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Abstract: Vibration monitoring and analysis play a crucial role in the fault diagnosis of hydroelec-
tric units. However, accurate extraction and identification of fault features from vibration signals
are challenging because of noise interference. To address this issue, this study proposes a novel
denoising method for vibration signals based on improved complementary ensemble empirical mode
decomposition with adaptive noise (ICEEMDAN), permutation entropy (PE), and singular value
decomposition (SVD). The proposed method is applied for the analysis of hydroelectric unit sway
monitoring. Firstly, the ICEEMDAN method is employed to process the signal and obtain several
intrinsic mode functions (IMFs), and then the PE values of each IMF are calculated. Subsequently,
based on a predefined threshold of PE, appropriate IMFs are selected for reconstruction, achieving the
first denoising effect. Then, the SVD is applied to the signal after the first denoising effect, resulting
in the SVD spectrum. Finally, according to the principle of the SVD spectrum and the variation
in the singular value and its energy value, the signal is reconstructed by choosing the appropriate
reconstruction order to achieve the secondary noise reduction effect. In the simulation and case
analysis, the method is better than the commonly used wavelet threshold, SVD, CEEMDAN–PE, and
ICEEMDAN–PE, with a signal-to-noise ratio (SNR) improvement of 6.9870 dB, 4.6789 dB, 8.9871 dB,
and 4.3762 dB, respectively, and where the root-mean-square error (RMSE) is reduced by 0.1426,
0.0824, 0.2093 and 0.0756, respectively, meaning that our method has a better denoising effect and
provides a new way for denoising the vibration signal of hydropower units.

Keywords: vibration signal; improved complementary ensemble empirical mode decomposition
with adaptive noise; permutation entropy; singular value decomposition; denoising

1. Introduction

Water turbine generator units play a crucial role in the global energy transformation
towards green, low-carbon, and sustainable development. With the development of the
economy and society, the requirements for the safety, reliability, and stability of water turbine
generator units continue to increase. However, these units operate in a complex environment
and face various challenges that pose significant threats to their safe and stable operation.
Therefore, effective monitoring and diagnosis of the unit’s operating condition have become
a research focus in the industry [1]. During the long-term operation of hydropower units,
various faults and abnormalities may occur due to the impact of water flow, load changes,
mechanical wear and tear, and other factors. These faults and abnormalities often lead
to changes in the vibration signal of the unit. By analyzing and processing the vibration
signal, key features regarding the unit status and fault information can be extracted for status
evaluation and fault diagnosis of the unit. Studies have shown that nearly 80% of faults in
water turbine generator units can be reflected in vibration signals [2].

Vibration signals, as an important monitoring indicator for assessing the operating
status of units [3], can reflect the internal operation and fault information of the units.
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Through the analysis and processing of vibration signals, equipment anomalies can be
detected promptly, potential failures can be predicted, downtime can be reduced, and the
availability and operational efficiency of the units can be improved, ensuring their safe
and stable operation [4]. Therefore, vibration signal analysis holds significant value in
the fault diagnosis of water turbine generator units. However, the analysis, processing,
and feature extraction of vibration signals from these units face certain challenges. Firstly,
the operating status of water turbine generator units is dynamic, and vibration signals
exhibit nonlinearity and nonstationarity. The frequency spectrum and amplitude vary
with time, presenting complex time–frequency characteristics. This complexity makes the
accurate analysis and diagnosis of vibration signals more difficult. Secondly, due to the
complexity of the operating environment and the limitations of sensors in water turbine
generator units, vibration signals are often subjected to various noise interferences such as
mechanical noise, electromagnetic interference, and environmental noise. The presence of
noise can mask or distort useful fault features, reducing the reliability of fault information
in vibration signals and posing challenges for feature extraction and identification.

The accurate and reliable extraction and identification of fault characteristics in vibration
signals are essential for the normal operation and maintenance of hydroelectric units. Vibration
signal denoising is of great significance in the condition evaluation and fault diagnosis of
hydropower units. Firstly, through the denoising process, noise interference can be effectively
reduced and the quality and availability of vibration signals can be improved. Secondly,
the denoising of the vibration signal of the hydropower unit can extract the characteristic
information related to the operation status and fault of the unit. The vibration signal contains
rich information on mechanical features, dynamic characteristics, and harmonic components,
which can be used to evaluate the working status of the unit, detect abnormal operations, and
predict potential faults. By denoising the vibration signal, the characteristic information can
be highlighted to help engineers and technicians more accurately determine the status of the
unit and take the corresponding maintenance and repair measures in time to improve the
reliability and operational efficiency of the unit. Therefore, researchers have carried out a lot of
research work in the field of vibration signal denoising, aiming to filter out noise interference
and improve the effective extraction of real signal features.

Currently, commonly used methods for vibration signal denoising include Fourier trans-
form, wavelet transform, empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD), complementary ensemble empirical mode decomposition (CEEMD),
complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN),
variational mode decomposition (VMD), and singular value decomposition (SVD) [5–9].
Fourier transform is a classical linear signal analysis method suitable for analyzing stationary,
regular linear signals. However, for nonstationary and nonlinear vibration signals, the Fourier
transform performs poorly in extracting fault features. Wavelet transform is a method capable
of analyzing nonstationary signals and allows for the analysis of signals in the time–frequency
domain [6]. However, the parameter settings of the wavelet transform lack adaptability, as
different signals require different wavelet basis functions, limiting its application. Empiri-
cal mode decomposition (EMD) is a relatively new time–frequency analysis algorithm that
decomposes signals into several intrinsic mode functions (IMFs), enabling comprehensive
analysis in the time–frequency domain. However, EMD tends to produce mode mixing and
endpoint effects during signal decomposition, which limits its application in vibration signal
denoising [7]. EEMD is an improved method based on EMD [8]. Although it can partially
suppress mode mixing and endpoint effects caused by EMD, this method itself introduces
new issues such as residual noise, decreasing the denoising effectiveness [10–12]. To address
this, Yeh and Huang [13] proposed the CEEMD method, which effectively suppresses residual
noise. However, the method has not fully addressed issues such as incomplete signal decom-
position and low computational efficiency. VMD [14–16] effectively avoids endpoint effects
seen in similar EMD methods but requires presetting the decomposition parameter K, making
it difficult to achieve adaptive decomposition that meets the requirements of online automatic
monitoring and analysis of vibration signals from water turbine generator units. CEEMDAN
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is an improved empirical mode decomposition method [17–19] that has certain advantages
in denoising nonstationary signals. It can suppress mode mixing and endpoint effects and
improve denoising effectiveness through an adaptive noise model [5,7,9]. However, it still
faces issues such as residual noise and pseudo-modes [20–22]. Marcelo A. Colominas [23] pro-
posed an improved denoising method called improved complementary ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN), which is based on CEEMDAN and
addresses some of its limitations [20–22,24]. Unlike CEEMDAN, ICEEMDAN incorporates
white noise as part of the complete noise ensemble instead of directly adding Gaussian white
noise. SVD is a matrix decomposition method [25–27] that decomposes and transforms ma-
trices, allowing the collected signals to be decomposed into a series of superimposed linear
components. It can effectively detect subtle information variations in signals under complex
backgrounds and is widely used in denoising and feature extraction [28–32]. In recent years,
nonstationary vibration signal noise reduction via CEEMDAN–PE, ICEEMDAN–PE, and
CEEMDAN–SVD has been used for the vibration feature extraction of hydropower units [7],
underwater acoustic monitoring denoising [9], ball mill barrel vibration signal denoising [18],
heart and brain electrical signal noise filtering [19], weld signal denoising [21], coal machine
and gas signal denoising [33,34], building structure vibration signal denoising [26,35], parame-
ter prediction [22,24,36,37] and gear-bearing fault diagnosis [31,38–43]. The initial applications
of these methods have made good progress, but there is still a need to improve the vibration
signal denoising of hydropower units.

To overcome the pseudo-modal problem in the CEEMDANethod and the limitations
of the SVD method including matrix size limitation and information loss, as well as the
unsatisfactory effect of the single denoising method of ICEEMDAN and SVD in the de-
noising of hydropower unit vibration signals, this study proposes a method that combines
ICEEMDAN with PE and SVD for noise reduction in hydropower unit vibration signals,
aiming to improve the accuracy and reliability of vibration signals and provide more ef-
fective technical support for fault diagnosis and predictions regarding hydropower units.
The method processes the signal by ICEEMDAN, obtains the effective modal components
(IMF), and calculates the PE value of each component. The IMF components are selected
to be reconstructed according to the preset PE threshold to achieve the primary noise
reduction effect [24,44,45]. Subsequently, the signal after noise reduction is processed using
SVD decomposition to obtain the singular value difference spectrum, and the second noise
reduction in the signal is carried out by selecting the appropriate reconstruction order;
it is necessary to consider the variation in singular values and energy values, which can
effectively avoid information loss to further improve the denoising effect. The results show
that the proposed ICEEMDAN–PE–SVD denoising method has a higher signal-to-noise
ratio and smaller root-mean-square error. Compared with the commonly used methods,
this method can better retain the detailed information of the signal, effectively filter out
the noise interference, and carry out more accurate and reliable fault feature extraction.
Therefore, the research in this paper provides a new method for noise reduction in the
vibration signal of hydropower units. In this paper, the theoretical basis, algorithm flow,
simulation analysis, and example analysis of the method will be introduced in detail, which
is followed by a discussion of the results.

2. Related Theory and Methods
2.1. ICEEMDAN Algorithm

The ICEEMDAN signal processing method is an improvement over CEEMDAN [20–24].
Unlike the traditional EMD method, ICEEMDAN incorporates adaptive noise and a com-
plete ensemble strategy to enhance the stability and accuracy of the decomposition process.
The improved method differs from CEEMDAN in that it selects the component of white
noise obtained from the EMD decomposition instead of directly adding Gaussian white
noise during the decomposition process. The flowchart of the ICEEMDAN algorithm is
shown in Figure 1.
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Let X(t) denote the original signal to be decomposed. Ek(•) represents the Kth
IMF (intrinsic mode function) obtained through EMD decomposition. M(•) denotes the
calculation of the envelope of the reconstructed signal, which yields the local mean of
the reconstructed signal. ω(i)(t) is the ith (i = 1, 2, 3, · · · , I) Gaussian white noise value
following a standard normal distribution N(0, 1) (mean = 0, unit variance). rk(t) represents
the residual of the kth stage. The coefficient βk represents the signal-to-noise ratio of the
kth stage. When k = 0, β0 = ε0

σ(x(t))
σ(E1(ω(i)(t)))

, and when k ≥ 1, βk = ε0σ(rk(t)) (where ε0 is

a predetermined amplitude parameter and σ(•) is the standard deviation operator). The
notation 〈•〉 denotes the operator for calculating the average value [21,22].
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The steps of the ICEEMDAN decomposition algorithm are as follows [23]:
Step 1. Add white noise to the original signal X(t) according to Equation (1):

X(i)(t) = X(t) + β0E1(ω
(i)(t)) (1)

Step 2. Decompose the obtained signal X(i)(t) using the EMD method, calculate the
local mean M(X(i)(t)) of each component as described in Equation (2), and obtain r1(t)
(the residual of the k= 1 stage):

r1(t) =
〈

M(X(i)(t))
〉

(2)

Step 3. Calculate the k = 1 component of the original signal IMF1(t) as described in
Equation (3):

IMF1(t) = X(t)− r1(t) (3)

Step 4. Add white noise to the residual of the first stage r1(t), calculate the local mean
of the signal, and obtain r2(t) (the residual of the k= 2 stage) using Equation (4):

r2(t) =
〈

M(r1(t) + β1E2(ω
(i)(t)))

〉
(4)

Step 5. Calculate the k= 2 component of the original signal IMF2(t) as described in
Equation (5):

IMF2(t) = r1(t)− r2(t) (5)

Step 6. When k = 3, 4, 5, · · ·K, calculate rk(t)(the residual of the kth stage) using
Equation (6):

rk(t) =
〈

M(rk−1(t) + βk−1Ek(ω
(i)(t)))

〉
(6)

Step 7. Calculate the kth component of the original signal as described in Equation (7):

IMFk(t) = rk−1(t)− rk(t) (7)
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Step 8. Return to Step 6 and calculate the next k.
Step 9. The original signal, after being decomposed by ICEEMDAN, can be repre-

sented as:

X(t) =
K

∑
k=1

IMFk(t) + rk(t) (8)

2.2. PE Algorithm

PE is a nonlinear analysis method used to detect randomness and dynamic transitions
in time series data [19,24,44,45]. It is an indicator commonly used to measure the complexity
and nonlinear characteristics of signals and is widely employed in the analysis of time
series and complex systems. The calculation of PE is based on the arrangement of the
signal, where the signal sequence is sorted to obtain different permutations. The occurrence
frequency of each permutation is then counted, and the probability distribution of each
permutation is calculated. PE reflects the irregularity of the signal over time, where higher
values indicate greater complexity and nonlinear features in the signal. It is highly sensitive
to signal transitions and can quantitatively assess the presence of random noise in a signal
sequence. The calculation process of PE is illustrated in Figure 2.
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Let X(t) be a time series of length N: {X(t), t = 1, 2, 3. · · · , N},m is the embedding
dimension, τ is the time delay, and K = N − (m − 1)τ is the number of reconstructed
components. The calculation steps for PE are as follows [19,24,44,45]:

Step 1. Perform phase-space reconstruction on the time series X(t) to obtain the
m-dimensional delay vector sequence, denoted as matrix Z:

Z =



x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
...

...
...

x(j) x(j + τ) · · · x(j + (m− 1)τ
...

...
...

x(K) x(K + τ) · · · x(K + (m− 1)τ

 (9)

Step 2. Each row of the matrix represents a reconstructed component. Rearrange each
component (x(j), x(j + τ), · · · , x(j + (m− 1)τ) in matrix Z in ascending order according to
their values:

x(t + (j1 − 1)τ) ≤ x(t + (j2 − 1)τ) ≤ · · · ≤ x(t + (jm − 1)τ) (10)

where t represents the column index, and j1, j2, · · · , jm represent the positions of each
element in the reconstructed component.

Thus, for any time series X(t), the matrix Z obtained through reconstruction will have
a set of symbolic sequences.

S(l) = (j1, j2, · · · , jm) (11)

where l = 1, 2, · · · , k, and 1 ≤ k ≤ m!, the m-dimensional phase space maps different
sequences of symbols with a total of m! possibilities of permutations, and S(l) is one
of them.

Step 3. Calculate the probability of occurrence for each symbolic sequence, denoted as
P1, P2, · · · , Pk. The probability is calculated as the count of occurrences of each symbolic
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sequence divided by m! (the total count of different symbolic sequences). Define the PE as
the Shannon entropy of the probability distribution, which measures the uncertainty or
randomness of the time series:

HP(m) = −
k

∑
j=1

Pj ln(Pj) (12)

To facilitate comparison, the PE is often normalized by dividing it by the maximum
value it can achieve, denoted as HP(m)max = ln(m!). This normalization yields a normal-
ized PE HP:

HP =
HP(m)

ln(m!)
(13)

where HP ∈ [0, 1]. The value of HP reflects the randomness or irregularity of the time series,
and it is positively correlated with the degree of randomness. The variation in HP amplifies
the subtle details of the time series.

2.3. SVD Algorithm

SVD is a matrix decomposition method that decomposes a matrix into the product
of three matrices: an orthogonal matrix, a diagonal matrix, and the transpose of another
orthogonal matrix. SVD is commonly used in signal processing for tasks such as data
dimensionality reduction, signal denoising, and feature extraction [25–32]. In signal de-
noising, SVD aims to eliminate noise by constructing a matrix that contains the signal
information and then decomposing this matrix into a series of singular values and corre-
sponding singular vectors representing the time–frequency subspaces. This approach helps
retain useful information related to the faulty signal and finds extensive applications in
signal analysis and processing [43].

Let X(t) be a time series of length N: {X(t), t = 1, 2, 3. · · · , N}. The specific steps of
SVD are as follows:

Step 1. Phase-space reconstruction is carried out by constructing an m × n order
Hankel matrix (H) for the signal to be decomposed.

H =


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

. . .
...

x(m) x(m + 1) · · · x(N)

 (14)

where in Equation (14), N = m + n− 1, N > m ≥ n > 1, and H ∈ Rm×n. The number
of rows, m, and the number of columns, n, can be determined based on the following
principles: when the length N is even, we set m = N

2 + 1 and n = N
2 ; when the length N is

odd, we have n = m = N+1
2 .

Step 2. Perform SVD decomposition on the matrix H.

H = USVT = U
[

Λ 0
0 0

]
VT (15)

In Equation (15), U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, representing
the left and right singular vectors, respectively. S ∈ Rm×n is a diagonal matrix with its
diagonal elements being the singular values of H. Let Λ denote the diagonal matrix formed
by arranging the singular values λi in descending order, given by Λ= diag(λ1, λ2, · · · , λq),
where q = min(m, n) and λ1 ≥ λ2 ≥ · · · ≥ λq.

Step 3. Compute the differences between adjacent singular values, resulting in a
sequence of differential singular values bi. Choosing the appropriate order of singular
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values is crucial for signal reconstruction, and the differential singular value spectrum
effectively captures the singular value variations in noisy signals.

bi = λi − λi+1 (16)

In Equation (16), i = 1, 2, 3, · · · , q and λq+1 = 0.
k exists such that bk is the peak point and there is no abrupt change in the singular

value after the values of k and bk gradually approach 0. In the case of the singular value
sequence, the maximum peak represents the boundary between the noise and useful signal.
When k = 1, it indicates the presence of a DC component in the signal; we assign the
second largest peak to k. On the other hand, when k > 1, it suggests that the signal does not
contain a DC component or that the DC component is smaller than the AC component [46].
In a noisy signal segment, the useful signal only contributes to the first singular values of
the reconstructed matrix, while the noise uniformly contributes to the singular values [29].

Step 4. After determining the value of k, the singular values beyond are set to zero,
resulting in a diagonal matrix where Λ0= diag(λ1, λ2, · · · , λk, · · · , λq), λk+1 = λk+2 =

· · · = λq = 0, and S0 =

[
Λ0 0
0 0

]
, which is used to reconstruct the signal through SVD [28].

By analyzing the noise test results, we can obtain the denoised signal represented by the
matrix H0.

H0 = US0VT = U
[

Λ0 0
0 0

]
VT (17)

3. ICEEMDAN–PE–SVD-Based Vibration Signal Denoising for Hydropower Units

The proposed denoising method, ICEEMDAN–PE–SVD, combines the advantages of
the aforementioned three algorithms to achieve dual denoising of turbine vibration signals
under strong noise and complex electromagnetic interference backgrounds. The flowchart
of the denoising method based on ICEEMDAN–PE–SVD for hydroelectric turbine vibration
signals is shown in Figure 3. The detailed steps are shown in Algorithm 1.
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Algorithm 1. Denoising method based on ICEEMDAN–PE–SVD for hydroelectric turbine
vibration signals.

Input: Original signal x(t).
Output: Denoised signal x′(t).
1: According to Equations (1)–(8), the ICEEMDAN decomposition of the original signal x(t) is
calculated to obtain a set of intrinsic mode functions (IMFk(t)) and a residue component (rk(t)).

X(t)→
K
∑

k=1
IMFk(t) + rk(t)

2: The PE of the resulting IMF components is calculated according to Equations (9)–(13). In [34],
Brandt et al., after a lot of experiments and projections, recommended that the statistical results
have high reasonableness when the embedding dimension m is taken from 3 to 7, and the delay
time has less influence on the calculation of the PE. Therefore, in this paper, we chose the number
of embedding bits of m = 5, and the delay time of τ = 1. IMFk → HP(IMFk)
3: The normalized PE threshold is set to 0.3 according to the results of multiple simulation
experiments and combined with the PE calculation principle.
for IMFk in IMFK do
if HP(IMFk) ≤ 0.3, IMFk is selected as the valid IMF component
return all the valid IMF components.
4: The signal Sigiceemdan−pe is obtained by reconstructing it according to all the valid IMF
components. IMF → Sigiceemdan−pe
5: The SVD decomposition of Sigiceemdan−pe occurs according to Equations (14) and (15).
6: Calculate the difference spectrum of singular values obtained from the decomposition
according to Equation (16).
7: Combined with the variation trend of the difference spectrum, an appropriate singular value
order k is selected to reconstruct the characteristic matrix H0, and then the matrix H0 is converted
to the denoised signal x′(t).
8: return x′(t). This achieves a double denoising effect and forms the final denoised signal,
finishing the denoising process of the vibration signal of the hydropower unit.

4. Simulation Analysis
4.1. Construction of the Simulation Signal

To verify the effectiveness of the vibration signal denoising method based on ICEEMD
AN–PE–SVD, the oscillation signal of hydropower units was selected for simulation analy-
sis. The pendulum of the hydropower unit is mainly affected by mechanical excitation and
hydraulic excitation, and the mechanical excitation is generally dominated by a medium
frequency (1, 2, or 3 times the rotational frequency), while the hydraulic excitation is gener-
ally dominated by a low frequency (0.2~0.45 times the rotational frequency). Choosing the
rotational frequency as 1.25Hz, we used a frequency that is 1, 2, 3, 4, 0.2, 0.3, or 0.45 times
the rotational frequency of the signal superposition and simulated the mechanical vibration
and hydraulic vibration at the same time, so that the simulated signal is constructed as
follows [47]:

f (t) =
7

∑
i=1

Ai sin 2π fit (18)

In Equation (18), A1~A7 represent amplitudes of 20 µm, 4.5 µm, 2.55 µm, 1.5 µm,
0.4 µm, 0.3 µm, and 0.2 µm, respectively. f1~ f7 represent frequencies of 1.25 Hz, 2× 1.25Hz,
3 × 1.25Hz, 4 × 1.25Hz, 0.2 × 1.25Hz, 0.3 × 1.25Hz, and 0.45 × 1.25Hz. The sampling
frequency was set to 1000Hz. The simulated original signal without noise is shown in
Figure 4. The simulated noisy signal was obtained by adding Gaussian white noise with a
signal-to-noise ratio of 20dB, as shown in Figure 5.

4.2. Noise Reduction in Simulated Signals by ICEEMDAN–PE–SVD

When performing ICEEMDAN decomposition on the simulated signal, it is necessary
to use reasonable settings including the noise amplitude coefficient ε0 that is added to
the original signal, the average number of times I for measuring the signal, the total
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number of times M for performing ICEEMDAN and the maximum allowed number of
iterations MaxIter.
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Combined with the findings from [23], after several experiments; setting the parame-
ters as ε0 = 0.2, I = 100, M = 1000, and MaxIter = 1000; and then performing ICEEMDAN
decomposition on the synthesized simulated signal, 10 IMF components and 1 trend com-
ponent R were obtained, as shown in Figure 6. The PE of these components was calculated
and the results are shown in Table 1.

Table 1. PE of each component for simulation analysis by ICEEMDAN.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 R

0.9375 0.7752 0.5679 0.4093 0.309 0.212 0.1362 0.1489 0.1498 0.1436 0.0019

According to the principle of PE combined with the results of several simulation
experiments, the final threshold value of PE was set to 0.3, and the IMF components
(IMF6~IMF10) with a threshold value less than 0.3 were selected and reconstructed with
the residual R. To make it more convenient to see the effect of reconstructing the signal
by different number of components after ICEEMDAN decomposition during simulation
analysis, the signals that were reconstructed with different numbers of components after
ICEEMDAN decomposition are shown in Figure 7.
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From Figure 7, it can be seen that the reconstructed signals containing IMF1, IMF2,
IMF3, IMF4, and IMF5 components have obvious noise interference, while the reconstructed
signals with IMF6~IMF10 and R components are smoother and closer to the original
simulated signals, which are consistent with the structure of the components selected by the
PE threshold. Therefore, the IMF6~IMF10 components are classified as valid components,
and the reconstructed waveforms and spectrograms are shown in Figure 8.

From Figure 8, we can see that the waveform and spectrum after one reconstruction of
ICEEMDAN–PE show a certain trend compared with the original noise-free waveform and
spectrum, but the figure does not show the simulated pendulum signal clearly, while the
spectrum can also show the characteristic frequency but there is still residual noise.

Then, the reconstructed signal was processed with SVD decomposition, and the
decomposed singular value difference spectrum was obtained, as shown in Figure 9 below.
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As shown in Figure 9, when the singular value order k = 12, the singular value
difference spectrum and the singular value energy are relatively large; thus, a singular
value of k > 12 does not produce abrupt changes. According to the principle of the singular
value difference spectrum, and considering the changes in the singular value and its energy
value, the final order of reconstruction chosen in this paper is k = 12, i.e., the components
with a singular value less than 12 are selected for reconstruction, as shown in Figure 10,
which is the waveform and spectrum after ICEEMDAN–PE–SVD noise reduction.
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As shown in Figure 10, after the multiple noise reductions by ICEEMDAN–PE–SVD,
the waveforms and spectrograms can be compared with the original noise-free waveforms
and spectrograms. The waveforms and spectrograms are basically the same, and the
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main characteristic frequencies are completely extracted. The bottom noise is completely
removed, indicating that the method can effectively remove the noise and maintain the
integrity of the original signal.

4.3. Comparative Analysis of Related Denoising Method Indices

To facilitate a quantitative comparison of the denoising performance of different meth-
ods, the signal-to-noise ratio (SNR), root-mean-square error (RMSE), and mean absolute
error (MAE) are defined below [32,36], and the larger the SNR and the smaller the RMSE
and MAE, the better the denoising effect.

(1) Signal-to-noise ratio (SNR):

SNR = 10lg

N
∑

i=1
X2

i

N
∑

i=1
[Yi − Xi]

2
(19)

(2) Root-mean-square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

[Yi − Xi]2 (20)

(3) Mean absolute error (MAE):

MAE =
1
N

N

∑
i=1
|Yi − Xi| (21)

In Equation (19) to Equation (21): N is the number of sampling points; Xi is the original
un-noised simulated signal; and Yi is the denoised signal.

To verify the effectiveness of the ICEEMDAN–PE–SVD denoising method proposed
in this paper in the denoising of the oscillation signal of hydropower units, the wavelet
threshold denoising method, the CEEMDAN–PE [19] denoising method, the ICEEMDAN
denoising method, and the ICEEMDAN–PE–SVD denoising method proposed in this paper
were used to denoise the simulated additive noise signal. The denoising effect of these
different methods was compared and analyzed by using the denoising waveforms and
denoising performance indices.

The selection of parameters in the wavelet threshold denoising process has a great
influence on the denoising effect of the original signal. In this paper, according to the
method of determining wavelet threshold denoising parameters in [18], the wavelet thresh-
old denoising parameters of the simulated noise-added signal are set as follows: ‘sym10′

as the wavelet basis function, a decomposition layer of 4, ’heursure’ as the threshold
guidelines, and a hard threshold function. The waveforms after denoising are shown in
Figures 11 and 12, and the performance indices of the denoising effect are shown in Table 2.

Table 2. Denoising performance of different methods.

Denoising Method SNR/dB RMSE MAE

Wavelet Threshold 35.1071 0.2578 0.2027
SVD 37.4152 0.1976 0.1424

CEEMDAN–PE 33.1070 0.3245 0.2504
ICEEMDAN–PE 37.7179 0.1908 0.1390

ICEEMDAN–PE–SVD 42.0941 0.1152 0.0909

By comparing Figures 11 and 12 with the simulated un-noised signal in Figure 4, it
is found that wavelet thresholding and CEEMDAN denoising can filter out most of the
noise in the simulated denoised signal, but the burr phenomenon in the denoised signal
waveform is more obvious and the denoising effect is less satisfactory.
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Comparing Figure 8 with the waveform in Figure 4, it can be found that the ICEEMD
AN–PE denoising signal is achieved by denoising the simulated additive noise signal. As
can be seen from Figure 10, ICEEMDAN–PE–SVD denoising is a process of noise reduction
in the mixed signal-noise components discarded by the ICEEMDAN–PE filtering and
denoising method, so that some effective features of the original signal can be retained
while keeping the waveform smooth.

According to the denoising performance evaluation criteria and by comparing the
data in Table 2, it can be seen that the ICEEMDAN–PE–SVD denoising method has the
best denoising effect, and compared with the wavelet threshold, SVD, CEEMDAN–PE,
and the ICEEMDAN–PE denoising method, the signal-to-noise ratio (SNR) is improved
by 6.9870 dB, 4.6789 dB, 8.9871 dB, and 4.3762 dB, respectively, and the root-mean-square
error (RMSE) is reduced by 0.1425, 0.0824, 0.2092 and 0.0755, respectively.

In summary, by comparing and analyzing the waveform characteristics and denoising
performance evaluation indices of denoised signals of different denoising methods, it was
found that the combined ICEEMDAN–PE–SVD denoising method is significantly better
than the other four methods.

5. Case Analysis

To verify the effectiveness of the proposed ICEEMDAN–PE–SVD denoising method
in the process of denoising the vibration signal of a hydropower unit, an example of the
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pendulum monitoring of unit 1 of a hydropower station was further selected for analysis.
The turbine model is HLA773a-LJ-200, with a rated head of 68 m. The Online monitoring
device for unit vibration and swing is shown in Figure 13, which has an integrated NI
high-speed acquisition card and an eddy current displacement sensor, CWY-DO-20Q08-50V.
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The speed of the unit in the process of hydro-generator pendulum signal acquisition
was 250r/min, the sampling frequency fs of the test was 2048Hz, the water head was
65.8 m and 6000 points of the sampled data were intercepted for analysis to ensure that the
characteristic parameters in the signal processing analysis can fully and truly reflect the
actual working conditions.

The measured signal waveform of the X-direction swing of the upper guide of the
hydroelectric unit is shown in Figure 14, which contains a large number of burrs. The
ICEEMDAN decomposition was first performed on this measured signal to obtain 10 IMF
components and 1 trend component R. The PE value of each component was calculated,
and the results are shown in Table 3. Similarly, the six components (IMF5-IM10) with a PE
value less than 0.3 were selected as the effective information components for reconstruction,
and then the SVD algorithm (singular value order k = 7) performs the secondary noise
reduction to complete the denoising of the measured signal of the upper conductivity of
the hydropower unit. It can be seen from Figure 15 that the noise in the measured signal of
the upper guidance swing degree has been effectively filtered.
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Since the original, pure pendulum signal value cannot be obtained from the measured
signal and the SNR and RMSE cannot be calculated directly, the noise rejection ratio (NRR)
before and after signal denoising is defined below to characterize the prominence of the
effective signal after denoising. The larger the value, the more prominent the effective
signal after denoising [15].

NRR = 10lg10(σ2
1 − σ2

2 ) (22)

In Equation (22), σ2
1 and σ2

2 denote the variance in the signal before and after denoising,
respectively. The noise suppression examples of the four denoising methods after process-
ing the measured signal of the pendulum degree are shown in Table 4. From Table 4, we can
see that ICEEMDAN–PE–SVD denoising has the highest NRR value and the best filtering
effect, whereas the denoising with ICEEMDAN–PE and CEEMDAN–PE is in second, and
wavelet threshold denoising is the worst.

The measured signal and denoised signal waveforms of the Y-direction swing of
the lower guide and the X-direction swing of the water guide of the hydropower unit
are shown in Figures 16–19, respectively. ICEEMDAN decomposition was performed on
these two signals to obtain the IMF component and trend component. The entropy value
of each component was calculated, and the results are shown in Table 3. According to
the PE threshold, the division of components was selected to reconstruct, and then the
secondary denoising was performed on the reconstructed signal using the SVD algorithm,
which finally completes the denoising of the measured signals of the Y-direction of the
lower guide and the X-direction of the water guide of the hydropower unit, as shown in
Figures 17 and 19, respectively.

Table 3. PE of each component for case analysis by ICEEMDAN.

BSS F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 R

UG 0.972 0.748 0.535 0.402 0.287 0.225 0.163 0.148 0.148 0.139 0.017
LG 0.964 0.784 0.55 0.329 0.269 0.189 0.163 0.15 0.15 – 0.135
WG 0.964 0.75 0.536 0.368 0.282 0.208 0.177 0.163 0.151 0.149 0.146

In Tables 3 and 4, BSS denotes the bearing swing signal; UG denotes the upper guide
bearing; LG denotes the lower guide bearing; and WG denotes the water guide bearing.
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Table 4. The noise rejection ratio of de-noised swing signals by different methods.

Denoising Method UG NRR/dB LG NRR/dB WG NRR/dB

Wavelet Threshold 2.1569 3.2387 4.7788
SVD 11.1864 20.2995 16.5618

CEEMDAN–PE 10.1356 12.1863 15.7854
ICEEMDAN–PE 6.6525 16.8692 14.1723

ICEEMDAN–PE–SVD 11.7286 20.311 16.6323

From the above comparison of the figures, it can be seen that the method based on
ICEEMDAN–PE–SVD can effectively remove a large amount of background noise contained
in the measured signals of the lower guide and water guide pendulums of hydroelectric
units. The noise rejection ratios of five different denoising methods for the down–conductor
and hydro-conductor pendulum signals were also calculated. From Table 4, it can be seen
that the ICEEMDAN–PE–SVD denoising method has the best denoising effect.

6. Conclusions

In this paper, an ICEEMDAN–PE–SVD-based denoising method for the vibration
signals of hydroelectric units was proposed. The method can be used to denoise the simu-
lated and three measured signals of hydropower unit swing, and the following conclusions
are obtained after comparing the waveform differences and the magnitude of denoising
performance indices with the methods of wavelet threshold denoising, CEEMDAN–PE
denoising, and ICCEMDAN–PE denoising in comparison tests:

(1) Through simulation tests, the ICEEMDAN–PE–SVD method proposed in this paper,
after the double-noise reduction process, obtains a root-mean-square error as low as
0.1152 and the signal-to-noise ratio is improved to 42.0941, which maximizes the noise
elimination while retaining the useful information within the fault signal. The method
has a good noise reduction and pulse effect, and avoids modal mixing in the EMD
decomposition process and the pseudo-modal problem of CEEMDAN decomposition.

(2) Through the case analysis of the oscillation data of the measured hydro-generator
unit’s upper guide in the X-direction, the lower guide in the Y-direction, and the water
guide in the X-direction, it was found that the method can effectively reduce the noise
of the measured unit data and extract the characteristic frequency of the vibration
signal more accurately so that the cause of the unit vibration can be judged by the
frequency. The denoising effect of the measured signal was better than that of the
traditional method, as it can effectively filter out the noise components and provide a
powerful tool for the online monitoring of equipment vibration signals.
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(3) The research results of this paper can also be widely applied to signal denoising
and feature extraction of high-safety equipment in nuclear power, power grids, the
petrochemical industry, and other industries.
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