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Abstract: Smart security based on object detection is one of the important applications of edge
computing in IoT. Anchors in object detection refer to points on the feature map, which can be used
to generate anchor boxes and serve as training samples. Current object detection models do not
consider the aspect ratio of the ground-truth boxes in anchor assignment and are not well-adapted to
objects with very different shapes. Therefore, this paper proposes the Lightweight Anchor Dynamic
Assignment algorithm (LADA) for object detection. LADA does not change the structure of the
original detection model; first, it selects an equal proportional center region based on the aspect ratio
of the ground-truth box, then calculates the combined loss of anchors, and finally divides the positive
and negative samples more efficiently by dynamic loss threshold without additional models. The
algorithm solves the problems of poor adaptability and difficulty in the selection of the best positive
samples based on IoU assignment, and the sample assignment for eccentric objects and objects with
different aspect ratios was more reasonable. Compared with existing sample assignment algorithms,
the LADA algorithm outperforms the MS COCO dataset by 1.66% over the AP of the baseline FCOS,
and 0.76% and 0.24% over the AP of the ATSS algorithm and the PAA algorithm, respectively, with
the same model structure, which demonstrates the effectiveness of the LADA algorithm.

Keywords: object detection; positive and negative samples; anchor assignment; aspect ratio; loss
aware; self adaptive; loss of anchor

1. Introduction

Due to the advantages of edge computing in terms of latency, bandwidth, and security,
it provides more effective technical support for many applications that require real-time
security. A security system is one of the applications for edge computing in IoT, where the
core end device is a camera for surveillance and smart security. Intelligent security systems
require accurate and real-time processing of images and video from cameras, which poses
a challenge to existing object detection technologies.

The training samples in object detection use anchors, which are feature points on the
feature map that can be used for classification and regression. In anchor-based detection
models (e.g., RetinaNet [1]), multiple anchor boxes can be tiled with anchors as the center,
while in anchor-free models (e.g., FCOS [2]), anchors can be used as anchor points to
directly predict regression boxes. In recent years, although great breakthroughs have been
made in object detection, there are still some shortcomings in the definition of positive and
negative samples in current object detection. As the aspect ratio of the ground-truth (GT)
boxes are not fixed, it is difficult for the ordinary center prior to select suitable anchors
as positive samples. Moreover, the distribution of objects within a GT box is uncertain,
there is often a large amount of background within the labeled GT box, and there may also
be interference, such as occlusion. In this case, the traditional approach based on fixed
Intersection-over-Union (IoU) assignment [1] does not select better positive samples, which
poses a challenge for positive and negative sample assignment. To address the problems

Sensors 2023, 23, 6306. https://doi.org/10.3390/s23146306 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146306
https://doi.org/10.3390/s23146306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0134-9194
https://orcid.org/0009-0007-5935-1146
https://orcid.org/0000-0003-4493-4668
https://doi.org/10.3390/s23146306
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146306?type=check_update&version=1


Sensors 2023, 23, 6306 2 of 27

posed by fixed IoU, [3] uses the statistical characteristics of IoU between the candidate
anchor boxes and a GT box to give the algorithm a different IoU threshold. Ref. [4] proposes
a new anchor quality evaluation scheme and uses the quality scores of anchors fitting a
probability distribution to achieve a truly dynamic assignment; however, the computational
effort is large and reduces the training speed. In summary, the shortcomings of existing
positive and negative sample assignment algorithms include:

1. The aspect ratio of the GT boxes is not considered. For objects with a large difference
in length and width, a square area is still used as the center region when selecting
candidate samples.

2. The actual content of the anchor box intersecting the GT box is not considered. If an
anchor box has a large IoU with the GT box, it does not mean that this anchor box can
get a prediction box that also has a large IoU with the GT box.

3. To determine positive and negative samples, complex models are used, which leads
to long training times and heavy hardware costs for accuracy gains, increases the
difficulty of training, and fails to adapt to the demands of edge computing.

The positive and negative sample assignment algorithm is a key factor affecting the
object detection model. Therefore, finding a better sample assignment algorithm has
become a popular research topic. This paper proposes a new positive and negative sample
assignment strategy, called Lightweight Anchor Dynamic Assignment (LADA), to address
the above-mentioned problems in existing assignment algorithms. This algorithm has three
main advantages over existing assignment algorithms:

1. The usage of a new center prior called the Equally Proportional Center Prior (EPCP),
which takes full advantage of the aspect ratio of GT boxes to select anchors that are
more representative of the object’s characteristics.

2. The usage of a dynamically varying Combined Loss of Anchor (CLA), which is more
representative of the anchors’ quality than the traditional IoU and takes full account
of the actual distribution of objects within the GT box.

3. The proposition of a Dynamic Loss Threshold (DLT) to avoid high computational
costs and to dynamically filter out anchors with smaller loss as positive samples in a
more efficient way.

2. Related Work
2.1. Anchor-Based and Anchor-Free Detectors

Object detection is a fundamental yet challenging task in computer vision, requiring
the model to predict a bounding box with a category label for each target object in the
image. Currently, deep-learning-based object detection algorithms dominate and can be
divided into anchor-based and anchor-free approaches according to whether an anchor box
is predetermined. Anchor-based object detection algorithms can be classified into two-stage
methods (e.g., R-CNN [5], Fast R-CNN [6], Faster R-CNN [7], and R-FCN [8]) and single-
stage methods (e.g., SSD [9] and RetinaNet [1]) according to whether candidate boxes are
generated or not. These methods first tile a large number of pre-defined anchor boxes on the
image, then predict the category, refine the coordinates of these anchor boxes one or more
times, and finally output these refined anchor boxes as prediction boxes. The two-stage
methods are slow but accurate; however, the advent of FPN [10] and Focal Loss [1] has
enabled single-stage methods to achieve the same accuracy as two-stage methods at a faster
speed.

Anchor-based object detection methods require artificially setting parameters such as
the scale and aspect ratio of the anchor box according to the characteristics of the dataset,
resulting in parameter sensitivity and poor generalization of the detector. Therefore, anchor-
free detectors have gradually become a research hotspot. Anchor-free detectors can be
divided into center-based methods (e.g., FCOS [2]) and keypoint-based methods (e.g.,
CornerNet [11] and ExtremeNet [12]). Anchor-free detectors can directly predict objects
without pre-defined anchor boxes, eliminating the hyperparameters associated with anchor
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boxes and achieving similar performance to anchor-based detectors, while also giving them
more potential in terms of generalization capability.

The anchor point In FCOS is equivalent to the center of the anchor box in RetinaNet.
An anchor point and the corresponding anchor box both correspond to the same location
on the feature map. Therefore, they are collectively referred to as an anchor in this paper
when there is no need to distinguish between an anchor point and anchor box.

2.2. Loss Function in Object Detection

Losses in object detection models typically include classification losses and regression
losses, corresponding to the classification and regression branches, respectively. Calculating
the loss based on the ground truth and the predicted values output by the detection head
allows back-propagation to update the model parameters. The main classification losses
commonly used in object detection models are OHEM [13], Focal Loss [1], GHM [14],
Quality Focal Loss [15], and Varifocal Loss [16], and the main regression losses are IoU
Loss [17], Distribution Focal Loss [15], GIOU Loss, and DIoU and CIoU Loss [18]. In
addition, some object detection models add a parallel auxiliary branch to the regression
branch, such as the centerness branch in [2] and the IoU branch in [4,19,20]. These branches
predict a centerness or IoU for each anchor and can also calculate the loss from the true
value, which is usually calculated using binary cross entropy (BCE) loss.

2.3. Anchor Assignment in Object Detection

Positive and negative sample assignment refers to the process of determining whether
each anchor should be assigned as a positive or negative sample during training, a process
also known as training sample selection, anchor assignment, and label assignment. Anchor
assignment during training is an important factor affecting the performance of the object
detection model. Figure 1a shows the anchor inside the GT box. The white box is the GT
box and the different colors of anchors represent the high or low quality of the anchors. The
red anchors are located in the background rather than the object and should be classified as
negative anchors. The yellow anchors contain part of the object information and hence are
not optimal positive anchors. Green anchors contain rich object information and should
be used as positive anchors. Anchor assignment is used to pick out the green anchors and
avoid the red anchors. The white box in Figure 1b is the GT, the green box is one of the
anchor boxes corresponding to the green anchor, and the red box is their intersection area.
By calculating the proportion of the intersection area to the concatenation of the two boxes,
the IoU of the anchor box and the GT box can be obtained. We hope that the IoU of the
predicted box and the GT box is as large as possible, rather than the IoU of the anchor box
and the GT box.

Traditional positive and negative sample assignment strategies use manually designed
hard assignments. Anchor-based detection models (e.g., RetinaNet [1]) empirically lay
nine anchor boxes of different scales and aspect ratios at each location, and use a fixed IoU
threshold to classify the anchor boxes into positive, ignored, and negative samples. This
assignment requires multiple anchor boxes to be tiled per location, with many hyperparam-
eters and a large computational cost. Anchor-free detection models (e.g., FCOS [2]) discard
the tiling of anchor boxes and assign positive and negative samples using spatial con-
straints (i.e., restricting positive anchor points to inside the GT boxes) and scale constraints
(i.e., setting a fixed maximum regression range for each feature layer). The subsequent
FCOS [21] uses center sampling on top of the original constraints. The shortcoming that
the above hard-assignment approaches all have in common is that they do not take into
account the fact that the most meaningful anchors are not equally distributed within the
GT boxes for objects of different sizes, shapes, or occlusion conditions, and the conditions
for dividing positive and negative samples are not the same.
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anchor boxes of the green anchor. The red box is the intersection area between these two boxes. 

Due to the inadequacy of hard-assignment approaches, many algorithms for adap-
tively assigning anchors have emerged. For example, MetaAnchor [22] and Guided An-
choring [23] argue that tiled anchor boxes are not optimal. MetaAnchor uses the anchor 
function to dynamically generate anchor boxes from arbitrary customized prior boxes, 
thus changing the shape of anchor boxes during training. Guided Anchoring proposes the 
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MetaAnchor and Guided Anchoring modify the structure of the model itself to varying 
degrees. FreeAnchor [24] defines the training process as one of maximum likelihood esti-
mation based on classification loss and regression loss, and constructs a candidate set of 
anchors for each GT box. However, when a GT box has many high-quality anchors, this 
approach does not match the GT box well to the appropriate anchor. 

ATSS [3] uses the sum of the mean and standard deviation of IoU values from a set 
of the closest anchors as the dynamic threshold. However, as the anchor boxes are con-
stant, for the same GT box, this threshold is invariant during the training process. Moreo-
ver, using L2 distance is not reasonable for some GT boxes with a large difference in length 
and width. NoisyAnchors [25] proposes cleanliness scores, using soft labels and re-
weighting based on classification and localization losses, which mitigates the effect of 
noise in the anchors but fixes the number of positive anchors throughout the training pro-
cess. MAL [26] uses linear scheduling to reduce the number of positive samples as training 
proceeds but is prone to fall into suboptimal solutions and requires heuristic feature per-
turbations to mitigate this issue. PAA [4] assumes that the joint loss distribution of positive 
and negative samples follows the Gaussian distribution, and uses the Gaussian Mixture 
Model (GMM) to cluster the candidate positive samples to obtain the final positive sam-
ples. This approach does not make use of the shape of the GT box. In addition, the GMM 
requires continuous iteration, which is computationally intensive and extends the training 
time. 

  

Figure 1. Example of anchors and the IoU of a GT box. (a) The white box is the GT box. The red dots
are anchors that need to be assigned as negative anchors. The yellow dots are anchors that are better
than red anchors, but not optimal positive anchors. The green dots are anchors which are expected
to be assigned as positive anchors. (b) The white box is the GT box, and the green box is one of the
anchor boxes of the green anchor. The red box is the intersection area between these two boxes.

Due to the inadequacy of hard-assignment approaches, many algorithms for adap-
tively assigning anchors have emerged. For example, MetaAnchor [22] and Guided An-
choring [23] argue that tiled anchor boxes are not optimal. MetaAnchor uses the anchor
function to dynamically generate anchor boxes from arbitrary customized prior boxes,
thus changing the shape of anchor boxes during training. Guided Anchoring proposes the
Guided Anchoring Region Proposal Network (GA-RPN), which generates anchor boxes
through additional network modules to better fit the distribution of various objects. Both
MetaAnchor and Guided Anchoring modify the structure of the model itself to varying
degrees. FreeAnchor [24] defines the training process as one of maximum likelihood esti-
mation based on classification loss and regression loss, and constructs a candidate set of
anchors for each GT box. However, when a GT box has many high-quality anchors, this
approach does not match the GT box well to the appropriate anchor.

ATSS [3] uses the sum of the mean and standard deviation of IoU values from a set of
the closest anchors as the dynamic threshold. However, as the anchor boxes are constant,
for the same GT box, this threshold is invariant during the training process. Moreover,
using L2 distance is not reasonable for some GT boxes with a large difference in length and
width. NoisyAnchors [25] proposes cleanliness scores, using soft labels and re-weighting
based on classification and localization losses, which mitigates the effect of noise in the
anchors but fixes the number of positive anchors throughout the training process. MAL [26]
uses linear scheduling to reduce the number of positive samples as training proceeds but
is prone to fall into suboptimal solutions and requires heuristic feature perturbations to
mitigate this issue. PAA [4] assumes that the joint loss distribution of positive and negative
samples follows the Gaussian distribution, and uses the Gaussian Mixture Model (GMM)
to cluster the candidate positive samples to obtain the final positive samples. This approach
does not make use of the shape of the GT box. In addition, the GMM requires continuous
iteration, which is computationally intensive and extends the training time.
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3. Methods
3.1. Equally Proportional Center Prior

The center region containing anchors is the area that is in the center of the GT box.
The general sample assignment algorithms use the anchors of the center region as positive
samples directly or as candidate positive samples for the next filtering step. In this paper,
this step is referred to as center prior (CP). FCOS [2] directly selects anchors in the center
region of a square as positive samples; ATSS [3] selects candidate positive samples based
on L2 distance, so its center region is close to circular. However, instead of directly using
anchors within the center region as positive samples, ATSS processes them further, and
considers anchors outside the GT box to be poorer anchors. Both FCOS and ATSS, as well
as the EPCP proposed in this paper, ensure that the positive anchors are inside the GT box.

In theory, all anchors within the GT box have the potential to be positive samples.
However, in most cases, especially in the early stages of training, the anchors in the center of
the object are more conducive to the training of the model, so the choice of the center region
should be as reasonable as possible. FCOS directly selects the anchors in the small center
region as positive samples, which leads to the model focusing too much on the central
anchors; ATSS selects k candidate samples at L2 distance in each feature layer, which also
only selects samples that are more clustered in the center region of the GT box. For some
objects that are not completely in the center, it is difficult for these two methods to assign
better anchors. However, if the center region is simply expanded, many anchors containing
a lot of noise will be introduced, which will affect the performance of the detection model
to some extent. In addition, FCOS and ATSS select candidate samples without considering
the GT box’s shape at all. For some GT boxes with a large difference in length and width,
the selection of anchors by FCOS or ATSS is not suitable.

To solve this problem, this paper proposes the EPCP. Different from the traditional
center prior, EPCP determines the center region according to the aspect ratio of each GT
box. For objects with similar length and width, the center region using EPCP is close to
square, which is not much different from the center region using the traditional center
prior. However, for objects with a large difference in length and width, the center region is
rectangular and contains most of the anchor points that can represent the features of the
object because the aspect ratio of the center region is the same as that of the GT box.

Specifically, the process of using EPCP to determine the center region is as follows:
assume that all GT boxes in an image are the set G, and g is one of the GT boxes, i.e., g ∈ G.
The length and width of g are H and W, respectively, the center coordinates are (x, y), and
the stride from the feature layer to the original image is S, so the two distances from the
center of the GT box to the left boundary and the upper boundary of the central area can be
determined as shown in Equations (1) and (2), respectively:

Xs =
r× S×W

R
, (1)

Ys =
r× S× H

R
, (2)

In these equations, r is a hyperparameter, and R = min(H, W). From these two
distances, the coordinates of the four vertices of the center region with EPCP can be
determined as (x − Xs, y − Ys), (x + Xs, y − Ys), (x − Xs, y + Ys), and (x + Xs, y + Ys),
respectively. Through EPCP, the short side of the center region of each GT box is 2× r× S,
and the center region maintains the same aspect ratio as the GT box. Figure 2 shows the
center region obtained from EPCP; in this figure, the green box is the GT box, the yellow
box is the center region of EPCP with the same aspect ratio as the GT box, and the red box
is the center region of CP. The red box is still square when the GT differs greatly in length
and width.
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To ensure that the center region can cover all anchors suitable as positive samples
as much as possible, this paper sets the hyperparameter r of the center region to 2.5,
which is only 1.5 in the center sampling of FCOS. The area of the center region of FCOS is
(2× r× S)2 = 9× S2, while the shortest side of the central area of EPCP is 2× r× S = 5S,
so its minimum area is 25× S2. By increasing the area of the center region, most of the
anchors that may become positive samples are in the center region. In addition, better
positive anchors will not be missed for some objects with a large difference in length
and width, such as buses, giraffes, tennis rackets, toothbrushes, etc. Through EPCP, the
potential positive anchors are selected as much as possible, which are called the first
round of candidate positive samples, C1, in this paper. However, it also brings a new
problem, that is, how to select high-quality anchors from the many anchors in this center
region. Therefore, this paper proposes the CLA for evaluating the quality of anchors in the
next section.

3.2. Combined Loss of Anchor

Using a fixed IoU threshold or other fixed hyperparameters as the basis for assignment
often fails to assign the more suitable anchors to the GT box. For example, RetinaNet [1]
uses a fixed IoU threshold and considers that the anchor boxes with larger IoUs with the
GT box are positive samples. In Figure 3, the green box is the GT box, the blue box is one
of the anchor boxes (only the anchor box with an aspect ratio of 1:1 is drawn), and the
blue point in the center of the anchor box is the corresponding anchor point. The anchor
point in Figure 3a is in the center region of the GT box, and the IoU between the anchor
box and the GT box, which is 0.66, is also relatively large. This IoU value is higher than
most anchor boxes. According to RetinaNet’s method, this anchor box will be assigned as a
positive sample for training. However, most of the area where the anchor box intersects
with the GT box is the background, and even the central area of the anchor box is mostly the
background rather than the object, so it is difficult for the model to learn useful information
from the content that is largely background noise. The prediction box obtained based on
this anchor box is unlikely to have a high IoU with the GT box, and thus, ideal prediction
results cannot be obtained. Therefore, although the IoU of this anchor box with the GT box
is higher than most anchor boxes, it is not a suitable positive sample. From this example, it
can be seen that the IoU between the anchor box and the GT box cannot be used as the only
basis for evaluating the quality of the anchor box or anchor point.
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ATSS [3] tiles only a square anchor box at each location and uses dynamic IoU as a
threshold to distinguish between positive and negative samples. Although this approach
can alleviate the problem caused by the fixed IoU threshold, there are still notable issues.
On the one hand, since the IoU of the anchor boxes and the GT box is not the best metric to
assess the quality of anchor boxes, using the sum of the mean and standard deviation of
the IoU as the threshold is also not optimal; on the other hand, these tiled anchor boxes do
not change in any way during the training process, so the IoUs of the GT box and anchor
boxes do not change and the IoU threshold does not change with the training process, so
the positive samples will not change and the model still cannot participate in the process of
anchor assignment. In addition, both RetinaNet and ATSS do not consider the aspect ratio
of the GT box. For example, the anchor box in Figure 3b has a high IoU with the GT box,
but the intersection area is mostly background. Moreover, the length and width of the GT
differ greatly, so it is difficult to satisfy all kinds of aspect ratios of GT boxes by only tiling
one scale and aspect ratio of anchor boxes. Furthermore, tiling multiple scales and aspect
ratios of anchor boxes not only requires setting the scales and aspect ratios of anchor boxes
according to the dataset, but also greatly increases the computational effort.

Since the IoU between the best positive anchor box and the GT box is not necessarily
higher than that of a negative anchor box, for the reasonableness of the sample assignment,
the anchor needs a more appropriate evaluation metric to define whether the anchor is a
positive sample or a negative sample. Furthermore, this metric needs to be relevant to the
model to avoid the situation where the IoU of the anchor and the GT box is large during the
assignment process, but the model still predicts poorly. The anchor assigned by this metric
is not necessarily near the center of the GT box, and the corresponding IoU of the anchor
box to the GT box is not necessarily high, but it can well represent the characteristics of the
objects in the GT box, allowing the model to learn better. In summary, this paper proposes
the CLA, which satisfies the above conditions, as shown in Equation (3):

LCLA = Lcls
CLA + λ1Lreg

CLA + λ2Ldev
CLA (3)

where Lcls
CLA, Lreg

CLA, and Ldev
CLA are the classification loss, regression loss, and deviation loss

of the prediction results of candidate anchors, respectively. λ1 and λ2 are hyperparameters
to balance the weights of each loss. In the experiments of this paper, λ1 = 1.5 and λ2 = 1
are used.
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The CLA takes into account both the classification quality and regression quality
of the anchors, as well as the degree of deviation within the GT box. The classification
loss and regression loss of anchors in CLA are similar to the anchor scores used in the
PAA algorithm [4], which will be smaller for anchors that are suitable as positive anchors
and, conversely, will be larger for negative anchors. In particular, the classification loss
and regression loss will be larger for anchors that contain a large amount of background
because it is almost impossible for the model to correctly predict the bounding box and
the corresponding category based on the background without clues. In addition, since the
center region where the C1 are located is related to the stride S, this center region is large
on the higher feature layers, leading to the selection of all anchors within some small and
medium-sized objects on these feature layers. Therefore, this paper proposes the use of
deviation loss. Anchors in C1 at the edge of the GT box have different deviation loss from
those at the center range of the GT box, but exactly which anchors are eventually selected as
positive samples is determined by the CLA. The smaller the CLA, the better the prediction
of the correct category and bounding box. The calculation of each loss is described below.

After the screening of the EPCP in the previous step, the corresponding candidate
positive samples can be obtained on different feature layers, and the candidate positive
samples in each layer together form the first round of candidate positive samples C1.
Suppose one of the anchors aj ∈ C1, whose coordinates are (x, y). aj obtains the prediction
value px,y = (pcls

j , preg
j ) after forward propagation of the mode, where pcls

j and preg
j represent

the classification vector and the coordinate vector of the regression box predicted by the
model, respectively. If aj is assigned to the GT box, then gi = (x(i)1 , y(i)1 , x(i)2 , y(i)2 , c(i)), where

(x(i)1 , y(i)1 ) and (x(i)2 , y(i)2 ) denote the coordinates of the vertices of the upper left and lower
right corners of the GT box, and c(i) corresponds to the class of the objects in the GT box.

The classification loss of the anchors uses Focal Loss [1]. The vector pcls
j obtained from

the forward propagation of the anchor aj is a vector with the dimensionality of the number
of categories Nclass, and its classification loss can be calculated as shown in Equation (4):

Lcls
CLA = FocalLoss(pcls

j , gi) (4)

The regression loss of the anchors uses GIoU loss [27]. The prediction box’s coordinate
vector preg

j obtained from the forward propagation of the anchor aj is a vector of 4 dimen-

sions which can be expressed as preg
j = (lj, tj, rj, bj), representing the position information

of the prediction box relative to the anchor aj in the FCOS detector [2]. The values of the
four components represent the distances from the anchor point to the left, top, right, and
bottom boundaries of the prediction box, respectively. The regression loss can be calculated
as shown in Equation (5):

Lreg
CLA = GIoULoss(aj, preg

j , gi), (5)

The deviation loss of the anchors is calculated by the center deviation. Suppose the
distances from the anchor aj to the left, top, right, and bottom boundaries of the GT box gi
are (l, t, r, b), respectively, and since the first round of screening ensures that the anchor aj
is inside the GT box gi, all 4 of these distances are positive. Based on these 4 distances, this
paper defines the center deviation, denoted as dev, as shown in Equation (6). The smaller
the absolute value of the difference |l − r|, the more this anchor is in the center of the GT
box horizontally, and the same goes for the difference |t− b|. In addition, considering the
different potential lengths and widths of the GT box, the absolute value of this difference is
divided by the corresponding side length of the GT box and normalized to [0, 1].

dev =
|l − r|
l + r

+
|t− b|
t + b

, (6)
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The deviation loss proposed in this paper is shown in Equation (7), and the deviation
loss is set to 0 for anchors whose center deviation is within the threshold value, i.e., this
anchor is considered to be within the acceptable range of deviation; the deviation loss is
calculated for each anchor whose center deviation is greater than the threshold value, and
the specific value is calculated by the dev.

Ldev
CLA =

{
0, 0 ≤ dev ≤ 1

dev− 1, 1 < dev ≤ 2
, (7)

The above three losses together form the CLA, which takes into account the actual
distribution of objects inside the GT box and the aspect ratio of the GT box. This metric
is more reasonable for the anchor assignment of eccentric objects and objects with a large
difference in length and width.

3.3. Dynamic Loss Threshold

After calculating the CLA of C1, we need to divide the positive and negative samples
in C1. To further divide the positive and negative samples, a fixed number of positive
samples is directly used in LLA [28] without considering the specific value of anchor loss,
and only the k anchors with smaller losses are selected as the positive samples. Although
this approach does not require additional calculations, it introduces hyperparameters and
cannot use the specific value of the loss to judge the number of positive samples. Moreover,
the number of positive samples is not necessarily the same for objects of different sizes. A
complex GMM is used in PAA [4] to cluster the candidate positive samples according to
the value of the anchor score (calculated by the anchor loss) into two categories of positive
and negative samples. PAA greatly reduces the training speed of the model; for each GT
box, it needs to be re-iterated once, and this iteration needs to be performed on the CPU.

To solve the above problems and better use anchor loss to dynamically divide the
positive and negative samples without using additional models, this paper proposes a
simpler and more effective division method, called the DLT. After calculating the CLA of
C1, the process of using DLT is as follows:

1. Select k anchors with smaller CLAs in each feature layer to obtain the second round
of candidate positive samples C2.

2. Select m anchors with smaller CLAs in C2 as the third round candidate positive
samples C3, and calculate the mean value tg of the CLAs of these m candidate
positive samples.

3. The anchors in C3 with CLAs lower than tg are taken as positive samples AP, and the
rest are negative samples AN .

Since the LADA algorithm does not focus on which feature layer is more suitable for
predicting the current GT box in the first round using EPCP screening, C1 may come from
all feature layers, and some feature layers are not suitable for predicting the GT box at the
current scale. To find suitable positive samples, DLT in LADA first selects k anchors in
each feature layer to form the second round of candidate positive samples C2. However,
there are some candidate anchors on feature layers that are not suitable for predicting the
current GT box (e.g., anchors on the lowest feature layer are not suitable as their candidate
anchors were placed when the GT box was larger), these poorer candidate anchors have
larger losses and are not suitable as positive samples, and there is no need to continue to
retain these anchors. However, PAA retains these poorer anchors and clusters them as well.
Since these poor candidate anchors have larger losses, they are also assigned as negative
samples after clustering. Therefore, anchors in C2 all participating in clustering is not the
most appropriate approach, because some anchors with larger losses and low rankings will
hardly be positive samples. In addition, the cost of GMM iteration is large, and the same
process has to be performed for each GT box. Furthermore, an image often has more than
one GT box, which leads to the training time being greatly prolonged.
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Therefore, the DLT proposed in this paper does further screening on C2 before dividing
it. The experimental part of this paper demonstrates that compared with the PAA algorithm,
the LADA algorithm reduces the training time by about 26.8%.

3.4. Algorithm Realization

As shown in Algorithm 1, the process of positive and negative sample assignment by
LADA is described. A preliminary matching is performed before the assignment, referring
to the practice in PAA [4] that assigns the anchors to the GT box with the largest IoU.
Meanwhile, the anchor-free detector refers to the practice in ATSS [3] that gives each anchor
a flat 8× S anchor box before the preliminary IoU matching. When an anchor is assigned
to more than one GT box, the GT box with the largest IoU of the anchor will be selected.
The IoU threshold here is consistent with that in PAA, set to 0.1. The anchors containing
too much background are omitted, and the most original positive sample candidate set is
constructed. The anchors both in the GT box and the center region of EPCP are the first
round of candidate positive samples C1. Then, the CLA of C1 is calculated, and k anchors
with smaller CLAs are selected in each layer as the second round of candidate positive sam-
ples C2. Finally, m anchors with smaller CLAs are selected as the third candidate positive
samples C3. The mean CLA value of C3 is calculated as the DLT to distinguish the positive
and negative anchors, so the positive anchors AP and negative samples AN are obtained.

Algorithm 1 Lightweight Anchor Dynamic Assignment (LADA)

Input: G, A, Ai, F, K, M. G is a set of GT boxes, A is a set of anchors, Ai is a set of anchors from ith
pyramid level, F is the number of pyramid levels, k is the number of the second round of
candidate positive samples C2 for each pyramid, m is the number of the third round of candidate
positive samples C3.
Output: AP, AN . AP is a set of positive samples, AN is a set of negative samples.

1. AP ← , AN ←
4. for g ∈ G do B Iterate through each GT box in the current image
5. L← , Cj ← , j = 1, 2, 3 B Cj is the jth round of candidate positive samples
6. C1 ← EPCP(A, g) B Select the anchors using EPCP
7. for i = 1, 2, . . . , F do
8. Li ← CLA(g, C1 ∩ Ai) B Calculate the CLA of this layer from Equation (3)
9. L← L ∪ Li B The CLAs of each layer of anchors together form L
10. C2 ← C2 ∪ kthMinCLA(Li, C1) B Select k anchors with smaller CLAs as C2
11. end for
12. C3 ← mthMinCLA(L, C2) B Select m anchors with smaller CLAs
13. tg = DLT(C3) B Calculate the mean of CLA as DLT
14. for c ∈ C3 do
15. if L(c) < tg then
16. AP = AP ∪ c B Anchors with CLAs lower than tg are positive anchors
17. end if
18. end for
19. end for
20. AN ← A− AP
21. return AP, AN

The assignment process is schematically shown in Figure 4. To illustrate the assignment
of different feature layers, three of them, F3, F4 and F5, are selected and the positions of
the assignment results of these feature layers on the original figure are drawn. Anchors in
Figure 4a are the first round of candidate positive samples that satisfied EPCP. Anchors in
Figure 4b are candidate samples with smaller CLAs in each layer. Anchors in Figure 4c are
candidate samples with smaller CLAs in all layers, and it can be seen that there are almost
no anchors retained in the feature layer F3, which is not suitable for prediction. Anchors
in Figure 4d are positive samples with CLAs smaller than the threshold, and the positive
samples are only distributed in F4 and F5.
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The LADA algorithm proposed in this paper is used in the training phase, as shown
in Figure 5. In the training process, the positive and negative samples are determined by
LADA, and then the losses, such as classification and regression, of the model prediction
results are calculated and back-propagated to update the parameters of the detection
model. The inference process, on the other hand, does not require the involvement of the
LADA algorithm and only requires Non-Maximum Suppression (NMS) as post-processing
of the model output vectors to obtain the detection results. Since the LADA algorithm
only changes the positive and negative sample assignment results, it does not change the
model structure.
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Figure 5. Assignment algorithm in the training process. In the training part, the white box is the GT
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are divided into positive samples (green dots) and negative samples (red dots). In the inference part,
the prediction result (green box) is obtained after NMS without assignment algorithm.

4. Experimental
4.1. Dataset and Evaluation Protocols

All experiments in this paper were conducted on the challenging MS COCO [29]
dataset, which consists of 80 categories. Images in trainval35k (approximately 118 k images)
were used as the training set and images in minival (5 k images) were used as the validation
set according to the settings in FCOS [2], ATSS [3], and PAA [4].

Average Precision (AP) for a common individual category is defined as the average
value of precision values on the PR curve. mAP (mean Average Precision) is defined as
the average value of AP for each category under a certain IoU threshold tIoU , as shown in
Equation (8):

mAP(tIoU) =

Nclass
∑

i=1
(AP)i

Nclass
, (8)

where Nclass is the number of categories. The evaluation metrics used in the experiments of
this paper are consistent with [2–4], using mainstream COCO evaluation metrics, mainly
including AP, AP50, AP75, APs, APm, and APl, where AP is the main evaluation metric,
using the mean value of mAP at different IoU thresholds. The value of mAP is calculated
every 0.05 in the interval of IoU from 0.50 to 0.95, and the average value of all results was
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taken as the final result. Therefore, the AP in COCO evaluation metrics is more stringent
and is no longer the common AP of a single category. The AP values mentioned in the
experimental data in this paper are all calculated in this way, which is the most commonly
used evaluation metric in the COCO dataset. AP50 and AP75 denote the mAP values when
the IoU threshold is 0.50 and 0.75, respectively, that is, AP50 for mAP(tIoU = 0.5) and AP75
for mAP(tIoU = 0.75). APs, APm, and APl represent the AP of small, medium, and large
targets, respectively.

4.2. Implementation Details
4.2.1. Detectors

Similar to ATSS and PAA, the LADA proposed in this paper is applicable to both
anchor-based and anchor-free detection models. Typical anchor-based and anchor-free
detectors are RetinaNet [1] and FCOS [2], respectively. The experiments in this paper
were mainly based on the FCOS detector, and relevant experiments were also conducted
on the RetinaNet detector to demonstrate the generality of the LADA algorithm. The
experiments used the original RetinaNet detector and the FCOS detector with ResNet-50
backbone as baselines, where RetinaNet uses IoU as the basis for anchor assignment, while
FCOS uses scale constraints and spatial constraints with center sampling as the basis for
anchor assignment. In addition, the experimental results are compared with other sample
assignment algorithms to illustrate the effectiveness of the LADA.

The FCOS used in the experiments remains the same as [21] with some added im-
provements, i.e., adding GroupNorm [30] in the heads, using GIoU loss as the regression
loss function, limiting the positive samples in the GT box, adding a trainable scalar for
each feature layer, and adding an auxiliary branch in parallel with the regression branch.
However, the auxiliary branch is no longer the centerness branch, but the IoU branch. The
RetinaNet used in the experiments follows the setup in ATSS [3]. In addition to the sample
assignment method, the differences are corrected by adding the improvements used in
the FCOS detector to the RetinaNet detector. In addition, RetinaNet has only one anchor
box pre-defined at each location. If not otherwise specified, the above settings are used for
RetinaNet and FCOS mentioned in this paper.

The structure of the detector is shown in Figure 6; it is similar to that in FCOS and
ATSS, but the auxiliary branch is an IoU branch, and this structure is the same as the one
used in PAA.
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To ensure the same conditions for the experiments, the following modifications were
made to PAA [4] in the experiments of this paper:

1. Using a 1× training period to train 12 epochs on trainval35k of MS COCO instead of
the 1.5× training period mentioned in PAA.

2. Not additionally using the score voting method mentioned in PAA after NMS.
3. The PAA in [4] is only applied to the RetinaNet detector in the above setup, and the

experiments in this paper also use the PAA in FCOS for comparison.

All settings remain the same except for the assignment algorithm.

4.2.2. Training and Inference Details

The experimental environment is a setup with an Intel Core i9-10900K CPU@3.70 GHz,
NVIDIA GeForce RTX 3090, 64 GB of RAM, and the operating system is Ubuntu 18.04.

The model uses ResNet-50 [31] pre-trained by ImageNet [32] and a five-layer feature
pyramid structure as the backbone network, both with a training period of 1×. According
to the linear strategy, the batch size of training was adjusted to eight for 180 k iterations (i.e.,
12 epochs). During the training process, the size of the input image was adjusted so that the
short edge was 800 and the long edge was less than or equal to 1333. The whole network
was trained using the Stochastic Gradient Descent (SGD) algorithm with a momentum of
0.9 and a weight decay of 0.0001. The initial learning rate was set to 0.005 and decayed
to one-tenth of the original at iterations up to 120 k and 160 k, respectively. Multi-scale
training was not used during the training. If not specified, the hyperparameters k in the
experiments were set to nine, consistent with those in ATSS and PAA. The hyperparameters
m were set to 20.

In inference, the input images were first resized using the same method as in the
training phase, and the predicted categories and corresponding bounding boxes were
obtained by forward propagation through the entire network. Then, a threshold of 0.05 was
set for the score of the corresponding category in the classification vector, the prediction
boxes containing a large amount of background were filtered out, and the first 1000 high-
confidence detections of each feature layer were output. Finally, the IoU threshold was
set to 0.6 per class for NMS to generate the first 100 detections. The inference was set to
be consistent with ATSS, and no additional means to enhance model performance, such
as multi-scale testing and score voting, were not used. No additional means to enhance
performance other than NMS were used in post-processing.

4.2.3. Loss Functions

The loss function for training consisted of three parts, as shown in Equation (9):

L = ∑
(x,y)

1
Npos

Lcls(px,y, gx,y) +
1

Npos
1{c∗x,y>0}[α1Lreg(px,y, gx,y) + α2Laux(px,y, gx,y)], (9)

where Npos is the number of positive samples, (x, y) is the coordinates of the anchor, px,y is
the predicted value of the anchor, and gx,y is the true label corresponding to the anchor. Lcls
is the loss of the classification branch, using Focal Loss [1]; Lreg is the loss of the regression
branch, using GIoU Loss [27]; and Laux is the loss of the auxiliary branch, using BCE loss.
In ATSS and FCOS, the auxiliary branch is the centerness branch. In PAA and this paper,
the auxiliary branch is the IoU branch and Laux is the loss of the predicted IoU and true
IoU. α1 and α2 are the weights used to balance the loss, and the weights used in this paper
are consistent with ATSS, that is, α1 = 2 and α2 = 1. 1{c∗x,y>0} is the indicator function when

c∗x,y > 0; that is, when the anchor with coordinates (x, y) is a positive sample, 1{c∗x,y>0} = 1,
otherwise 1{c∗x,y>0} = 0.



Sensors 2023, 23, 6306 15 of 27

4.3. Experimental Results and Analysis
4.3.1. Effect of Each Individual Component

The LADA algorithm has three main components, which are the EPCP, CLA that
contains the deviation loss, and DLT. To explore the effect of each component on FCOS,
experiments were designed, and the results are shown in Table 1. When the EPCP is
not used, the normal center prior is used by default, i.e., the positive sample anchors are
restricted to be within the center region of the square. When the CLA is not used, the loss
of anchors includes only classification loss (using Focal Loss) and regression loss (using
GIoU Loss), excluding the deviation loss proposed in this paper. When the DLT is not used,
the number of positive samples is fixed to 10 to divide the positive and negative samples.

Table 1. Effect of each component in the LADA on the COCO minival set.

EPCP CLA DLT AP AP50 AP75 APs APm APl

39.96 57.86 43.14 23.47 44.01 52.51√
40.26 57.35 43.79 22.21 45.11 53.94√ √
40.34 57.56 43.65 22.87 44.98 53.99√ √
40.36 57.41 44.07 22.59 44.97 53.04√ √ √
40.46 57.54 43.86 23.12 45.07 54.30

As can be seen from the results in Table 1, using DLT to distinguish between positive
and negative samples (40.26%) gained 0.3% over using a fixed number of positive samples
(39.96%), indicating that the number of positive samples required varies between different
GT boxes, and DLT can better calculate the actual threshold to determine the number
of positive samples in different situations. Using CLA that includes deviation loss or
adding EPCP as the center prior approach on top of this, the AP can be improved by 0.08%
and 0.1%, respectively, demonstrating that deviation loss can be used to make a further
assessment of anchor quality on top of the original loss, and EPCP can better retain suitable
candidate anchors than CP, thus improving the AP performance. When we use both EPCP
and CLA, the AP of the model improves from 40.26% to 40.46%, which is better than using
EPCP alone (40.34%) and CLA alone (40.36%), indicating that these two components work
orthogonally, and using either of them can give a boost to the AP of the model. Overall,
LADA improves the AP from 39.96% to 40.46%, and each component of LADA provides a
different degree of performance improvement.

4.3.2. Effect of Center Prior

(1) Effect of EPCP

To illustrate the role of the EPCP, the CLA and the DLT in the LADA algorithm are
applied to the FCOS detector by using the CLA as the anchor quality assessment and the
DLT as the positive and negative sample division method, modifying only the center prior,
as shown in Table 2. The ordinary CP and the EPCP are compared, respectively, as well as
the impact on performance with different hyperparameters r. It can be seen that the model
performs best when the hyperparameter r = 2.5. In addition, the model is not sensitive to
the parameter r. The AP performance of FCOS can be boosted from 40.35% to 40.46% by
using the EPCP. As the EPCP is primarily a correction for objects with a large difference in
length and width, further experiments will be conducted later to compare the AP values of
these objects and demonstrate the usefulness of the EPCP.

We also applied the LADA with EPCP to the RetinaNet detector in the above manner,
and the results are shown in Table 3. After applying the EPCP to RetinaNet, the AP
performance improved from 40.33% to 40.41%. A slight decrease in APl was found after
using EPCP, but AP is the main evaluation metric and better reflects the actual performance
of the model.
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Table 2. Effect of center prior type and hyperparameter r on the COCO minival set (FCOS).

Methods
r AP AP50 AP75 APs APm APl

CP EPCP
√

1.5 40.19 57.07 43.75 22.55 45.01 53.39√
2 40.33 57.67 43.87 22.77 44.64 53.36√

2.5 40.34 57.56 43.65 22.87 44.98 53.99√
3 40.30 57.43 43.86 23.11 44.84 53.87√

1.5 40.21 57.33 43.67 23.24 44.66 53.87√
2 40.44 57.62 44.04 23.95 44.86 54.37√

2.5 40.46 57.54 43.86 23.12 45.07 54.30√
3 40.35 57.39 43.87 23.60 45.14 53.72

Table 3. Effect of center prior type on COCO minival set (RetinaNet).

Methods
r AP AP50 AP75 APs APm APl

CP EPCP
√

2.5 40.33 57.37 43.89 22.92 44.47 54.41√
2.5 40.41 57.68 44.04 23.60 44.99 53.88

(2) Comparison of various categories of objects

Since the EPCP is mainly corrected for objects with a large difference in length and
width, to better illustrate the effect of the EPCP on these objects, this paper selects some
of the 80 categories of the COCO dataset for comparison, such as bicycle, giraffe, tennis
racket, etc. In this paper, these categories of objects are referred to as “slender objects”.
The distribution of more meaningful anchors is not all in the center square region for these
objects. Table 4 compares the AP performance of different algorithms on the COCO minival
set for slender objects. Among them, FCOS with CP uses the centerness branch and the rest
uses the IoU branch. For these classes with different aspect ratios, the AP can be improved
by 1% or more after using the EPCP. This indicates that for categories with a large differ-
ence in length and width, changing the center region when selecting candidate samples
using the EPCP can effectively improve recognition of these objects and enhance overall
detection performance.

Table 4. Comparison of various categories of AP values on the COCO minival set.

FCOS + CP FCOS + ATSS FCOS + PAA FCOS + LADA

bicycle 28.77 29.55 28.86 30.50
motorcycle 39.88 40.86 41.78 42.53

airplane 66.35 63.91 66.17 67.13
train 60.26 62.40 62.38 63.25

fire hydrant 65.03 64.51 65.79 66.84
horse 52.92 54.94 57.60 58.68
cow 55.89 56.35 56.00 57.22

elephant 62.78 64.03 63.91 65.28
giraffe 64.82 67.75 67.01 69.15

snowboard 26.04 25.14 24.22 26.48
tennis racket 44.01 45.21 44.60 47.06

remote 26.73 27.09 26.75 28.30
scissors 28.04 22.88 27.42 28.76

(3) Candidate positive samples after EPCP

For slender objects, EPCP selects anchors according to their length and width when
selecting the first round of candidate positive samples, while ATSS uses L2 distance as the
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basis for selecting the first round of candidate positive samples without considering the GT
box’s aspect ratio. Therefore, ATSS is selected as the comparison in the experiment. The
candidate positive samples for different center priors are shown in Figure 7. Figure 7a,b
show the results of ATSS and LADA, respectively. Row 1 and row 2 are the candidate
positive samples for the feature layers F3 and F4, respectively. The GT box labeled by the
aircraft in the figure is not square, and ATSS selects the nearest anchors to the center of
the GT box as the first round of candidate positive samples, so these candidate positive
samples are distributed in a small central range. The LADA proposed in this paper uses an
EPCP and selects more candidate samples in the first round, as shown in Figure 7b, to keep
the anchors that better represent the object position as much as possible, instead of only
keeping the anchors in the center of the square or circle. Since the number of candidate
samples is increased, some of the candidate positive samples will contain a large amount
of noise, and these samples will be further filtered. Therefore, the EPCP is mainly to retain
the anchors that are meaningful as much as possible, and the background will be screened
in the next round. If the ATSS method is used, as shown in Figure 7a, not many anchors
containing useful information are obtained in the candidate samples. However, with the
EPCP, as shown in Figure 7b, almost all the anchors that can represent the object features
are retained; some of them contain a large amount of background, but the high-quality
anchors are also retained. The background anchors will be further filtered by calculating the
CLA and DLT, so the background anchors do not affect the model due to being classified as
positive samples.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 29 
 

 

 
Figure 7. Comparison of the first round of candidate positive samples. The green box is the GT 
box, and the red dots are candidate positive anchors. 

(4) EPCP applied to FCOS without CLA and DLT 
Since the proposed EPCP is an improvement over the ordinary center prior, this pa-

per designed experiments to modify the square center region obtained from CP in FCOS 
to the center region obtained from EPCP. The FCOS follows the settings in [21], using a 
centerness branch, and the settings are the same except for the difference in the center 
prior approach. It should be noted that since EPCP increases the area of the candidate 
region, it leads to the introduction of some noise, while FCOS uses almost all anchor points 
in the candidate region directly as positive samples. Therefore, a simple correction is made 
to EPCP in the experiment. This is accomplished as follows: after calculating the aspect of 
the GT box, the area of the central region rS  obtained according to the CP is calculated, 
and then a new central region is generated according to the aspect ratio, whose area is still 
rS , and the aspect ratio is the same as that of GT box. 

The experimental results are shown in Table 5, which shows that the performance of 
FCOS is slightly improved after adding EPCP. To better compare the improvement 
brought by EPCP, we selected the AP performance of slender objects, as shown in Figure 
8. The AP values of all these objects were improved by varying degrees up to 2.7% by 
FCOS with the use of EPCP. 

Table 5. Effect of EPCP on the COCO minival set (FCOS detector with centerness branch). 

Methods Aux Branch AP AP50 AP75 APs APm APl 
FCOS + CP centerness 38.70 57.11 41.89 22.34 42.73 49.83 

FCOS + EPCP centerness 38.73 57.28 41.75 22.60 42.87 49.87 

Figure 7. Comparison of the first round of candidate positive samples. The green box is the GT box,
and the red dots are candidate positive anchors.

(4) EPCP applied to FCOS without CLA and DLT

Since the proposed EPCP is an improvement over the ordinary center prior, this paper
designed experiments to modify the square center region obtained from CP in FCOS to the
center region obtained from EPCP. The FCOS follows the settings in [21], using a centerness
branch, and the settings are the same except for the difference in the center prior approach.
It should be noted that since EPCP increases the area of the candidate region, it leads to
the introduction of some noise, while FCOS uses almost all anchor points in the candidate
region directly as positive samples. Therefore, a simple correction is made to EPCP in the
experiment. This is accomplished as follows: after calculating the aspect of the GT box,
the area of the central region Sr obtained according to the CP is calculated, and then a
new central region is generated according to the aspect ratio, whose area is still Sr, and the
aspect ratio is the same as that of GT box.
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The experimental results are shown in Table 5, which shows that the performance of
FCOS is slightly improved after adding EPCP. To better compare the improvement brought
by EPCP, we selected the AP performance of slender objects, as shown in Figure 8. The AP
values of all these objects were improved by varying degrees up to 2.7% by FCOS with the
use of EPCP.

Table 5. Effect of EPCP on the COCO minival set (FCOS detector with centerness branch).

Methods Aux Branch AP AP50 AP75 APs APm APl

FCOS + CP centerness 38.70 57.11 41.89 22.34 42.73 49.83
FCOS + EPCP centerness 38.73 57.28 41.75 22.60 42.87 49.87
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4.3.3. Effect of Anchor Score

To achieve the assignment of positive and negative samples, an evaluation metric
is needed to measure the quality of anchors, called anchor quality assessment. In Faster
R-CNN, RetinaNet, and ATSS, anchor quality assessment uses the IoU of the anchors and
the GT box. To demonstrate that loss of anchor (LA) is more suitable for anchor quality
assessment than IoU, Table 6 compares the performance of the model when IoU and LA
are used as anchor quality assessment metrics. IoU is the method used in ATSS, which uses
the statistical properties of the IoU of the anchors and the GT box to divide the anchors;
LA is used as the other anchor quality assessment metric and consists of classification
loss (using Focal Loss) and regression loss (using GIoU Loss), but does not include the
deviation loss proposed in this paper, does not use any center prior, and only restricts the
samples to be within the GT box. Both models have the same structure of FCOS with the
IoU branch as an auxiliary branch. It can be seen that even without using any center prior,
using LA improves the AP by about 0.37% over IoU, indicating that loss of anchor is more
representative of the quality of the anchor, and using LA instead of IoU is feasible.
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Table 6. Effect of anchor score programs.

Methods AP AP50 AP75 APs APm APl

IoU 39.70 57.41 42.97 22.79 43.99 51.02
LA 40.07 57.42 43.40 22.78 44.79 53.92

Now, we have verified that LA can be used as a metric for anchor quality assessment
instead of IoU. Then, it is possible to further investigate whether the improvement of LA
can further improve the performance of the model. In this paper, we propose a deviation
loss, which is further modified based on the original LA to form a new CLA. Since the
center prior has a large impact on the performance of the model, we use the EPCP as the
center prior in the following experiments, use the DLT to divide the positive and negative
samples, and only change the composition of the losses in the anchor quality assessment to
study the role of different losses.

The experimental results are shown in Table 7. Using GIoU instead of IoU as the
regression loss can improve AP performance from 40.33% to 40.36%, and adding deviation
loss on top of this can further improve AP performance to 40.46%.

Table 7. Effect of different loss of anchor types.

Anchor Score Program
AP AP50 AP75 APs APm APl

Cls. Reg. Dev.

FL IoU 40.33 57.23 43.89 23.00 45.03 54.24
FL GIoU 40.36 57.41 44.07 22.59 44.97 53.04
FL GIoU

√
40.46 57.54 43.86 23.12 45.07 54.30

4.3.4. Effect of Sample Division

(1) Effect of dynamic sample division

To illustrate the role of the dynamic number of positive samples Npos, this paper
designed the following experiment on the FCOS detector: First, the LA, which contains
only the classification loss and regression loss, is calculated. The first way to divide samples
is to fix the number of positive samples; that is, according to the anchor loss from low
to high, the first Npos candidate anchors with smaller LA values are selected as positive
samples, which leads to the same number of positive samples for all GT boxes in all images
and keeps the number constant during training. PAA uses the GMM to dynamically divide
the anchors into positive and negative samples through clustering according to the LA.
PAA* in this paper means that the GMM is not used to determine the number of positive
samples, so PAA can be expressed as “PAA* + GMM”. The method proposed in this paper
is “PAA* + DLT”, which means that the DLT is used to replace the GMM in the original
PAA to determine the dynamic number of positive samples.

The experimental results are shown in Table 8. If the number of positive samples is
determined using a dynamic approach, either using the GMM or using the DLT proposed
in this paper, a better AP performance than a fixed number of positive samples can be
obtained. In addition, the AP performances of the GMM and DLT approaches under the
COCO minival set were 40.22% and 40.26%, respectively, and the AP using the PAA* +
DLT approach was 0.04% different than that of the PAA. This indicates that the DLT in this
paper achieves a similar effect as GMM. Later experiments will demonstrate that the DLT
proposed in this paper greatly reduces the training cost compared to GMM in PAA.
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Table 8. Effect of division methods on the COCO minival set.

Methods AP AP50 AP75 APs APm APl

PAA* + (Npos = 10) 39.96 57.86 43.14 23.47 44.01 52.51
PAA* + (Npos = 15) 39.73 58.13 43.02 23.88 44.02 51.85

PAA* + GMM 40.22 58.28 43.38 22.98 44.60 54.04
PAA* + DLT 40.26 57.35 43.79 22.21 45.11 53.94

(2) Number of positive samples in the training process

To compare with PAA, which divides samples dynamically, Figure 9 plots the number
of positive samples in the training processes of PAA and LADA. The number of positive
samples per iteration in Figure 9 means the average of the number of positive samples of all
GT boxes in all images in one iteration, totaling 180k iterations, and the number of images
in one iteration is equal to the batch size. In Figure 9a, the positive samples of PAA were
obtained by iterating the GMM, and the number changed dynamically. From Figure 9b, we
can see that the number of positive samples selected by DLT in LADA for each iteration is
also not fixed, but determined according to the CLA, and the number of positive samples
is mainly concentrated in the range of 8 to 14, showing better adaptability. Both LADA
and PAA can determine the number of positive samples dynamically according to the loss
of anchor.
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In addition, experiments are conducted, with the results shown in Table 9, for different
values of m in DLT. When m is small, there are fewer candidate samples with very small
CLA values, which will lead to a very low loss threshold and fewer samples with CLA
values less than this threshold. When m is larger, there are too many low-quality samples
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participating in the calculation of the loss mean, making the loss threshold larger, and
some anchors with larger CLA values are also selected as positive samples. From the
experimental results, it can be seen that the AP performance of the hyperparameter m is
best when it takes the value of 20, while increasing or decreasing the value of m will slightly
decrease the performance. In general, DLT is not sensitive to the hyperparameter m.

Table 9. Analysis of different values of hyperparameter m on the COCO minival set.

m AP AP50 AP75 APs APm APl

18 40.23 57.44 43.60 22.57 44.83 53.36
20 40.46 57.54 43.86 23.12 45.07 54.30
22 40.29 57.41 43.77 22.41 44.98 53.68

(3) Dynamic positive samples during training

To demonstrate that the positive samples selected during the training process change
with the training state of the model, three stages of the training process were selected in an
experiment, as shown in Figure 10, which shows the positive samples finally assigned at
the early training stage (iteration = 1 k), the middle training stage (iteration = 90 k), and the
late training stage (iteration = 180 k). At the early stage of training, as shown in Figure 10a,
the positive samples are mainly concentrated in the center region of the GT box because
of EPCP, and the positive samples do not fully reflect the distribution of the object; some
positive samples are distributed at the junction of the object and the background, and even
some positive samples are located in the region that is basically the background. As the
training proceeds, the recognition ability of the model improves, and the difference in the
CLA of different quality anchors becomes obvious. When calculating the CLA, the CLA
of anchors is more representative of the good or bad quality of anchors, which further
provides suitable positive samples for training. Therefore, by the middle of training, as
shown in Figure 10b, the anchors containing a lot of noise become fewer in the selected
positive samples, and the distribution of anchors becomes more reasonable. By the later
stage of training, as shown in Figure 10c, the selected positive samples are better optimized
and basically do not contain too much background noise. Even though some anchors are in
the center region, they are not selected because these anchors contain a lot of background,
but the anchors that better represent the object features are selected as positive samples. So,
the selected anchors are not necessarily all just in the center region.
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4.3.5. Comparison with Other Methods

(1) Comparison of positive samples

For some objects that are not exactly in the center of the GT box, if the ATSS algorithm
is used for the assignment, as shown in Figure 11a, positive anchors are almost all gathered
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in the center region of the GT box. Anchors in the background are also selected when there
is a background in the center region, so the anchors selected by ATSS do not represent
the object well and are less adaptive. The PAA algorithm uses the classification loss and
regression loss of the anchors to mitigate the effect brought by the background region in
the center to some extent, as shown in Figure 11b. The LADA algorithm proposed in this
paper can make full use of the aspect ratio of the GT box during the training process, and
calculate the CLA to obtain more suitable anchors based on the prediction of each anchor.
As shown in Figure 11c, the selected positive anchors are not all in the center region, but fit
with the actual distribution of the objects. For the anchors that are in the center region, but
contain a large amount of background, they will not become positive samples after filtering.
In addition, due to the use of the EPCP and the deviation loss, the selected positive samples
are more consistent with the real object distribution, contain less background, and are
assigned in a simpler way with shorter training time compared to PAA; the results of the
training time comparison will be illustrated later.
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(2) Comparison of training costs

Since the LADA algorithm only redefines the positive and negative samples and does
not change the model structure, it does not lead to more training parameters for the model
or result in additional overhead. We define the average hourly boosted AP value during
training, denoted as hAP, as shown in Equation (10):

hAP =
AP
T

, (10)

where T is the training time in hours. A higher hAP indicates a higher boosted AP per unit
of time and a more efficient algorithm.

In Table 10, we record the GFLOPs, parameters, training time (in hours), and hAP of
the different anchor assignment algorithms for the FCOS detector with the same training
settings of 1× schedule (12 epochs). In addition, we also record the performance of the
RetinaNet detector. The settings for RetinaNet in the table remain the same as in [1], with
nine anchor boxes tiled at each anchor. The model of RetinaNet is more computationally in-
tensive due to the large number of anchor boxes required, which generate more parameters
related to the anchor boxes and require the calculation of more IoU values between the GT
box and anchor boxes. FCOS does not use anchor boxes and the number of parameters and
FLOPs are smaller than RetinaNet. ATSS, PAA, and LADA all use the same FCOS detector,
so the number of parameters and FLOPs are the same. FPS in Table 10 is measured on the
same machine with a single GeForce RTX 3090 GPU using a batch size of one. Since the
anchor assignment algorithm does not affect the inference process, the FPS at inference is
similar. LADA maintains a higher detection speed and accuracy without increasing the
model’s parameters and FLOPs.

Table 10. Comparison of training costs of different algorithms on the COCO minival set.

Method AP GFLOPs Parameters(M) FPS Training Time hAP

RetinaNet 36.35 6.81 7.66 23.82 33.43 1.09
FCOS 38.70 5.17 6.10 25.21 30.88 1.25
ATSS 39.70 5.17 6.10 25.45 30.02 1.32
PAA 40.22 5.17 6.10 25.00 45.93 0.88

LADA 40.46 5.17 6.10 25.45 33.63 1.20

It can also be seen from Table 10 that the hAP of PAA is the lowest among all the
methods, indicating that the GMM in PAA algorithm affects the training time substantially.
Compared with PAA, LADA reduces the training time by about 26.8% and achieves better
anchor assignment results with a 0.24% improvement in AP over PAA. Since PAA requires
iterating the GMM on the CPU, it leads to a significant increase in training time. In addition,
LADA only increases the training time by about 3 h over FCOS and ATSS. The approximate
increase in training time compared to ATSS is 12.0%, but the AP value is boosted by 0.76%.
The extra training time of LADA is mainly due to the demand of calculating the CLA values
of prediction results from the true value in advance, but this calculation is performed on
the GPU and does not significantly slow down the training process. In addition, RetinaNet
tiles a large number of anchor boxes and the computational load of the IoU during training
is high, which results in slower training speed than FCOS and does not bring additional
boosts for AP. Therefore, corresponding to edge devices, tiling a large number of anchor
boxes is not an appropriate choice.

The anchor assignment algorithm affects the training time because the detection
models are set up in the same way, except for RetinaNet, and they have different training
times. For FCOS, the center region needs to be calculated during training and the maximum
distance from each anchor in the center region to the GT box is calculated. ATSS needs to
calculate the L2 distance for each anchor and calculate the IoU values of the corresponding
anchor boxes of the candidate anchors to the GT box, as well as the mean and standard
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deviation of the IoU values. Both PAA and LADA need to perform initial matching using
IoU, and LADA needs to calculate the center region using EPCP after matching. Then, PAA
and LADA calculate the classification loss and regression loss of the anchors, and LADA
needs to additionally calculate the deviation loss. Finally, PAA needs to iterate through
each GT box in an image and perform GMM iterations on the candidate anchors of each GT
box to achieve clustering. Since there are often multiple GT boxes in an image, PAA needs
iterate over each GT box again to convergence or to the maximum number of iterations
during training, resulting in a much longer training time. LADA, on the other hand, uses
DLT and only calculates the mean of the candidate anchors’ CLA values to separate positive
and negative samples, with minimal computational cost. So, LADA is much faster to train
than PAA in theory. The results in Table 10 also demonstrate that LADA reduces training
time by about 26.8% compared to PAA.

(3) Comparison of AP performance

Table 11 compares the performance of using different anchor assignment algorithms on
the FCOS detector. CP represents the center sampling based on scale constraints and spatial
constraints used in FOCS [21]. Compared to FCOS and ATSS, which use the centerness
branch, LADA boosted the AP by about 1.76% and 1.27%, respectively. When the model
structure is exactly the same, LADA boosts 0.76% in AP, 0.13% in AP50, 0.89% in AP75,
0.33% in APs, 1.08% in APm, and 3.28% in APl compared to ATSS. Compared with PAA,
it boosts about 0.24% in AP, and LADA achieves a simpler and more efficient process of
sample assignment. The above experimental results illustrate the importance of positive
and negative sample assignment to the model during training and the role of LADA.

Table 11. Performance comparison on the COCO minival set with the FCOS detector.

Method Aux Branch AP AP50 AP75 APs APm APl

CP centerness 38.70 57.11 41.89 22.34 42.73 49.83
ATSS centerness 39.19 57.03 42.28 22.41 43.26 51.66
ATSS IoU 39.70 57.41 42.97 22.79 43.99 51.02
PAA IoU 40.22 58.28 43.39 22.98 44.60 54.04

LADA IoU 40.46 57.54 43.86 23.12 45.07 54.30

In addition, related experiments were conducted on RetinaNet in this paper. Table 12
compares the performance on the RetinaNet detector using different anchor assignment
algorithms. TH(IoU) represents RetinaNet [1] using fixed IoU as the basis for positive and
negative sample assignment. When the model structures are identical, LADA improves AP
over ATSS by 0.74%, AP50 by 0.35%, AP75 by 1.06%, APs by 0.81%, APm by 1.15%, and APl
by 1.82%. Compared to PAA, it improves AP by about 0.21%. Thus, for both anchor-free
and anchor-based detectors, LADA outperformed other anchor assignment algorithms,
such as ATSS, PAA, and so on.

Table 12. Performance comparison on the COCO minival set with the RetinaNet detector.

Method Aux Branch AP AP50 AP75 APs APm APl

TH(IoU) centerness 37.12 55.35 39.98 21.16 41.52 48.49
ATSS centerness 39.19 57.23 42.00 23.59 43.47 51.52
ATSS IoU 39.67 57.33 42.98 22.79 43.84 52.06
PAA IoU 40.20 58.28 43.50 22.92 44.53 53.66

LADA IoU 40.41 57.68 44.04 23.60 44.99 53.88

(4) Detector Result

Figure 12 plots the performance of different assignment algorithms on the FCOS
detector for some images on the COCO minival set. The white dashed boxes are the GT
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boxes and the solid boxes represent the predicted boxes. It can be seen that for slender
objects such as trains and people, ATSS and PAA do not consider the aspect ratio of the
GT boxes, and some of the boundaries of the predicted boxes deviate significantly from
the GT boxes’ boundaries. The predicted boxes of LADA are more accurate and have a
higher overlap with the GT boxes. In addition, among the selected images, LADA has no
redundant prediction boxes after NMS, and the false detection rate is smaller; meanwhile,
ATSS and PAA may have redundant prediction boxes after NMS for some slender objects.
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5. Conclusions

In this paper, we propose a new anchor assignment algorithm called LADA, which
makes use of the aspect ratio of the GT box and selects the anchors that better represent
the object features as the candidate positive samples as much as possible. It considers the
actual distribution of objects in the GT box, makes the sample assignment more reasonable
for eccentric objects and slender objects, solves the problems of poor adaptability and
difficulty in selecting the better positive samples when assigning positive and negative
samples based on IoU, and does not excessively increase the training cost. In this paper,
we apply this algorithm to FCOS, an anchor-free detector, and RetinaNet, an anchor-based
detector. Experiments show that the algorithm can effectively improve the performance
of these two detectors on the MS COCO minival set and prove the effectiveness of LADA.
The improvement of the algorithm is more obvious for classes with a large difference in
length and width in the MS COCO minival set. The algorithm proposed in this paper does
not change the structure of the detector model, does not increase the number of parameters,
brings a significant accuracy improvement with only a small increase in training time, and
does not require additional computation during the inference of the model, which does
not affect the detection speed. In the next work, further research will be carried out on the
regression loss in the CLA, and the aspect ratio of the GT box and the predicted box will be
considered in the calculation of the regression loss to further improve the performance.
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