental Conditions Setting
5.1.1. Experimental Scenario

This paper selects the mining truck operation scenario shown in Figure 2 and a loader
operation scenario for simulation.

5.1.2. Performance Evaluation Methods

(1) The prediction effect of the vehicle speed prediction method is evaluated by the
following errors: 

AE = vi − v̂i

MAE = 1
M

M
∑

i=1
|vi − v̂i|

RMSE =

√
1
M

M
∑

i=1
(vi − v̂i)

2

(28)

where AE, MAE and RMSE represent the absolute, mean-absolute and root-mean-square
errors, respectively. vi and v̂i denote the real and predictive values of the vehicle
speed, respectively.

(2) In order to verify the correlation between the actual speed and the predicted
speed obtained by different VSP methods, the Pearson correlation coefficient is used to
describe the dependence between the predicted and actual speed. The specific expression
is as follows:

R =

n
∑

i=1
(vi − v) · (v̂i − v̂)√

n
∑

i=1
(vi − v)2 n

∑
i=1

(v̂i − v̂)2
(29)

where R is the Pearson correlation coefficient of vi and v̂i. v and v̂ show the average values
of the actual and predicted speed, respectively. n is the number of data.

5.1.3. Simulation Platform

The simulation platform for VSP consists of an HIL bench and vehicle control unit
(VCU), shown in Figure 10.

5.2. Vehicle Speed Prediction Analysis
5.2.1. Horizon Size j Selection

According to (4), j not only characterizes the size of the prediction horizon, but also
affects the online prediction accuracy of the vehicle speed. Thus, it is necessary to choose
a proper j to guarantee the prediction accuracy of the vehicle speed. For analyzing the
influence of different horizon sizes on VSP performance, taking the collected working
condition information of the mining truck as an example, the analytical method, BPNN,
RNN and the designed BPNN-LSTM prediction methods are simulated and compared. The
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changing relationships of MAE, RMSE and prediction time of the four methods with j are
shown in Figure 11. It can be seen from Figure 11a,b that the MAE and RMSE of the BPNN-
LSTM prediction method are smaller than that of the other three methods. Considering
that one running time of VCU in the real vehicle is 100 ms, in order to realize the vehicle
speed prediction in 100 ms, the initial value of j is set to 20 based on Figure 11c.
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5.2.2. VSP in Mining Truck Operation Scenario

For verifying the speed prediction effect of the proposed VSP method, on the basis of
selecting five cycles of the mining truck operation scenario, the analytical method, BPNN,
RNN and BPNN-LSTM VSP methods are simulated on the HIL platform. To ensure the
accuracy and real-time performance of speed prediction, the absolute value range of AE is
set to [0.18 km/h, 0.72 km/h], and the horizon size is dynamically adjusted according to
the set AE range. Under the mining truck operation scenario, the horizon size changing
curves of four VSP methods are presented in Figure 12. It is thus clear that the average
horizon size of the BPNN-LSTM prediction method is larger compared with the other three
methods. The relations and AE of the predicted and real speed curves for the four methods
are indicated in Figure 13. Correspondingly, the MAE, RMSE and R of the four methods
are given in Table 1.

First of all, according to Figure 13a, although the predicted speed trajectories of the
four VSP methods can follow the real speed trajectory, their corresponding AE ranges
are diverse. Specifically, under the mining truck operation scenario, the AE ranges of the
analytical, BPNN, RNN and BPNN-LSTM prediction methods are [−7.56 km/h, 5.11 km/h],
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[−7.46 km/h, 10.57 km/h], [−11.26 km/h, 3.58 km/h] and [−0.5 km/h, 1.11 km/h],
respectively. It can be seen that the AE variation range of the BPNN-LSTM method is the
smallest among four VSP methods.
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Table 1. MAE, RMSE and R of the four VSP methods in mining truck operation scenario.

Cycle Prediction Methods MAE RMSE R

Mining truck operation scenario

Analytical method 1.1600 1.3060 0.9801
BPNN 0.6974 1.1945 0.9712
RNN 0.6392 1.0629 0.9725

BPNN-LSTM 0.4196 0.4600 0.9998

Then, it can be seen from Table 1 that the Pearson correlation coefficient R of the
BPNN-LSTM method is closest to 1, namely, the prediction performance of the BPNN-
LSTM method is better. In addition, it is thus clear from Table 1 that the MAE and RMSE
of the designed BPNN-LSTM methods are smaller than those of the other three prediction
methods. Specifically, compared with the analytical method, the BPNN, RNN, MAE and
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RMSE of the BPNN-LSTM prediction method can reduce by 63.83% and 64.78%, 39.83%
and 61.49%, 34.36% and 56.72%, respectively.

5.2.3. VSP in Loader Operation Scenario

To further verify the universality of the proposed BPNN-LSTM prediction method
for working conditions, the analytical, BPNN, RNN and BPNN-LSTM VSP methods are
also compared in a loader operation scenario, selecting five cycles to simulate on the HIL
platform. The horizon size of the four VSP methods is also dynamically adjusted according
to the set AE range in Section 5.2.2, as described in Figure 14. Obviously, in a loader
operation scenario, the average horizon size of the BPNN-LSTM prediction method is also
the largest among the four methods. The relations and AE of the predicted and real speed
trajectories for four methods are described in Figure 15 under the loader operation scenario.
Accordingly, the MAE, RMSE and R of the four methods are presented in Table 2.
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Firstly, based on Figure 15 and Table 2, contrasted with the analytical, BPNN and RNN
prediction methods, the AE changing range of the speed trajectory predicted by the BPNN-
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LSTM method can reduce in different degrees, and the corresponding MAE and RMSE
can also decrease in various degrees. Specifically, under the loader operation scenario, the
AE ranges of the analytical method, and the BPNN, RNN and BPNN-LSTM VSP methods
are [−9.08 km/h, 6.19 km/h], [−7.95 km/h, 4.54 km/h], [−3.45 km/h, 3.43 km/h] and
[−2.25 km/h, 1.87 km/h], respectively. Secondly, compared with the other three prediction
methods, it is thus clear from Table 2 that the Pearson correlation coefficient R of the BPNN-
LSTM method is also closest to 1 in the loader operation scenario. Furthermore, the MAE
and RMSE of the proposed BPNN-LSTM method are less than that of the other three VSP
methods. Specifically, in comparison with the analytical method, and the BPNN and RNN
methods, the BPNN-LSTM prediction method can improve the precision of the MAE and
RMSE by 32.45% and 50.14%, 31.81% and 40.68%, and 25.81% and 30.62%, respectively.

Table 2. MAE, RMSE and R of the four VSP methods in loader operation scenario.

Cycle Prediction Methods MAE RMSE R

Loader operation scenario

Analytical method 0.6748 1.1362 0.9308
BPNN 0.6684 0.9550 0.9463
RNN 0.6144 0.8165 0.9652

BPNN-LSTM 0.4558 0.5665 0.9857

Based on the above analysis, whether it is in the mining truck operation scenario or
the loader operation scenario, compared with the other three prediction methods, the AE
changing range of the BPNN-LSTM prediction method is smaller, whose R is closest to
1. Furthermore, the MAE and RMSE of the BPNN-LSTM prediction method are also the
smallest among the four prediction methods. In other words, the predicted vehicle speed
trajectory by means of the BPNN-LSTM method is closer to the real vehicle speed trajectory.
Correspondingly, on the premise of ensuring prediction accuracy, the average horizon size
of the BPNN-LSTM prediction method under the two operation scenarios is larger than
that of the other three methods. Therefore, the VSP method proposed in this paper can
realize the online prediction of vehicle speed with higher prediction accuracy, and provide
more valuable information for an energy management strategy.

6. Conclusions

In this paper, a double-layer VSP method based on BPNN-LSTM for off-road vehicles
was proposed. Firstly, the VSP problem was established and the relationship between the
variables in the problem was carefully analyzed. Then, the double-layer VSP framework
based on BPNN-LSTM was presented, including speed prediction and information update
layers. The speed prediction layer was established by using LSTM to predict vehicle
speed in the horizon. Furthermore, the information update layer was built using a BPNN
to update the prediction information. Finally, with the help of mining truck and loader
operation scenarios, an experimental study was conducted for the proposed VSP method
on the HIL platform.

Based on the analysis of the experimental results, on the premise of assuring the
real-time prediction performance, the proposed VSP method can realize the prediction
accuracy of the average prediction error for two operation scenarios less than 0.456 km/h,
which is obviously better than the analytical, BPNN and RNN prediction methods. Cor-
respondingly, under the premise of ensuring the VSP precision, the horizon size of the
BPNN-LSTM prediction method is the largest among four prediction methods under two
operation scenarios, which can provide more valuable information for optimizing energy
consumption. It further improves the speed prediction ability of the NN in random road
environments and provides a new solution for speed prediction of non-road vehicles.

Furthermore, our work still needs ongoing development. Firstly, the proposed BPNN-
LSTM prediction method will be verified on a real vehicle. Then, we will design a reasonable
energy management strategy on the basis of the verified results, giving full play to the value
of speed prediction in the design of an energy management strategy for non-road vehicles.
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Abbreviations

VSP vehicle speed prediction
LSTM long short-term memory
BPNN backpropagation neural network
RNN recurrent neural network
ITS intelligent transportation system
NN neural network
MPTM Markov probability transfer matrix
CNN convolutional neural network
GRU gated recurrent unit
HIL hardware in loop
IOT Internet of Things
AEKF adaptive extended Kalman filter
EKF extended Kalman filter
MSE mean square error
MAE mean absolute error
RMSE root-mean-square error
Oriented-HSMM Oriented Hidden Semi-Markov Model
SWTS sliding window time series
E-LLM evolutionary least learning machine
HMM Hidden Markov model
DNN deep NN
NIGA-SVM niche immune genetic algorithm-support vector machine
GA-SVM genetic algorithm-support vector machine
TCNs temporal convolutional networks
GCN graph convolution network
GA genetic algorithm
APSO-LSSVM adaptive particle swarm optimization–least squares support vector machine
MAPE mean absolute percentage error
MLPs-NN multi-layer perception NN
VCU vehicle control unit
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Variables and its unit
Variables Name Unit
l driving distance m
v vehicle speed m/s
a acceleration m/s2

t the moment s
rwh wheel radius m
m vehicle mass kg
Ca air drag coefficient –
ρa air density kg/m3

A frontal area m2

g gravitational acceleration m/s2

ρr rolling resistance coefficient –
θ slope angle ◦

Treq required torque of wheels Nm
Tps output torque of power source Nm
igb gear ratio of gearbox –
id driveline reduction ratio –
ηch system mechanical transmission efficiency –
p pedal degree –
j prediction horizon size –
n maximum gear of gearbox –
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