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Abstract: Mine Internet of Things (MIoT) devices in intelligent mines often face substantial signal
attenuation due to challenging operating conditions. The openness of wireless communication also
makes it susceptible to smart attackers, such as active eavesdroppers. The attackers can disrupt
equipment operations, compromise production safety, and exfiltrate sensitive environmental data. To
address these challenges, we propose an intelligent reflecting surface (IRS)-assisted secure transmis-
sion system for an MIoT device which enhances the security and reliability of wireless communication
in challenging mining environments. We develop a joint optimization problem for the IRS phase
shifts and transmit power, with the goal of enhancing legitimate transmission while suppressing
eavesdropping. To accommodate time-varying channel conditions, we propose a reinforcement
learning (RL)-based IRS-assisted secure transmission scheme that enables MIoT device to optimize
both the IRS reflecting coefficients and transmit power for optimal transmission policy in dynamic
environments. We adopt the deep deterministic policy gradient (DDPG) algorithm to explore the
optimal transmission policy in continuous space. This can reduce the discretization error caused by
traditional RL methods. The simulation results indicate that our proposed scheme achieves superior
system utility compared with both the IRS-free (IF) scheme and the IRS randomly configured (IRC)
scheme. These results demonstrate the effectiveness and practical relevance of our contributions,
proving that implementing IRS in MIoT wireless communication can enhance safety, security, and
efficiency in the mining industry.

Keywords: Internet of things; mining; active eavesdropping; intelligent reflecting surface; reinforce-
ment learning

1. Introduction

Mine Internet of Things (MIoT) devices are widely applied in intelligent mines to
improve safety and mineral production [1]. In the mining industry, IoT networks play a
crucial role in controlling mining equipment and gathering essential environmental data,
including temperature, humidity, and wind speed, which are instrumental in safeguarding
the personal safety of mine workers [2,3]. The accurate, reliable, and durable operation of
MIoT devices is essential for the stable and long-term service of intelligent mines. There-
fore, MIoT devices must provide high-speed transmission and low energy consumption.
However, the wireless transmission characteristics of electromagnetic waves in MIoT of-
ten experience severe scattering, substantial interference, and Non-Line-of-Sight (NLoS)
propagation, which necessitates innovation in new transmission technology [4].

Furthermore, despite significant advancements in wireless communication technology
in recent decades, most MIoT networks, particularly those deployed in open pit mines,
remain susceptible to physical layer threats. The open nature of wireless channels exposes
these MIoT devices to vulnerabilities such as jamming and eavesdropping, highlighting the
need for enhanced security measures [5]. Malicious devices connected to the system can
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wiretap confidential information, which can lead to data leakages, such as mineral produc-
tion schedules, the distribution of mineral resources, and safety aspects of the operations.
The intruder can use the stolen data to commit fraud and extortion for illegal profit or pose
security threats, such as negative impacts on production and deliberately creating catastro-
phes. In this case, MIoT devices must be able to withstand smart attacks, particularly active
eavesdropping, which involves simultaneous eavesdropping and jamming to increase the
MIoT device’s transmit power and intercept more data [6].

As an emerging technology, intelligent reflecting surfaces (IRS) have attracted exten-
sive research interest. The low cost of IRS makes them a highly suitable technology for
wide adoption in MIoT communication. IRS contain metamaterial designed to reflect the
incident waves from the source towards the destination [7,8]. With properly adjusted
elements, IRS can construct an artificial Line-of-Sight (LoS) link and significantly improve
transmission performance in NLoS scenes. Moreover, adding the nonreflected signal and
the IRS-reflected signal at the eavesdropper can produce destructive interference, effectively
suppressing eavesdropping activity [9]. In this paper, IRS establish a favorable propagation
environment, increasing the access point (AP)’s received signal power and decreasing the
eavesdropper’s received signal power, thus increasing the secrecy rate of the MIoT system
in the presence of active eavesdropping.

Due to the complex and random time-varying channel characteristics in MIoT, ac-
quiring the optimal transmission scheme using traditional techniques is typically not
feasible [10]. The wiretap policy is also challenging to estimate, making it harder to find
the optimum secure transmission policy. Motivated by the advances in model-free deep
reinforcement learning (DRL), we model the secure transmission procedure as a Markov
Decision Process (MDP). The increasing computational capability of IoT devices, such
as the Qualcomm Snap-dragon 800 [11], makes it possible to apply DRL techniques in
practical mining IoT communication systems.

In this paper, we propose an innovative secure transmission scheme that leverages
IRS and the deep deterministic policy gradient (DDPG) algorithm to enhance the secrecy
rate of the system in the presence of an active eavesdropper, specifically in a dynamic MIoT
environment. In the proposed scheme, RL is utilized to adapt the time-varying channel
characteristics and make the optimal choice without knowing the specific transmission
model and attack model. The DDPG-based scheme can select policies in a continuous space
while avoiding discretization errors. This enables the MIoT device to jointly optimize the
IRS phase shifts and the MIoT device’s transmit power in a mine environment. Strategically
adjusting the phase shifts and transmission power of IRS, as well as leveraging the utiliza-
tion of reflected signals, is helpful to enhance the effectiveness of legitimate transmission
and ensure a safe mine environment.

According to our simulation results, the proposed DDPG-based IRS-assisted secure
transmission (DIST) scheme achieves higher utility than the IRS randomly configured (IRC)
scheme and the IRS-free (IF) scheme. By changing the number of IRS elements, we also
assess the system utility of both the proposed DIST scheme and the IRC scheme. The main
contributions of this paper can be outlined as follows:

• We construct a joint optimization problem of the MIoT device’s transmit power and IRS
reflecting beamforming to maximize the system’s utility. We present an IRS-assisted
secure transmission scheme against active eavesdropping in MIoT.

• A DRL-based intelligent beamforming and power control framework is presented to
achieve the optimal IRS phase shifts and MIoT device’s transmit power. We formulate
the control of the IRS elements as an MDP and employ the DDPG algorithm to achieve
real-time and continuous phase control based on the dynamic MIoT environment.

• Simulation results demonstrate our proposed DRL-based IRS-assisted secure trans-
mission scheme’s performance suppresses eavesdropping and enhances legitimate
transmission compared with the IRC and IF schemes.

The subsequent sections of this paper are organized as follows: Section 2 discusses
the related works. Section 3 introduces the proposed system model, channel model, and
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problem formulation. In Section 4, we introduce our proposed DIST scheme. Section 5
provides simulation results, and Section 6 concludes the paper.

Notations: In this paper, we present matrices and vectors with boldface. (.)T and (.)H

denote the transpose and conjugate transpose operations, respectively. diag(.) denotes a
diagonal matrix, and j is the imaginary unit. E[.] denotes the expectation operation. |.|
is the absolute value of a scalar. CM×N denotes a complex-valued matrix with a size of
M× N.

2. Related Works

Numerous methods have been proposed to improve physical layer security (PLS)
performance, including artificial noise (AN) [12], physical layer authentication (PLA) [13],
and beamforming [14]. However, these methods have limitations, such as extra power
consumption for AN, computing resource requirements for PLA, and limited security
guarantees for beamforming. For mining scenario, the authors in [15] investigate PLS
in an underground mine environment using an amplify-and-forward relay-aided system
with multiple eavesdroppers. The authors employ a block coordinate descent algorithm to
design the precoding and jamming matrix at both the source and the relay, similar to other
traditional PLS techniques, rather than during the propagation process. Recently, the use
of IRS has gained significant attention to address PLS issues in the propagation process.
Several studies have explored the use of IRS in secure communication systems in [16–19].
A genetic algorithm (GA) is introduced in [16] to optimize the phase shift of an IRS in
a multiple-input multiple-output (MIMO) system, with the goal of improving security
performance in the presence of an eavesdropper. To reduce the overhead of computing
resources, a low-complexity algorithm is studied in [17] based on fractional program-
ming (FP) and manifold optimization (MO) to circumvent the nonconvex optimization
problem and obtain near-optimal IRS phase shifts. However, the optimization technique
in both [16,17] rely on a specific transmission model and lack robustness. Moreover, a
more practical system model comprising multiple eavesdroppers and imperfect channel
state information (CSI) are studied in [18,19]. The interuser interference (IUI) among each
mobile user (MU) is studied in [19]. Additionally, none of the existing IRS-assisted PLS
approaches consider an active eavesdropper scenario where jamming attacks interfere with
the legitimate transmission and raise the transmit power.

Artificial Intelligence (AI) has introduced a new way to solve PLS problems through
RL. Recent studies in [20,21] have considered PLS problems concerning smart attackers
conducting jamming, eavesdropping, and spoofing attacks. For instance, prospect theory
(PT) in an unmanned aerial vehicle (UAV) transmission system is investigated in [20],
where the attacker is considered to be selfish and subjective. To enhance the secrecy
performance and the utility of the legitimate UAV, a power allocation approach utilizing
deep Q-networks (DQN) is put forth to determine the optimal policy, in cases where the
attack and channel models are unknown. RL techniques are studied in [21] to configure IRS
beamforming design. The authors first establish the interaction between the base station
(BS) and the smart attacker as a non-cooperative game and derive the Nash equilibrium
of the game. Then, a DQN-based antismart attacker strategy is proposed to make the BS
and IRS intelligent and restrain the attack, thus improving the system’s security. However,
since the study assumes a static channel, the proposed strategy may be less adaptable to
varying channel conditions, despite its focus on the game-theoretic interaction between the
base station (BS) and the attacker. To address these limitations, a novel DRL framework is
proposed in [22] to enable the prediction of IRS reflection matrices without the need for
extensive channel estimation or beamforming train overhead. Additionally, an integrated
DRL and extremum-seeking control (ESC) is studied in [23] to control the IRS and make
the system more adaptive to the dynamic channel state without subchannel CSI.

The implementation of IRS and RL in the mining industry is a relatively unexplored
research area. Machine learning is applied in a mining system to remove the operator from
hazardous environments without compromising task execution [24]. Ref. [25] is the first
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work implementing IRS in a coal mine. In this study, IRS are placed at the inflection points
of the nonlinear routes (i.e., zigzag tunnels) to improve wireless communication quality.
Although an approximation-based algorithm is utilized to address the optimization prob-
lem, the complex and dynamic nature of the channel state is ignored. Thus, the proposed
method in [25] may not be practical in most mining scenarios. Furthermore, neither [24]
nor [25] use RL or IRS to solve the PLS problems and enhance secure transmission in a
mine environment. The mainly related work is summarized in Table 1.

Table 1. Summary of related literature.

Classification Related Works Key Contributions

Traditional techniques
used to achieve PLS [12–15]

- Artificial noise, physical layer authentication, and beamforming
techniques.

- PLS in underground mine environments with relay-aided systems.

Implementation of IRS
in PLS [16–19]

- Genetic algorithms for IRS phase shift optimization.
- Low-complexity algorithms for IRS optimization.
- Researches on practical system models.

Implementation of IRS
and RL to achieve PLS [20–23]

- Power allocation using deep Q-networks for UAV systems.
- IRS beamforming design using RL techniques.
- DRL-based adaptive IRS control.

Implementation of IRS
and machine learning
in mining systems

[24,25]
- Machine learning applications in mining systems.
- Implementation of IRS in coal mines.

3. System Model and Problem Formulation
3.1. System Model

Considering a single-input single-output (SISO) uplink system, as shown in Figure 1,
one MIoT device, equipped with a single antenna, establishes communication with a
single-antenna AP. Simultaneously, we introduce a single-antenna active eavesdropper
with the intention of intercepting the transmission. The MIoT device collects data, such as
temperature and gas density, and transmits the data to the AP, which is located dM,A meters
away. To establish a dependable communication environment, a passive IRS is deployed at
a distance of dM,I meters from the MIoT device, with N = Ny × Nz reflecting elements. All
elements are configured through a wireless IRS controller that receives the control signal
from the MIoT device. The IRS reflect the signal to enhance the transmission from the MIoT
device to the AP and suppress the wiretap signal at the eavesdropper, thereby obtaining
the maximum secrecy rate. The data are then updated to a cloud server and used by the
remote control on the ground for digital management in the mine IoT applications.

Upon receiving the control signal, the micro IRS controller sets the bias voltage to
apply the phase shift on each IRS reflecting element. The phase shifts configuration can be
modeled as Θ = diag

(
β1ejθ1 , β2ejθ2 , . . . , βNejθN

)
, where βN ∈ [0, 1] and θN ∈ [0, 2π) are the

amplitude reflection coefficient and phase shift of the n-th IRS element, respectively. For
simplicity, we set βN = 1 for N reflecting elements.

The transmission policy in an IRS-assisted secure transmission system relies on pre-
cisely acquiring CSI. In our proposed system model, the legitimate channel state is obtained
by the pilot-based channel estimation [26]. We also assume the CSI of the wiretap channel
to be perfectly known to the MIoT device. This is because the eavesdropper is considered
an active user in the system but is not trusted by the legitimate receiver [9].
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Figure 1. Illustration of the IRS-assisted secure transmission system in MIoT. The MIoT devices
choose the transmit power and send phase shift control messages to the IRS controller. At the same
time, the active eavesdropper performs jamming to increase the MIoT devices’ transmit power for a
higher wiretap rate.

3.2. Channel Model

The channel path losses from the MIoT device to the AP, from the MIoT to the eaves-
dropper, and from the jamming to the AP are denoted by hM,A, hM,E, and hJ,A. The channel
path losses above are all regarded as Rayleigh fading, which means that the Line-of-Sight
signal between the transmitter and receiver is blocked and can be expressed as [27]:

hM,A =
√

PLM,A h̃M,A

hM,E =
√

PLM,E h̃M,E

hJ,A =
√

PLJ,A h̃J,A

(1)

where PL is the path loss. h̃ contains independent and identically distributed (i.i.d)
circularly symmetric complex Gaussian distribution with zero mean and unit variance,
h̃ ∼ CN (0, 1).

The distance-dependent path loss PL is modeled as

PL = PL0 − 10ξ log10
d
d0

(2)

where PL0 = −30 dB is the reference channel path loss for the reference distance d0 = 1 m,
ξ is the path loss exponent, and d is the distance from the transmitter to the receiver.

The channel path loss from the MIoT device to the IRS, from the IRS to the AP, from
the IRS to the eavesdropper, and from the jamming to the IRS are denoted by hM,I ∈ CN×1,
hI,A ∈ CN×1, hI,E ∈ CN×1, and hJ,I ∈ CN×1. The channel path losses above are all assumed
to be small-scale Rician fading, which suggests the LoS link coexists with NLoS link, and
the channel path loss can be expressed as [7,23]
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hM,I =
√

PLM,I

(√
KM,I

KM,I + 1
hM,I +

√
1

KM,I + 1
h̃M,I

)

hI,A =
√

PLI,A

(√
KI,A

KI,A + 1
hI,A +

√
1

KI,A + 1
h̃I,A

)

hI,E =
√

PLI,E

(√
KI,E

KI,E + 1
hI,E +

√
1

KI,E + 1
h̃I,E

)

hJ,I =
√

PLJ,I

(√
KJ,I

KJ,I + 1
hJ,I +

√
1

KJ,I + 1
h̃J,I

)
(3)

where K is the Rician-K factor and denotes the proportion of power between the LoS link
and the NLoS link. h̃ is the random components caused by multipath effect with i.i.d and
CN (0, 1) distributed elements. The deterministic component h is position-dependent and
can be expressed as [28]

h = hAhD (4)

where the superscripts “A” and “D” stand for “Arrival” and “Departure”, respectively.
Without loss of generality, we place the IRS on the yOz plane. So, the component

hA(D) in Equation (4) can be expressed as

hA(D) = hA(D)
y−axishA(D)

z−axis (5)

where

hA(D)
z−axis =

[
1, e−j 2π

λc d cos ψ, . . . , e−j 2π
λc d cos ϑ(Nz−1)

]T
(6)

hA(D)
y−axis =

[
1, e−j 2π

λc d cos ϑ sin ψ, . . . , e−j 2π
λc d cos ϑ sin ψ(Ny−1)

]
(7)

where λc is the carrier wavelength, and d is the distance between two adjacent IRS elements.
Furthermore, ϑ represents the azimuth angle and ψ represents the elevation angle. The LoS
component h is solely dependent on ϑ and ψ, meaning that once the locations of each unit
are obtained, h is fully determined.

For the proposed system model, the MIoT device sends message m with zero mean and
unit variance to the AP with transmission power p, where E

{
|m|2

}
= 1, p ∈ [Pmin, Pmax],

Pmin, and Pmax is the minimum, and the maximum values of the MIoT device transmit
power, respectively.

3.3. Problem Formulation

The received signal yA at the AP and yE [9] at the eavesdropper can be denoted as

yA =
(

hH
I,AΘhM,I + hM,A

)√
pm + nk (8)

yE =
(

hH
I,EΘhM,I + hM,E

)√
pm + nk (9)

where nk ∼ CN
(
0, σ2) denotes the complex additive white Gaussian noise (AWGN).

The active eavesdropper aims to wiretap more data by increasing the jamming power
pJ . Therefore, we assume that the active eavesdropper has no self-interference. That is to
say, we ignore the LoS channel between the eavesdropper and the jamming device and
only consider the IRS-reflected jamming signals. Thus, the received jamming signal JA at
the AP and JE at the eavesdropper can be expressed as
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JA =
(

hH
I,AΘhJ,I + hJ,A

)√
pJ + nk (10)

JE =
(

hH
I,EΘhJ,I

)√
pJ + nk (11)

Then, we can calculate the signal-to-interference-and-noise ratio (SINR) ρA at the AP
and ρE at the eavesdropper [29], and they can be expressed as

ρA =

∣∣∣(hH
I,AΘhM,I + hM,A

)√
p
∣∣∣2∣∣∣(hH

I,AΘhJ,I + hJ,A

)√pJ

∣∣∣2 + σ2
(12)

ρE =

∣∣∣(hH
I,EΘhM,I + hM,E

)√
p
∣∣∣2∣∣∣(hH

I,EΘhJ,I

)√pJ

∣∣∣2 + σ2
(13)

We evaluate the eavesdropping policy according to the AP’s received jamming power
p̃J , which can be denoted as

p̃J =
∣∣∣(hH

I,AΘhJ,I + hJ,A

)√
pJ

∣∣∣2 (14)

The achievable rates at AP RA and eavesdropper RE in bps/Hz can be denoted as [6,19]

RA = log2 (1 + ρA) (15)

RE = log2 (1 + ρE) (16)

Thus, the achievable secrecy rate Rsec [19,30] can be denoted as

Rsec = RA − RE (17)

To achieve the maximum secrecy rate Rsec, there is a trade-off in configuring the IRS
reflecting coefficient matrix Θ. On the one hand, we synchronize the phase of the reflected
channel hH

I,AΘhM,I with the direct channel hM,A to strengthen AP’s received signal and
thus maximize RA. On the other hand, we reverse synchronize the phase of the reflect
channel hH

I,EΘhM,I with the direct channel hM,E to weaken the eavesdropper’s received
signal and decrease RE.

Then, the MIoT system’s utility function [6] is defined as follows:

U(θ, p) = ω1Rsec −ω2 p (18)

where θ = [θ1, . . . , θn, . . . , θN ], ∀n ∈ {1, 2, . . . , N}; weights ω1 and ω2 denote the coeffi-
cients. The coefficients ω1 and ω2 represent the weight of the achievable secrecy rate and
the transmit power, which are set for balancing the influence factors of the utility function.

We aim to optimize the IRS phase shifts θ and the MIoT device’s transmit power p to
maximize the utility. The following formulation represents the optimization problem:

max
θ,p

U(θ, p)

s.t.
{

θn ∈ [0, 2π)
p ∈ [pmin, pmax]

(19)

However, it is difficult to solve the formulated problem, as its objective function
is nonconvex concerning either θ or p. Additionally, the complex time-varying channel
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fading makes it impossible to obtain an optimal solution for long-term system utility using
traditional optimization techniques.

4. Proposed DIST Scheme
4.1. Main Elements of DIST

In previous sections, we discussed the challenges in MIoT wireless communication.
To address these issues, we propose a model-free RL approach. More specifically, we
introduce a DDPG-based IRS-assisted secure transmission (DIST) scheme to efficiently
search the policy space and improve the secure transmission performance while remaining
independent of any specific system model or wiretap policy [31]. The DIST scheme is
designed to be applicable to a wide range of MIoT systems, making it a valuable contri-
bution to the field. By considering the IRS-assisted MIoT device’s transmission system as
the dynamic environment and the MIoT device itself as the learning agent, our method is
able to adapt to various situations and effectively address the security concerns in MIoT
wireless communication. In the following specifications, we outline the main components
of the framework employed by the DIST scheme.

State space: At time slot k, the MIoT device observes the environment and formulates
the state s(k), which is modeled as follows:

s(k) =
[
h(k), p̃J

(k−1)
]
∈ Λ (20)

where Λ is the state space. h(k) =
{

h(k)
M,I , h(k)M,A, h(k)M,E, h(k)

I,A, h(k)
J,I , h(k)

I,E, h(k)J,A

}
, h(k) are the

channel path loss at time slot k. p̃J
(k−1) is the AP’s received jamming power at time slot

k− 1.
Action space: We denote A as the action space. According to the observed state s(k)

at time slot k, the MIoT device designs the IRS phase shifts θ(k) and chooses the transmit
power p(k). Then, the phase shifts control signal is sent to the IRS controller. Hence, the
secure transmission policy a(k) ∈ A can be formulated by

a(k) =
[
θ(k), p(k)

]
(21)

Reward function: In the proposed DIST scheme, the reward function evaluates the
secure transmission policy according to the current state. In the presented paper, we aim to
achieve the maximum long-term utility of the system, as addressed in Equation (19). Thus,
the reward function is denoted as follows:

r(k)(s, a) = U(k) (22)

4.2. Main Process of DIST

Our proposed DIST scheme contains a critic network and an actor network, denoted
as Q(s, a|Ψ) and µ(s|Ω) with parameters Ψ and Ω, respectively. The actor network is
responsible for choosing the secure transmission policy, while the critic network assesses
the policy selected by the actor network. Moreover, a target critic network Q′(s, a|Ψ′) and
a target actor network µ′(s|Ω′) are designed to promote convergence.

At the beginning of each episode, the MIoT device sets a random phase shift on each
element. The MIoT device observes the environment and acquires the global CSI and the
AP’s received jamming power. Then, the MIoT device formulates the initial state s and
inputs it into the actor network to generate corresponding transmission policy a.

According to the observed state s(k) at time slot k, the MIoT device selects the secure
transmission policy a(k) =

[
θ(k), p(k)

]
through the actor network. The actor network links

each state to a corresponding transmission policy using function µ
(

s(k)|Ω(k)
)

. To enable the
MIoT device to explore the environment, we model an Ornstein–Uhlenbeck (OU) process
as the exploration noise N (k), which is known as the OU-noise. The OU-noise is used to
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improve the exploration efficiency and find the optimal policy with better convergence.
Thus, the secure transmission policy a(k) is given by

a(k) = µ
(

s(k)|Ω(k)
)
+N (k) (23)

The MIoT device then sends the phase shifts control signal to the IRS controller and
transmits the data to the AP with the transmit power p. Then, the MIoT device calculates
the achievable rate at AP and eavesdropper via Equations (15) and (16). As a result, the
MIoT obtains an immediate reward u(k), and the system state s(k) is updated to a new
state s(k+1), which is denoted as s(k+1) =

[
h(k+1), p̃J

(k)
]
. Next, the MIoT device stores

the transition
(

s(k), a(k), u(k), s(k+1)
)

in the replay buffer, where the oldest experience is
systematically discarded in a rolling manner as the buffer reaches its maximum capacity.
When the buffer size is larger than the batch size Z, the MIoT device randomly samples
Z experiences from the replay buffer for exploring the optimal transmission policy in the
dynamic MIoT environment. The detailed structure is shown in Figure 2.

Figure 2. The DDPG-based IRS-assisted secure transmission scheme in MIoT.

We formulate the minibatch eh = {sh, ah, uh, sh+1}, h ∈ [1, Z] and utilize the Adam
optimizer to update the critic network’s weight Ψ [32], where the loss function is denoted as

Ψ = arg min
Ψ

1
H

H

∑
h=1

(
uh + γQ′

(
sh+1, µ′

(
sh+1|Ω′

)
|Ψ′
)
−Q(sh, ah|Ψ)

)2 (24)

where the discount factor γ ∈ [0, 1].



Sensors 2023, 23, 6321 10 of 16

The weights of the actor network are updated by leveraging the gradient of the
Q-value [32], which can be expressed as follows:

5Ω ≈
1
H

H

∑
h=1
5aQ(s = sh, a = µ(sh)|Ψ)×5Ωµ(s = sh|Ω) (25)

Lastly, the MIoT device uses the soft update strategy to ensure the target network
changes slowly, thus guaranteeing stability. The soft update can be denoted as follows:

Ψ′ = τΨ + (1− τ)Ψ′

Ω′ = τΩ + (1− τ)Ω′
(26)

where the τ represents the learning rate. The more detailed process is illustrated in
Algorithm 1.

Algorithm 1 DDPG-based IRS-assisted secure transmission scheme (DIST)
Initialize: actor network, critic network, target critic network, target actor network, and

replay buffer
1: for episode e = 1, 2, 3, . . . , E do
2: Initialize action exploration noise N
3: Obtain the channel state information hM,I , hM,A, hM,E, hI,A, hJ,I , hI,E, hJ,A
4: Randomly choose the IRS phase shifts θ
5: Evaluate the AP’s received jamming power p̃J
6: Formulate the initial state s according to Equation (20)
7: for Time slot k = 1, 2, 3, . . . , T do
8: Select transmission policy a(k) with state s(k) and noise N(k) based on the current

policy.
9: Execute transmission policy a(k) and obtain the reward and utility U(k) = r(k)(s, a)

10: Obtain the AP’s received jamming power p̃J
(k)

11: Obtain the channel path loss h(k+1)
M,I , h(k+1)

M,A , h(k+1)
M,E , h(k+1)

I,A , h(k+1)
J,I , h(k+1)

I,E , h(k+1)
J,A

12: Formulate the state s(k+1)

13: Store the transition
(

s(k), a(k), u(k), s(k+1)
)

to the replay buffer
14: if buffer length > Z then
15: Randomly sample a minibatch of Z transitions (sh, ah, uh, sh+1)
16: Update the critic network and actor network via Equations (24) and (25)
17: Update the target actor network and target critic network via Equation (26)
18: end if
19: end for
20: end for

In Table 2, we present the advantages and potential limitations associated with the
DIST scheme.

Table 2. Advantages and limitations of the proposed DIST scheme.

Advantages Limitations

Adapt to time-varying and dynamic
channel conditions

In practice, MIoT devices can hardly obtain
the perfect CSI in a timely manner, causing
performance degradation

Reduce transmit power consumption
and promote energy efficiency

Computationally intensive due to the applica-
tion of DRL

Enhance wireless communication in
challenging mining environments Only suitable for single-device scenarios
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5. Simulation Setup and Results

In this section, we comprehensively illustrate the performance of our proposed DIST
scheme under the presence of an active eavesdropper in mining scenarios. The system
topology and coordinate of each unit are shown in Figure 3. The red line, blue line, and black
line represent the eavesdropping channel, jamming channel, and legitimate transmission
channel, respectively. In real-world mining operations, the positions of devices may vary.
The changing positions may affect the value of the system performance. However, it will not
impact the advantage trend of the proposed DIST scheme compared with the benchmarks.
Simulations are implemented using Pytorch 1.13.1 with Python 3.9. The number of MIoT
devices, jamming devices, and active eavesdroppers is set to 1, and they are all equipped
with one single antenna. The MIoT device observes and estimates the CSI at each time
slot. The IRS is composed of a total of N = 12 [6] reflecting elements, specifically Ny = 2
elements aligned parallel to the y-axis and Nz = 6 elements aligned parallel to the z-axis.
The background noise power σ2 is set to −80 dBm [27]. The MIoT device is specifically
configured to operate within a transmit power range, with a minimum power Pmin setting
of 1 mW and a maximum power Pmax setting of 9 mW. The jamming power is randomly
generated in the range of 1 mW and 5 mW. The Rician factors KM,I , KI,A, KI,E, and KJ,I are
assumed to be equal and set to 10 [33]. ξLoS = 2.2 and ξNLoS = 3.8 [34] are the path loss
exponents of the LoS link and NLoS link, respectively.

Figure 3. Simulation setting for an IRS-assisted secure transmission system in MIoT.

The learning model in the proposed DIST framework consists of a three-layer deep
neural network (DNN). The hidden layer contains 32 neurons. The actor and critic learning
rates are set to 5 × 10−7 and 5 × 10−4, respectively. Moreover, the discount factor is
determined to be γ = 0.3, whereas the soft update parameter is configured to be τ = 0.005.
We set the max buffer size to 10,240 and the batch size to 16. Moreover, we set the time slot
number in each episode to T = 256 and the episode number to E = 1024. The parameters
ω1 and ω2 in Equation (18) are set to 1 and 500, respectively, to balance the secrecy rate
gain and power consumption loss. For the settings of the parameters mentioned above, we
determined them through multiple experiments conducted by our research team.

Two benchmark schemes are considered, shown as follows:
IRS randomly configured (IRC): In this case, the reflection coefficients of each IRS

element are generated randomly. We only use the DDPG algorithm to optimize the transmit
power [35].
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IRS-free (IF): We consider a classical communication system in MIoT without intro-
ducing the IRS. In this case, the MIoT device only chooses the transmit power based on the
DDPG algorithm [36].

Figure 4 provides a comprehensive evaluation of the system utility across all schemes.
Our proposed DIST scheme converges after 400 episodes and achieves the utility increment
from −1.8 to 1.3. Specifically, in episode 600, our proposed DIST scheme achieves 5.5
and 4.25 times higher utility than the IF and IRC schemes, respectively. This proves
the remarkable utility increase from applying the IRS in MIoT wireless communication.
And it also emphasizes the significance of applying the RL mechanism to solve the IRS
beamforming design problem in a secure transmission scene.

Figure 4. Utility of MIoT device of the DIST scheme compared with the IRC and IF schemes.

Figure 5 investigates the RA, RE, Rsec, and p of all schemes. For the secrecy rate
shown in Figure 5a, our proposed DIST scheme outperforms the IF scheme and the IRC
scheme by 70.6% and 141.7% in secrecy capacity. We then dig into the detailed performance.
Particularly, in Figure 5d, in our proposed DIST scheme, we observe that the eavesdropping
rate increases from 0.8 bps/Hz to 1.2 bps/Hz from episode 80 to 160, and then falls to
0.9 bps/Hz. The reason is that the MIoT device explores the environment and chooses the
policy aiming to obtain the maximum utility. In this process, the eavesdropping rate may
go up a bit, but in Figure 5a,c, the signal transmission rate at AP and the secrecy rate are
still rising. Several factors contribute to the continuous rise in system utility in this interval.
Among these are the factors mentioned above and the declining transmit power, as shown
in Figure 5b.

Additionally, in Figure 5c, the signal transmission rate at AP degrades a little bit from
4.25 bps/Hz to 3.9 bps/Hz after 190 episodes. The reason is that the MIoT device’s transmit
power converges more slowly than the IRS phase shifts. After 200 episodes, the transmit
power is still declining. According to Equations (12) and (15), lower transmit power will
lead to a lower AP signal transmission rate when the reflecting coefficients converge to the
optimal value.
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(a) Secrecy rate (b) MIoT device’s transmit power,p

(c) RA (d) RE

Figure 5. Performance of our proposed DIST scheme compared with the IRC and IF schemes:
(a) Secrecy rate, Rsec. (b) MIoT device’s transmit power, p. (c) Signal transmission rate at AP, RA.
(d) Eavesdropping rate, RE.

As shown in Figure 6, we investigate the performance of our proposed DIST scheme
and the IRC scheme by varying the number of IRS elements. The significant improvement
of our proposed scheme demonstrated in Figure 6 results from more IRS elements bringing
more reflected signals. When the IRS are well-adjusted, the reflected signal can be intelli-
gently combined at AP to provide higher signal strength and deliberately manipulated at
the eavesdropper to attenuate its received signal power, thereby diminishing its ability to
intercept the transmission.

Moreover, the system utility of the IRC scheme decreases slightly as the number of
IRS elements increases. This is because without IRS properly adjusted, the reflected signal
with random phase will be added constructively or destructively, generating a stronger
or weaker signal. Thus, the more IRS elements used, the larger the range of the SINR.
According to Equations (15) and (16), the average RA and RE will decrease due to the
different slope of function log2 (x) when the SINR range gets bigger, eventually resulting
in performance degradation.
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(a) (b)

Figure 6. Average performance of the DIST scheme and the IRC scheme in MIoT, with the IRS ele-
ments number changing from 6 to 30 and averaged over 1024 episodes against active eavesdroppers:
(a) Utility of MIoT device. (b) Secrecy rate.

6. Conclusions

In this paper, we investigated a secure transmission scheme against an active eaves-
dropper and formulated the optimization problem to maximize the utility of an MIoT
device for a dynamic MIoT communication environment. We proposed a DDPG-based
IRS-assisted secure transmission scheme in MIoT that enables the MIoT device to jointly
design the optimal IRS phase shifts and transmit power. Simulation results demonstrate
the effectiveness of our proposed scheme in enhancing secrecy rates and reducing power
consumption. Comparing our DIST scheme with the IF scheme and the IRC scheme, our
DIST scheme achieves a substantial performance improvement in utility of 5.5 times and
4.25 times, respectively. These results demonstrate the vital role of IRS in bolstering physical
layer security and enhancing transmission performance in the MIoT wireless communica-
tion environment. This work can also be applied to handle secure transmission in other
NLoS scenarios, such as large-scale underground supermarkets. Our future work will
focus on developing a multiagent learning-based method to solve multidevice scenarios,
including multiple receivers and eavesdroppers.
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