
Citation: Lee, S.; Choi, W.; Lee, D.H.

Protecting SOME/IP Communication

via Authentication Ticket. Sensors

2023, 23, 6293. https://doi.org/

10.3390/s23146293

Academic Editors: Nicola Zannone,

Giuseppe Piro and Savio

Sciancalepore

Received: 27 May 2023

Revised: 29 June 2023

Accepted: 6 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Protecting SOME/IP Communication via Authentication Ticket
Seulhui Lee , Wonsuk Choi and Dong Hoon Lee *

School of Cybersecurity, Korea University, Seoul 02841, Republic of Korea; hoisulhi@korea.ac.kr (S.L.);
beb0396@korea.ac.kr (W.C.)
* Correspondence: donghlee@korea.ac.kr

Abstract: Designed using vehicle requirements, Scalable service-Oriented MiddlewarE over IP
(SOME/IP) has been adopted and used as one of the Ethernet communication standard protocols
in the AUTomotive Open System Architecture (AUTOSAR). However, SOME/IP was designed
without considering security, and its vulnerabilities have been demonstrated through research. In
this paper, we propose a SOME/IP communication protection method using an authentication server
(AS) and tickets to mitigate the infamous SOME/IP man-in-the-middle (MITM) attack. Reliable
communication between the service-providing node and the node using SOME/IP communication is
possible through the ticket issued from the authentication server. This method is relatively light in
operation at each node, has good scalability for changes such as node addition, guarantees freshness,
and provides interoperability with the existing SOME/IP protocol.

Keywords: SOME/IP; in-vehicle network; automotive Ethernet; security; authentication ticket

1. Introduction

A vehicle comprises many electronic control units (ECUs) developed by various com-
panies. Each electronic control unit is responsible for its dedicated functions, such as engine
control, brake control, steering control, infotainment system, etc. When necessary, ECUs
communicate with each other through the network. In recent years, the requirements
for software installed in vehicles have become much more advanced based on functions
such as advanced driver assistance systems (ADAS), infotainment, and over-the-air (OTA)
software updates. Following this trend, software complexity has risen accordingly, and
either vulnerabilities or the number of attack surfaces of the entire system could increase.
In this situation, standardization and development of automotive software frameworks
like the standardized automotive software reference architecture AUTOSAR have many ad-
vantages, including reducing the complexity of software installed in vehicles, maintaining
software quality, and reducing research and development costs.

In the AUTOSAR platform, high-bandwidth Ethernet communication is utilized to
enable seamless communication between various functionalities within a vehicle, requiring
fast processing of large amounts of data. (However, because bus communication like
the Controller Area Network (CAN) protocol has specific advantages, it is still used for
control messages where real time and reliability are essential). To this end, AUTOSAR
adopted Scalable service-Oriented MiddlewarE over IP (SOME/IP) as an Ethernet middle-
ware protocol [1–6]. SOME/IP is designed for service-oriented middleware (SOM) based
on automotive requirements and is used to transmit vehicle control messages between
multiple electronic control devices. SOME/IP is flexible and scalable, supporting various
communication methods and data types. In addition, it has many other advantages, like
not depending on the platform and being economical because it transmits data only when
the receiver needs the data. Since the data exchanged through SOME/IP in the vehicle
are mainly vehicle control messages, it cannot be emphasized enough how vital SOME/IP
communication security is. A vehicle control message that has been maliciously manipu-
lated by an attacker causes the vehicle’s control system to operate in a way the driver does

Sensors 2023, 23, 6293. https://doi.org/10.3390/s23146293 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146293
https://doi.org/10.3390/s23146293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-7400-5563
https://doi.org/10.3390/s23146293
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146293?type=check_update&version=1

Sensors 2023, 23, 6293 2 of 19

not want, which can lead to life-threatening consequences for the driver and passengers. It
does not happen only in movies or the imagination, as demonstrated in the Fiat Chrysler
remote hacking demonstration by Charlie Miller and Chris Valasec [7,8]. There are also
well-known attacks and studies in the automotive industry [9,10], not only through wired
communication, but also through wireless, including but not limited to intercepting and
replaying keyless entry system signals, compromising control systems for unauthorized
manipulation, and exploiting GPS systems for tracking or falsifying vehicle location data.
Therefore, the security of SOME/IP is considered essential and is a task that must be solved.

Man-in-the-middle (MITM) attacks that can be applied to SOME/IP as well as relevant
mitigation methods have been introduced in other studies. We considered these attacks
and the limitations of other studies. The main contributions of the presented scheme in this
paper are:

1. Protection against MITM attacks by allowing only authenticated end nodes to com-
municate using an authentication ticket released by an authentication server

2. Efficient operations for secure communication via a symmetric key
3. High portability for security expansion when the current SOME/IP protocol is used
4. Scalability of node changes by reducing the number of required update points
5. Prevention of replay attacks by verifying the freshness token

Section 2 summarizes the primary contents and characteristics of SOME/IP, and
Section 3 reviews related works. Section 4 details the proposed scheme, and Section 5
analyzes its security, including ProVerif. The proposed scheme is evaluated in Section 6,
and the conclusion of this study is presented in Section 7.

2. SOME/IP
2.1. SOME/IP

First, we overview SOME/IP and how it works. SOME/IP is an automotive Ethernet
middleware communication protocol optimized to transmit vehicle control messages of
various sizes and formats on different operating systems for each device. As shown in
Figure 1, SOME/IP is implemented in OSI Layer 5–7 and has the advantages of being
a protocol optimized for vehicle requirements and being readily applicable to various
platforms and limited-resource environments. AUTOSAR has designated SOME/IP as
an automotive Ethernet communication standard middleware. While traditional vehicle
CAN communication is static, SOME/IP communication is dynamic and service-oriented
because it is designed based on service-oriented architecture (SOA). SOME/IP is capable
of various types of communication, such as publish/subscribe, fire/forget, notification of
specific events or subscription, and general request/response communication. Only the
client that needs a particular service can receive data by requesting a service.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 20

communication security is. A vehicle control message that has been maliciously manipu-
lated by an attacker causes the vehicle’s control system to operate in a way the driver does
not want, which can lead to life-threatening consequences for the driver and passengers.
It does not happen only in movies or the imagination, as demonstrated in the Fiat Chrysler
remote hacking demonstration by Charlie Miller and Chris Valasec [7,8]. There are also
well-known attacks and studies in the automotive industry [9,10], not only through wired
communication, but also through wireless, including but not limited to intercepting and
replaying keyless entry system signals, compromising control systems for unauthorized
manipulation, and exploiting GPS systems for tracking or falsifying vehicle location data.
Therefore, the security of SOME/IP is considered essential and is a task that must be
solved.

Man-in-the-middle (MITM) attacks that can be applied to SOME/IP as well as rele-
vant mitigation methods have been introduced in other studies. We considered these at-
tacks and the limitations of other studies. The main contributions of the presented scheme
in this paper are:
1. Protection against MITM attacks by allowing only authenticated end nodes to com-

municate using an authentication ticket released by an authentication server
2. Efficient operations for secure communication via a symmetric key
3. High portability for security expansion when the current SOME/IP protocol is used
4. Scalability of node changes by reducing the number of required update points
5. Prevention of replay attacks by verifying the freshness token

Section 2 summarizes the primary contents and characteristics of SOME/IP, and Sec-
tion 3 reviews related works. Section 4 details the proposed scheme, and Section 5 ana-
lyzes its security, including ProVerif. The proposed scheme is evaluated in Section 6, and
the conclusion of this study is presented in Section 7.

2. SOME/IP
2.1. SOME/IP

First, we overview SOME/IP and how it works. SOME/IP is an automotive Ethernet
middleware communication protocol optimized to transmit vehicle control messages of
various sizes and formats on different operating systems for each device. As shown in
Figure 1, SOME/IP is implemented in OSI Layer 5–7 and has the advantages of being a
protocol optimized for vehicle requirements and being readily applicable to various plat-
forms and limited-resource environments. AUTOSAR has designated SOME/IP as an au-
tomotive Ethernet communication standard middleware. While traditional vehicle CAN
communication is static, SOME/IP communication is dynamic and service-oriented be-
cause it is designed based on service-oriented architecture (SOA). SOME/IP is capable of
various types of communication, such as publish/subscribe, fire/forget, notification of spe-
cific events or subscription, and general request/response communication. Only the client
that needs a particular service can receive data by requesting a service.

Figure 1. SOME/IP based on OSI 7 layer.

Sensors 2023, 23, 6293 3 of 19

2.2. SOME/IP-SD

The OfferService message is multicast or unicast to the clients to deliver information
about the service provision. If the client does not receive the required OfferService message
within the valid time, it sends a FindService message to find its provider. These messages
are SOME/IP-SD (Service Discovery) [11]. SOME/IP-SD enables flexible communication of
SOME/IP, such as searching for and subscribing to necessary services. Through SOME/IP-
SD, only clients who need data for a specific service can receive data to communicate
economically. Economic communication refers to the practice of not transmitting unnec-
essary data. However, even though SOME/IP-SD messages are mostly multicast, there
is no way to trust the endpoint because there is no separate verification method for the
transmitted endpoint. The advantage of flexible communication of SOME/IP, though, can
be a security vulnerability. As a result, researchers have revealed several feasible MITM
attacks related to SOME/IP communication [12,13]. Since the importance of protecting ve-
hicle control and messages is very high, a secure SOME/IP communication method that is
both robust against possible attacks while maintaining the advantages of the SOME/IP-SD
protocol is required.

2.3. SOME/IP MITM Attack

SOME/IP-SD makes flexible service provision and searches possible. It is no exagger-
ation to say that a feasible MITM attack related to SOME/IP originates from information
sharing on services transmitted through multicasted SOME/IP-SD messages. If an attacker
can come within the range of a network that is capable of receiving multicast messages, or
if they succeed in infecting a normal node, the attacker can easily find information about
which instance provides a particular endpoint for a specific service. When SOME/IP-SD
messages are transmitted and received, there is no procedure or policy that can verify
consistency between each endpoint and service, making various attacks possible.

Figure 2 shows a representative SOME/IP MITM attack [12]. If a server (192.168.0.2)
sends an OfferService message for its service (the service ID is 0x1234, and the instance ID
is 0x5678) by multicast, both a legitimate client (192.168.0.3) and an attacker (192.168.0.4),
who has successfully invaded an in-vehicle network, can receive the message. The attacker
changes the message’s endpoint to their own and re-sends it via multicast. Now, the client
wants to use the service and sends a request. Depending on the SOME/IP implementation,
the client can request the service to the first or last offered endpoint. Suppose the client
sends it to the last provided endpoint, that is, the client sends a Request message to the
attacker. Then, the attacker forwards it by changing its endpoint to the attacker’s. When
a server receives a Request message from an attacker, it sends a Response message, and
then the attacker can read and change the data as they want and re-send the message to
the client. In this way, an MITM attack can occur. A detailed description of representative
MITM attacks is explained in the blog [12] written by Shir Mousseri from ARGUS cyber
security. Zelle et al. [13] present various MITM attack scenarios that can occur in SOME/IP,
as well as the feasibility of the attacks in detail. Since actual vehicle control messages can
create hazardous situations when attacked, a method that mitigates MITM attacks and does
not affect the vehicle’s requirements is needed. Several proposals have been published as a
result of these studies.

Sensors 2023, 23, 6293 4 of 19Sensors 2023, 23, x FOR PEER REVIEW 4 of 20

Figure 2. A representative SOME/IP MITM attack.

3. Related Works
To ensure the secure usage of SOME/IP, there are various papers [13–17] available.

Among them, I have compared two early papers with my own research.
3.1. Secure SOME/IP

Among the papers suggesting methods that mitigate SOME/IP MITM attacks, Iorio
et al. [14,15] presented an additional handshake before actual SOME/IP communication
between the server using SOME/IP communication and all clients with a specific service.
This SOME/IP communication protocol introduced a process to establish each session and
subsequently was configured to proceed. The tasks carried out in the added handshake
are as follows:
1. Mutual node authentication through the public key infrastructure (PKI) method
2. Policy check among nodes for the service listed in the certificates (e.g., a service

providing availability or service subscription availability)
3. Sharing the SOME/IP communication security level to be used
4. Sharing the security material (e.g., key value, etc.) for SOME/IP communication

For this to be possible, each node’s private key and certificate had to be configured
first in all ECUs in advance. The security level would be divided into three levels accord-
ing to the security level exchanged during the handshake process. One level was “nosec”,
which was the same as the existing SOME/IP message and would mean no action was
taken on the actual SOME/IP message after the handshake. Another was “integrity”,
which provided only message integrity, and the last was “confidentiality”, which guaran-
teed message confidentiality. In the handshake process, one message was exchanged from
Client to Server, and Server to Client. Compared to the SOME/IP protocol, two message
transmissions would be added to authenticate the node and exchange security materials
for secure communication from that point.

In this existing method, the server providing the service had to conduct a 1:1 hand-
shake with each client and maintain the session. Therefore, even a node that did not need
to subscribe to a service or request data would immediately have to maintain a session by
performing a handshake. From the viewpoint of economical communication, which was
the advantage of the SOME/IP protocol, this was not ideal. In addition, since an asymmet-
ric key-based operation was involved, the protocol performed relatively heavy operations,
so at times it would be difficult to smoothly process the operations for nodes with limited
resources. In addition, a replay attack could be possible here because secure SOME/IP
communication neither suggested a re-keying mechanism for a long-running service, nor
did it include processing for message freshness.

3.2. SESO-RC, SESO-AS
Zelle et al. [13] presented several SOME/IP MITM attack scenarios and showed the

feasibility of actual MITM attacks using the revealed attack procedures. The authors sug-
gested two security extensions as MITM attack mitigation methods. SESO-RC, the first

Figure 2. A representative SOME/IP MITM attack.

3. Related Works

To ensure the secure usage of SOME/IP, there are various papers [13–17] available.
Among them, I have compared two early papers with my own research.

3.1. Secure SOME/IP

Among the papers suggesting methods that mitigate SOME/IP MITM attacks, Iorio
et al. [14,15] presented an additional handshake before actual SOME/IP communication
between the server using SOME/IP communication and all clients with a specific service.
This SOME/IP communication protocol introduced a process to establish each session and
subsequently was configured to proceed. The tasks carried out in the added handshake are
as follows:

1. Mutual node authentication through the public key infrastructure (PKI) method
2. Policy check among nodes for the service listed in the certificates (e.g., a service

providing availability or service subscription availability)
3. Sharing the SOME/IP communication security level to be used
4. Sharing the security material (e.g., key value, etc.) for SOME/IP communication

For this to be possible, each node’s private key and certificate had to be configured first
in all ECUs in advance. The security level would be divided into three levels according to
the security level exchanged during the handshake process. One level was “nosec”, which
was the same as the existing SOME/IP message and would mean no action was taken
on the actual SOME/IP message after the handshake. Another was “integrity”, which
provided only message integrity, and the last was “confidentiality”, which guaranteed
message confidentiality. In the handshake process, one message was exchanged from
Client to Server, and Server to Client. Compared to the SOME/IP protocol, two message
transmissions would be added to authenticate the node and exchange security materials
for secure communication from that point.

In this existing method, the server providing the service had to conduct a 1:1 hand-
shake with each client and maintain the session. Therefore, even a node that did not need
to subscribe to a service or request data would immediately have to maintain a session
by performing a handshake. From the viewpoint of economical communication, which
was the advantage of the SOME/IP protocol, this was not ideal. In addition, since an
asymmetric key-based operation was involved, the protocol performed relatively heavy
operations, so at times it would be difficult to smoothly process the operations for nodes
with limited resources. In addition, a replay attack could be possible here because secure
SOME/IP communication neither suggested a re-keying mechanism for a long-running
service, nor did it include processing for message freshness.

3.2. SESO-RC, SESO-AS

Zelle et al. [13] presented several SOME/IP MITM attack scenarios and showed the
feasibility of actual MITM attacks using the revealed attack procedures. The authors
suggested two security extensions as MITM attack mitigation methods. SESO-RC, the
first proposed method, adopted a PKI-based mutual authentication method similar to the

Sensors 2023, 23, 6293 5 of 19

secure SOME/IP [14,15] in Section 3.1, but unlike the latter, it did not have an additional
handshake process. In the message exchange process using the SOME/IP protocol, the DH
key exchange was applied to create a session key. Also, SESO-RC was not a fine-grained
policy, as it had keys and policies per ECU. Having per-end node policies is preferred
because multiple SOME/IP services can be provided in one ECU. Similarly to secure
SOME/IP, SESO-RC also used asymmetric key operations. Because of this, a security
extension operation could be restricted if a process operated on an ECU with limited
resources. The policies among the nodes would be specified in the certificate in both secure
SOME/IP [14,15] and SESO-RC [13]. After verifying certificates, the nodes would check
service provision/subscription availability based on the policies written in the received
certificate. Note that this method is inflexible to node change. This means that, if a new
node providing a SOME/IP service were added to a vehicle through a software upgrade
and existing nodes wanted to use the new service, they would have had to adopt all
relevant ECU software updates since the certificates needed to be re-issued to have a new
policy. Therefore, changing a node or service would entail a lot of additional overhead,
such as revoking and managing the existing certificate and updating the related ECU’s SW
to obtain a certificate.

In SESO-AS, the second security extension proposed in the same paper [13], an addi-
tional authentication server was introduced. SESO-AS assumed that the symmetric key
and policy for each ECU were set in the authentication server in advance. When the server
transmitted the OfferService message, including the session key, to the authentication server
with the message MAC value [18], the authentication server would first verify the MAC
with the pre-set server key and then check the policy. Afterward, the authentication server
played a role in distributing OfferService messages and a session key to ECUs that were
able to subscribe to this service. In this process, the session key was encrypted with the
pre-configured long-term key for each ECU receiving OfferService messages. A so-called
“container” with the encrypted session key and MAC were created per receiving ECU. The
authentication server would configure a new data structure called an OS, which included
containers, and multicast it to receiving clients. From the perspective of one client ECU,
unnecessary data would have been received because containers for other ECUs must first
be obtained. From the standpoint of the authentication server, unnecessary containers must
be created even for clients not presently subscribed, assuming they had permission. For
these reasons, SESO-AS is inefficient in many respects.

3.3. Comparison

Table 1 shows the comparison among various schemes introduced so far in this
paper. “Scalability” means that a scheme experiences a few changes when integrating a
new node. We can know whether a scheme’s policies and keys are fine-grained through
“Granularity”. “Overhead” tells how much cryptographic operational overhead occurs
when the scheme is applied, and we can know whether or not a scheme is compatible
with the current SOME/IP protocol by looking at “Compatibility”. Finally, “Efficiency”
shows if the required additional operation is applied only for a node that needs it. Ticket-
based SOME/IP indicates the novel scheme we are proposing in this paper. Ticket-based
SOME/IP and SESO-AS support high scalability thanks to the leveraging of an additional
server. As ticket-based SOME/IP and Secure SOME/IP manage keys and policies per node;
they are fine-grained granularity. For the overhead aspect, Secure SOME/IP and SESO-RC
have high overhead because of public key cryptography operation. Ticket-based SOME/IP
and Secure SOME/IP can select whether a security expansion applies or not per service,
which assures compatibility with the current SOME/IP protocol. Secure SOME/IP makes a
1:1 connection with every node if it can use SOME/IP. SESO-AS’s authentication server
makes containers for every node that can use the service. For these reasons, “Efficiency” is
marked as “Low” for Secure SOME/IP and SESO-AS.

Sensors 2023, 23, 6293 6 of 19

Table 1. Comparison table showing various schemes.

Scheme Scalability Granularity Overhead Compatibility Efficiency

Ticket-based SOME/IP High Fine-grained Low Supported High
Secure SOME/IP Low Fine-grained High Supported Low

SESO-RC Low Coarse grained High Not Supported High
SESO-AS High Coarse grained Low Not Supported Low

We found that “Granularity” is crucial because if policies and keys are not fine-grained,
SOME/IP MITM and other attacks can occur. This is because, if an attacker can compromise
one node, they can disguise all nodes in the same ECU since they share keys and policies.
Therefore, we evaluated our scheme only with Secure SOME/IP.

Considering these points, we suggest a flexible scheme that expands with a minimum
SW update when changing nodes, mutually trusts the server and client, selectively performs
only services that require additional security expansion, and minimizes overhead for each
node.

4. Proposed Scheme
4.1. Prerequisites

Our proposal includes SOME/IP communication that can be operated by checking the
services and node consistency through mutual server and client authentication as well as
service policy verification [19] via an authentication server (AS) and authentication tickets
issued from the server. The basic concept of this method is similar to Kerberos [20], but it
is applied to the existing SOME/IP protocol and configured in a more simplified way in
consideration of performance. The node mentioned in this paper refers to the end node
process that provides and uses actual services. The node could be a functional cluster or
application. Before describing our proposed method, we first outline the limitations:

(1) All SOME/IP end nodes have a cryptographically secure long-term key, and
policies are defined for service provision/availability between all endpoints. Keys and
policies for each node must be provisioned in advance in an AS and in a secure manner.

(2) Time sync must be ensured among all ECUs in the vehicle.
(3) Since both node-to-node authentication and policy verification are performed in the

AS, it is assumed that the AS is trustworthy. A system (including the key, policy, etc.) must
be safely managed through various security solutions such as secure boot and hardware
security module, and an SW update must also be controlled through reliable methods.
Note that the detailed techniques for this are outside the scope of this paper and will not be
discussed in detail.

(4) We assume that the database for keys and policies managed by the AS is configured
in a way that allows secure and fast operation according to the situation of each server.
Note that database management and optimization are outside the scope of this paper and
will not be discussed in detail.

4.2. Attack Models

The attack models considered for this paper are listed below. These attack models
are well-known attacks that can be launched against the in-vehicle network, and they are
attacks that could cause serious consequences if they occurred during the delivery of a
vehicle control message:

(1) Man-in-the-middle attack: An attacker can intercept an original message and send
a modified one.

(2) Replay attack: An attacker can gain unauthorized access or cause a malfunction by
reading, recording, and replaying legitimate messages transmitted between two nodes.

(3) DoS attack: An attacker can prevent a client node from operating normally by
replaying the Response message.

(4) Spoofing attack: An attacker can send and receive messages illegitimately by
pretending to be a legitimate device in the in-vehicle network.

Sensors 2023, 23, 6293 7 of 19

4.3. Overall Flow

The schematic flow of the method proposed in this paper is shown in Figure 3 below.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20

(4) Spoofing attack: An attacker can send and receive messages illegitimately by pre-
tending to be a legitimate device in the in-vehicle network.

4.3. Overall Flow
The schematic flow of the method proposed in this paper is shown in Figure 3 below.

Figure 3. Overall SOME/IP communication flow for proposed scheme ((a) original flow, (b) addi-
tional flow).

In general SOME/IP communication, the Server S1 multicasts/unicasts OfferService
messages to clients. In the proposed method, the OfferService message is transmitted with
a flag that indicates that the service requires an authentication ticket corresponding to the
importance of the provided service. Assume that Client A receives the OfferService mes-
sage and wants to subscribe to this service. First, our method verifies whether the corre-
sponding service requires a ticket. If it is not needed, it immediately responds in the orig-
inal communication method (e.g., Request message). This is shown in process “a” of Fig-
ure 3. After this, our method additionally performs process “b” to obtain an authentication
ticket if necessary. The formulas under the directed edge for each step represent the rough
composition of added data when a ticket is required. Table 2 shows the used notation in
the figure and corresponding detailed descriptions, which can be found starting in Section
4.4 of this paper. In process “b”, two messages are added: a RequestTicket message, which
requests an authentication ticket from the AS, and a ReturnTicket message, which returns
the requested authentication ticket. The proposed scheme consists of four phases: Offer-
Service, RequestTicket, ResponseTicket, and Request.

Table 2. Notations for the proposed scheme’s overall flow in Figure 3.

Notation Description
OfferService Original OfferService payload

Request Original Request payload
SD ServerData that is configured by a server
Ks Pre-configured server’s symmetric key shared with an AS
Kc Pre-configured client’s symmetric key shared with an AS

H (key, value) HMAC calculated value for ‘value’ by ‘key’
CD ClientData that is configured by a client
AST AuthServerTicket that is configured by an AS
ACT AuthClientTicket that is configured by an AS
FT FreshnessToken that is configured by a client

Figure 3. Overall SOME/IP communication flow for proposed scheme ((a) original flow, (b) addi-
tional flow).

In general SOME/IP communication, the Server S1 multicasts/unicasts OfferService
messages to clients. In the proposed method, the OfferService message is transmitted with
a flag that indicates that the service requires an authentication ticket corresponding to
the importance of the provided service. Assume that Client A receives the OfferService
message and wants to subscribe to this service. First, our method verifies whether the
corresponding service requires a ticket. If it is not needed, it immediately responds in
the original communication method (e.g., Request message). This is shown in process
“a” of Figure 3. After this, our method additionally performs process “b” to obtain an
authentication ticket if necessary. The formulas under the directed edge for each step
represent the rough composition of added data when a ticket is required. Table 2 shows the
used notation in the figure and corresponding detailed descriptions, which can be found
starting in Section 4.4 of this paper. In process “b”, two messages are added: a RequestTicket
message, which requests an authentication ticket from the AS, and a ReturnTicket message,
which returns the requested authentication ticket. The proposed scheme consists of four
phases: OfferService, RequestTicket, ResponseTicket, and Request.

Table 2. Notations for the proposed scheme’s overall flow in Figure 3.

Notation Description

OfferService Original OfferService payload
Request Original Request payload

SD ServerData that is configured by a server
Ks Pre-configured server’s symmetric key shared with an AS
Kc Pre-configured client’s symmetric key shared with an AS

H (key, value) HMAC calculated value for ‘value’ by ‘key’
CD ClientData that is configured by a client
AST AuthServerTicket that is configured by an AS
ACT AuthClientTicket that is configured by an AS
FT FreshnessToken that is configured by a client

4.4. OfferService Phase

This message is sent as a multicast or unicast message to notify the client that the server
provides a specific service. In this phase, the server can set a flag to indicate whether or
not an authentication ticket is required to use the service, which can be selectively applied
depending on the importance of the service. In actual implementation, this flag is set using
unused bits in the message types of SOME/IP messages. When creating an OfferService

Sensors 2023, 23, 6293 8 of 19

message that requests a ticket for the service in the server, ServerData is additionally
configured, as shown in Figure 4 below, after the original OfferService message payload
part. For a detailed description of the notation used in Figure 4, refer to Table 3.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

4.4. OfferService Phase
This message is sent as a multicast or unicast message to notify the client that the

server provides a specific service. In this phase, the server can set a flag to indicate whether
or not an authentication ticket is required to use the service, which can be selectively ap-
plied depending on the importance of the service. In actual implementation, this flag is
set using unused bits in the message types of SOME/IP messages. When creating an Of-
ferService message that requests a ticket for the service in the server, ServerData is addi-
tionally configured, as shown in Figure 4 below, after the original OfferService message
payload part. For a detailed description of the notation used in Figure 4, refer to Table 3.

Figure 4. Data added behind an OfferService message when a service requires a ticket.

Table 3. Descriptions of notations for the refined OfferService message data in Figure 4.

Notation Description
OfferService Original OfferService payload

IDs An identifier that can uniquely identify a service instance (ServiceID||InstanceID)
ServerEndPoint IP address and port number of the service’s current server

TicketValidPeriod Period during which the issued ticket is valid
ServerData Data from IDs to TicketValidPeriod

HMAC (Ks, ServerData) HMAC value for ServerData made with a long-term server key

When a ticket is required, the parts that need to be added/changed in the existing
OfferService message are the setting of a flag bit indicating that the service requires a
ticket, the configuration of ServerData, and the additional HMAC (hash-based message
authentication code) value created with a long-term server key. By sending the identifier
that can identify the service and the endpoint providing the service, it is possible to secure
the endpoint of the current service during future communication.

4.5. RequestTicket Phase
If a client receives an OfferService message transmitted by the server and wants to

use the service, check if the ticket flag is set in the message first, and if not, communicate
in an existing way. If the ticket is needed, a RequestTicket message is transmitted to an AS
as formatted in Figure 5. For a detailed description of notations, refer to Table 4.

Figure 5. Data configured when a client needs to request a ticket from an AS.

Table 4. Descriptions of notation for RequestTicket message data in Figure 5.

Notation Description
ServerData ServerData received from a server through OfferService

HMAC (Ks, ServerData) HMAC value for ServerData received from a server through OfferService
IDc Identifier that can uniquely identify a client (ClientID)

ClientEndPoint Client’s current IP address and port number
ClientData Data from ServerData to ClientEndPoint

HMAC (Kc, ClientData) HMAC value for ClientData made with a long-term client key

Figure 4. Data added behind an OfferService message when a service requires a ticket.

Table 3. Descriptions of notations for the refined OfferService message data in Figure 4.

Notation Description

OfferService Original OfferService payload

IDs An identifier that can uniquely identify a service instance
(ServiceID||InstanceID)

ServerEndPoint IP address and port number of the service’s current server
TicketValidPeriod Period during which the issued ticket is valid

ServerData Data from IDs to TicketValidPeriod
HMAC (Ks, ServerData) HMAC value for ServerData made with a long-term server key

When a ticket is required, the parts that need to be added/changed in the existing
OfferService message are the setting of a flag bit indicating that the service requires a
ticket, the configuration of ServerData, and the additional HMAC (hash-based message
authentication code) value created with a long-term server key. By sending the identifier
that can identify the service and the endpoint providing the service, it is possible to secure
the endpoint of the current service during future communication.

4.5. RequestTicket Phase

If a client receives an OfferService message transmitted by the server and wants to use
the service, check if the ticket flag is set in the message first, and if not, communicate in an
existing way. If the ticket is needed, a RequestTicket message is transmitted to an AS as
formatted in Figure 5. For a detailed description of notations, refer to Table 4.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

4.4. OfferService Phase
This message is sent as a multicast or unicast message to notify the client that the

server provides a specific service. In this phase, the server can set a flag to indicate whether
or not an authentication ticket is required to use the service, which can be selectively ap-
plied depending on the importance of the service. In actual implementation, this flag is
set using unused bits in the message types of SOME/IP messages. When creating an Of-
ferService message that requests a ticket for the service in the server, ServerData is addi-
tionally configured, as shown in Figure 4 below, after the original OfferService message
payload part. For a detailed description of the notation used in Figure 4, refer to Table 3.

Figure 4. Data added behind an OfferService message when a service requires a ticket.

Table 3. Descriptions of notations for the refined OfferService message data in Figure 4.

Notation Description
OfferService Original OfferService payload

IDs An identifier that can uniquely identify a service instance (ServiceID||InstanceID)
ServerEndPoint IP address and port number of the service’s current server

TicketValidPeriod Period during which the issued ticket is valid
ServerData Data from IDs to TicketValidPeriod

HMAC (Ks, ServerData) HMAC value for ServerData made with a long-term server key

When a ticket is required, the parts that need to be added/changed in the existing
OfferService message are the setting of a flag bit indicating that the service requires a
ticket, the configuration of ServerData, and the additional HMAC (hash-based message
authentication code) value created with a long-term server key. By sending the identifier
that can identify the service and the endpoint providing the service, it is possible to secure
the endpoint of the current service during future communication.

4.5. RequestTicket Phase
If a client receives an OfferService message transmitted by the server and wants to

use the service, check if the ticket flag is set in the message first, and if not, communicate
in an existing way. If the ticket is needed, a RequestTicket message is transmitted to an AS
as formatted in Figure 5. For a detailed description of notations, refer to Table 4.

Figure 5. Data configured when a client needs to request a ticket from an AS.

Table 4. Descriptions of notation for RequestTicket message data in Figure 5.

Notation Description
ServerData ServerData received from a server through OfferService

HMAC (Ks, ServerData) HMAC value for ServerData received from a server through OfferService
IDc Identifier that can uniquely identify a client (ClientID)

ClientEndPoint Client’s current IP address and port number
ClientData Data from ServerData to ClientEndPoint

HMAC (Kc, ClientData) HMAC value for ClientData made with a long-term client key

Figure 5. Data configured when a client needs to request a ticket from an AS.

Table 4. Descriptions of notation for RequestTicket message data in Figure 5.

Notation Description

ServerData ServerData received from a server through OfferService

HMAC (Ks, ServerData) HMAC value for ServerData received from a server through
OfferService

IDc Identifier that can uniquely identify a client (ClientID)
ClientEndPoint Client’s current IP address and port number

ClientData Data from ServerData to ClientEndPoint
HMAC (Kc, ClientData) HMAC value for ClientData made with a long-term client key

In the RequestTicket message, the client configures ClientData by adding IDc, which
is designated SOME/IP client ID, and ClientEndPoint after ServerData and its HMAC.
Then, the client computes HMAC (Kc, ClientData). The message created in this way sets
the message type to a value representing a RequestTicket message and transmits it to the
AS as a SOME/IP Request message.

Sensors 2023, 23, 6293 9 of 19

4.6. ReturnTicket Phase

When an AS receives the RequestTicket message, the following occurs:
(1) The AS finds the IDc from the transmitted packet in ClientData and a long-term key

Kc corresponding to that IDc in the AS database. The AS uses Kc to calculate the HMAC
value of ClientData and then compares the HMAC with the HMAC of the transmitted
packet, which the client calculated. If the two HMACs do not match, a “client verification
fail” error code is set, and the operation stops; if they match, the process proceeds to (2).

(2) The AS finds the IDs, which is a unique identifier for a service instance, in Server-
Data and a long-term key Ks corresponding to that IDs in the AS database and calculates
the HMAC value of ServerData with Ks. Then, the AS compares that HMAC with the
HMAC of the transmitted packet, which the server calculated. If the two HMACs do not
match, a “server verification fail” error code is set, and the operation stops; if they match,
the process proceeds to (3).

(3) Based on the IDs and the IDc, policy violations between nodes are checked in the
AS policy data. For example, in a relationship where the service cannot be provided or is
not provided, a “policy denied” error code is set in the validation code, and the operation
stops. In the case of a valid relationship, the process proceeds to (4).

(4) If there is no problem from (1) to (3), a “verification success” code is set in the
validation code.

If the validation code in Section 4.6 contains an error, the AS generates an HMAC
value relating to the error code with the client’s long-term key Kc and sends it to the client
as a ReturnTicket message, as shown in Figure 6. If the validation code is “verification
success”, the AS is formatted as shown in Figure 7. For a detailed description of notation,
refer to Table 5. The session key is generated as a cryptographically secure random value
after confirming the kind of service in the AS. The overall configuration of the ReturnTicket
message is divided mainly into AuthServerTicket, which is used for verification in the
server, and AuthClientTicket, which is used for verification in the client.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

In the RequestTicket message, the client configures ClientData by adding IDc, which
is designated SOME/IP client ID, and ClientEndPoint after ServerData and its HMAC.
Then, the client computes HMAC (Kc, ClientData). The message created in this way sets
the message type to a value representing a RequestTicket message and transmits it to the
AS as a SOME/IP Request message.

4.6. ReturnTicket Phase
When an AS receives the RequestTicket message, the following occurs:
(1) The AS finds the IDc from the transmitted packet in ClientData and a long-term

key Kc corresponding to that IDc in the AS database. The AS uses Kc to calculate the
HMAC value of ClientData and then compares the HMAC with the HMAC of the trans-
mitted packet, which the client calculated. If the two HMACs do not match, a “client ver-
ification fail” error code is set, and the operation stops; if they match, the process proceeds
to (2).

(2) The AS finds the IDs, which is a unique identifier for a service instance, in Serv-
erData and a long-term key Ks corresponding to that IDs in the AS database and calculates
the HMAC value of ServerData with Ks. Then, the AS compares that HMAC with the
HMAC of the transmitted packet, which the server calculated. If the two HMACs do not
match, a “server verification fail” error code is set, and the operation stops; if they match,
the process proceeds to (3).

(3) Based on the IDs and the IDc, policy violations between nodes are checked in the
AS policy data. For example, in a relationship where the service cannot be provided or is
not provided, a “policy denied” error code is set in the validation code, and the operation
stops. In the case of a valid relationship, the process proceeds to (4).

(4) If there is no problem from (1) to (3), a “verification success” code is set in the
validation code.

If the validation code in Section 4.6 contains an error, the AS generates an HMAC
value relating to the error code with the client’s long-term key Kc and sends it to the client
as a ReturnTicket message, as shown in Figure 6. If the validation code is “verification
success”, the AS is formatted as shown in Figure 7. For a detailed description of notation,
refer to Table 5. The session key is generated as a cryptographically secure random value
after confirming the kind of service in the AS. The overall configuration of the Re-
turnTicket message is divided mainly into AuthServerTicket, which is used for verification
in the server, and AuthClientTicket, which is used for verification in the client.

Figure 6. ReturnTicket structure that is configured when a validation code has an error.

Figure 7. ReturnTicket structure that is configured for a successfully generated ticket from an AS.

Table 5. Descriptions of notations for ReturnTicket message data in Figure 7.

Notation Description
ValidationCode Validity result code checked by an AS in Section 4.5, such as peer authority and policy checks

ValidTime
Time taken for the AS to perform ticket issuance plus the TicketValidPeriod delivered by the

server in OfferService
IDc Client ID

ClientEndPoint Client’s current IP address and port number
E(Ks’, SessionKey) Encrypted session key with the derived server encryption key
AuthServerTicket Data from ValidationCode to E (Ks’, SessionKey)

Figure 6. ReturnTicket structure that is configured when a validation code has an error.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

In the RequestTicket message, the client configures ClientData by adding IDc, which
is designated SOME/IP client ID, and ClientEndPoint after ServerData and its HMAC.
Then, the client computes HMAC (Kc, ClientData). The message created in this way sets
the message type to a value representing a RequestTicket message and transmits it to the
AS as a SOME/IP Request message.

4.6. ReturnTicket Phase
When an AS receives the RequestTicket message, the following occurs:
(1) The AS finds the IDc from the transmitted packet in ClientData and a long-term

key Kc corresponding to that IDc in the AS database. The AS uses Kc to calculate the
HMAC value of ClientData and then compares the HMAC with the HMAC of the trans-
mitted packet, which the client calculated. If the two HMACs do not match, a “client ver-
ification fail” error code is set, and the operation stops; if they match, the process proceeds
to (2).

(2) The AS finds the IDs, which is a unique identifier for a service instance, in Serv-
erData and a long-term key Ks corresponding to that IDs in the AS database and calculates
the HMAC value of ServerData with Ks. Then, the AS compares that HMAC with the
HMAC of the transmitted packet, which the server calculated. If the two HMACs do not
match, a “server verification fail” error code is set, and the operation stops; if they match,
the process proceeds to (3).

(3) Based on the IDs and the IDc, policy violations between nodes are checked in the
AS policy data. For example, in a relationship where the service cannot be provided or is
not provided, a “policy denied” error code is set in the validation code, and the operation
stops. In the case of a valid relationship, the process proceeds to (4).

(4) If there is no problem from (1) to (3), a “verification success” code is set in the
validation code.

If the validation code in Section 4.6 contains an error, the AS generates an HMAC
value relating to the error code with the client’s long-term key Kc and sends it to the client
as a ReturnTicket message, as shown in Figure 6. If the validation code is “verification
success”, the AS is formatted as shown in Figure 7. For a detailed description of notation,
refer to Table 5. The session key is generated as a cryptographically secure random value
after confirming the kind of service in the AS. The overall configuration of the Re-
turnTicket message is divided mainly into AuthServerTicket, which is used for verification
in the server, and AuthClientTicket, which is used for verification in the client.

Figure 6. ReturnTicket structure that is configured when a validation code has an error.

Figure 7. ReturnTicket structure that is configured for a successfully generated ticket from an AS.

Table 5. Descriptions of notations for ReturnTicket message data in Figure 7.

Notation Description
ValidationCode Validity result code checked by an AS in Section 4.5, such as peer authority and policy checks

ValidTime
Time taken for the AS to perform ticket issuance plus the TicketValidPeriod delivered by the

server in OfferService
IDc Client ID

ClientEndPoint Client’s current IP address and port number
E(Ks’, SessionKey) Encrypted session key with the derived server encryption key
AuthServerTicket Data from ValidationCode to E (Ks’, SessionKey)

Figure 7. ReturnTicket structure that is configured for a successfully generated ticket from an AS.

Table 5. Descriptions of notations for ReturnTicket message data in Figure 7.

Notation Description

ValidationCode Validity result code checked by an AS in Section 4.5, such as peer authority and policy checks

ValidTime Time taken for the AS to perform ticket issuance plus the TicketValidPeriod delivered by the
server in OfferService

IDc Client ID
ClientEndPoint Client’s current IP address and port number

E(Ks’, SessionKey) Encrypted session key with the derived server encryption key
AuthServerTicket Data from ValidationCode to E (Ks’, SessionKey)

HMAC (Ks, AuthServerTicket) HMAC value of AuthServerTicket generated with a long-term server key
ServerEndPoint Server’s IP address and port number

E (Kc’, SessionKey) Encrypted session key with the derived client encryption key
AuthClientTicket Data from AuthServerTicket to E (Kc’, SessionKey)

HMAC (Kc, AuthClientTicket) HMAC value of AuthClientTicket generated with a long-term client key

Sensors 2023, 23, 6293 10 of 19

When the validity code is “verification success”, the AS creates a ReturnTicket message
that becomes formatted as shown in Figure 7, sets it as the type of the ReturnTicket message,
and sends it to the client as a SOME/IP Response message. In the ReturnTicket message, a
session key between the client and the server is distributed by the AS. Since the session key
is encrypted with a key derived from the long-term key of each node and then transmitted,
only the owner can obtain the session key. The session key is used to verify freshness to
prevent a replay attack and can also be used in future studies to evaluate the confidentiality
of messages. Details relating to the replay attack will be discussed later.

4.7. Request Phase

After the client receives the ReturnTicket message delivered from the AS, it first checks
the HMAC part corresponding to AuthClientTicket using its key to check whether the
message has been falsified or altered. If there is no problem, the AS confirms the validity
code to verify the authentication and mutual relationship between the server and itself
through ValidationCode in AuthServerTicket. If this is successful, the AS gets the session
key by decrypting E (Kc’, SessionKey) with key Kc’ derived from its long-term key Kc. After
this, FreshnessToken is created, as shown in Figure 8. FreshnessToken is encrypted with
the session key after attaching IDc and CurTime, which is the time when FreshnessToken
was created. This FreshnessToken is added after AuthServerTicket’s HMAC and is sent to
ServerEndPoint, as shown in Figure 9.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20

HMAC (Ks, AuthServerTicket) HMAC value of AuthServerTicket generated with a long-term server key
ServerEndPoint Server’s IP address and port number

E (Kc’, SessionKey) Encrypted session key with the derived client encryption key
AuthClientTicket Data from AuthServerTicket to E (Kc’, SessionKey)

HMAC (Kc, AuthClientTicket) HMAC value of AuthClientTicket generated with a long-term client key

When the validity code is “verification success”, the AS creates a ReturnTicket mes-
sage that becomes formatted as shown in Figure 7, sets it as the type of the ReturnTicket
message, and sends it to the client as a SOME/IP Response message. In the ReturnTicket
message, a session key between the client and the server is distributed by the AS. Since
the session key is encrypted with a key derived from the long-term key of each node and
then transmitted, only the owner can obtain the session key. The session key is used to
verify freshness to prevent a replay attack and can also be used in future studies to evalu-
ate the confidentiality of messages. Details relating to the replay attack will be discussed
later.

4.7. Request Phase
After the client receives the ReturnTicket message delivered from the AS, it first

checks the HMAC part corresponding to AuthClientTicket using its key to check whether
the message has been falsified or altered. If there is no problem, the AS confirms the va-
lidity code to verify the authentication and mutual relationship between the server and
itself through ValidationCode in AuthServerTicket. If this is successful, the AS gets the
session key by decrypting E (Kc’, SessionKey) with key Kc’ derived from its long-term key
Kc. After this, FreshnessToken is created, as shown in Figure 8. FreshnessToken is en-
crypted with the session key after attaching IDc and CurTime, which is the time when
FreshnessToken was created. This FreshnessToken is added after AuthServerTicket’s
HMAC and is sent to ServerEndPoint, as shown in Figure 9.

Figure 8. FreshnessToken format.

Figure 9. Request or SubscribeEventGroup structure that a client configures to pass AuthServer-
Ticket and FreshnessToken to a server.

The server receiving this message calculates the HMAC value of AuthServerTicket
with its key to check message freshness. The server decrypts FreshnessToken with the
acquired session key and checks whether the message was created and transmitted within
the valid time using CurTime. If the transmitted time is valid, the IDc in Freshness is
checked to see if it matches the IDc in the ticket. If it matches, the server sends a Response
message to the client endpoint in the ticket or registers the client endpoint as a service
subscriber (SubscribeEventGroupAck).

5. Security Analysis
5.1. Considering the Replay Attack

A session key distribution and freshness verification using the key are added because
the server uses the client’s endpoint listed in the ticket after checking the validity between
nodes based on AuthServerTicket. Suppose a malicious user stole a valid authentication
ticket and repeatedly sent messages including the ticket to the server. In that case, the
server would continue to send a Response message to a victim client because it is a valid

Figure 8. FreshnessToken format.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20

HMAC (Ks, AuthServerTicket) HMAC value of AuthServerTicket generated with a long-term server key
ServerEndPoint Server’s IP address and port number

E (Kc’, SessionKey) Encrypted session key with the derived client encryption key
AuthClientTicket Data from AuthServerTicket to E (Kc’, SessionKey)

HMAC (Kc, AuthClientTicket) HMAC value of AuthClientTicket generated with a long-term client key

When the validity code is “verification success”, the AS creates a ReturnTicket mes-
sage that becomes formatted as shown in Figure 7, sets it as the type of the ReturnTicket
message, and sends it to the client as a SOME/IP Response message. In the ReturnTicket
message, a session key between the client and the server is distributed by the AS. Since
the session key is encrypted with a key derived from the long-term key of each node and
then transmitted, only the owner can obtain the session key. The session key is used to
verify freshness to prevent a replay attack and can also be used in future studies to evalu-
ate the confidentiality of messages. Details relating to the replay attack will be discussed
later.

4.7. Request Phase
After the client receives the ReturnTicket message delivered from the AS, it first

checks the HMAC part corresponding to AuthClientTicket using its key to check whether
the message has been falsified or altered. If there is no problem, the AS confirms the va-
lidity code to verify the authentication and mutual relationship between the server and
itself through ValidationCode in AuthServerTicket. If this is successful, the AS gets the
session key by decrypting E (Kc’, SessionKey) with key Kc’ derived from its long-term key
Kc. After this, FreshnessToken is created, as shown in Figure 8. FreshnessToken is en-
crypted with the session key after attaching IDc and CurTime, which is the time when
FreshnessToken was created. This FreshnessToken is added after AuthServerTicket’s
HMAC and is sent to ServerEndPoint, as shown in Figure 9.

Figure 8. FreshnessToken format.

Figure 9. Request or SubscribeEventGroup structure that a client configures to pass AuthServer-
Ticket and FreshnessToken to a server.

The server receiving this message calculates the HMAC value of AuthServerTicket
with its key to check message freshness. The server decrypts FreshnessToken with the
acquired session key and checks whether the message was created and transmitted within
the valid time using CurTime. If the transmitted time is valid, the IDc in Freshness is
checked to see if it matches the IDc in the ticket. If it matches, the server sends a Response
message to the client endpoint in the ticket or registers the client endpoint as a service
subscriber (SubscribeEventGroupAck).

5. Security Analysis
5.1. Considering the Replay Attack

A session key distribution and freshness verification using the key are added because
the server uses the client’s endpoint listed in the ticket after checking the validity between
nodes based on AuthServerTicket. Suppose a malicious user stole a valid authentication
ticket and repeatedly sent messages including the ticket to the server. In that case, the
server would continue to send a Response message to a victim client because it is a valid

Figure 9. Request or SubscribeEventGroup structure that a client configures to pass AuthServerTicket
and FreshnessToken to a server.

The server receiving this message calculates the HMAC value of AuthServerTicket
with its key to check message freshness. The server decrypts FreshnessToken with the
acquired session key and checks whether the message was created and transmitted within
the valid time using CurTime. If the transmitted time is valid, the IDc in Freshness is
checked to see if it matches the IDc in the ticket. If it matches, the server sends a Response
message to the client endpoint in the ticket or registers the client endpoint as a service
subscriber (SubscribeEventGroupAck).

5. Security Analysis
5.1. Considering the Replay Attack

A session key distribution and freshness verification using the key are added because
the server uses the client’s endpoint listed in the ticket after checking the validity between
nodes based on AuthServerTicket. Suppose a malicious user stole a valid authentication
ticket and repeatedly sent messages including the ticket to the server. In that case, the server
would continue to send a Response message to a victim client because it is a valid ticket,
and a distributed denial of service (DDoS) attack could occur in the client node. Therefore,
before the server sends a response, the logic that verifies whether a legitimate ticket has been
delivered is added to prevent a ticket replay attack. Also, since FreshnessToken includes
the current time, it can limit the valid time of the used session key and ticket compared to
the valid time in the authentication ticket. This is a one-way authentication method using a
challenge–response approach, where the prover and verifier utilize a pre-shared symmetric
key to verify an unforgeable timestamp.

Sensors 2023, 23, 6293 11 of 19

Through this method, our suggested scheme can prevent manipulation of the end-
point, which provides and subscribes to services and is at the heart of SOME/IP MITM
attacks. Thus, even if ticket freshness is guaranteed, replay attacks on tickets are rendered
impossible.

5.2. Benefits and Concerns of Using an AS

To ensure secure communication between IoT devices, the use of an Authentication
Server is often proposed as a method [21]. The proposed method also adopts a way of
using an AS. There are well-known concerns about having two additional messages that
need to be sent and received using an AS. Before looking into these concerns, we explain
the following advantages first:

(1) As the operation arising from the extension of SOME/IP security functions is
shared in the AS, operational overhead on the end nodes is relatively small, even when the
node on the ECU has limited resources.

(2) Since key and policy management are performed in the AS, when a node is changed
(e.g., node addition/modification/deletion), only the AS needs to be updated for the related
nodes except for the node that changed. Therefore, using an AS is advantageous in terms
of scalability.

With these two advantages, we adopt the model using the AS. The proposed method
is rather similar to current in-vehicle architectures (not only to the central processing
architecture used by Tesla and Waymo but also to the Zonal architecture that traditional
automotive OEMs see as next-generation vehicle architecture). These structures make it
possible to perform SW updates for segregated security functionality quickly and easily
through the network. Through this, using the AS, it is easy to introduce nodes that provide
new functions and advantageous for vehicle security because the area to be protected is
clear. However, since a large volume of data needs to be processed at one point, a critical
problem such as a single point of failure (SPOF) could occur. As such, this process requires
high computing performance and high-speed communication technology. In this regard,
manufacturers should design and test the system to be widely available and fault-tolerant.
It also should incorporate redundant systems or fail-safe mechanisms to ensure that if one
component or system were to fail, there would be a backup to prevent a catastrophic failure.
Since the advantages and disadvantages of the introduced vehicle architecture are nearly
identical to those proposed in this paper for the security expansion of SOME/IP, we expect
that the methods offered as a supplement to address the concerns caused by the overall
architecture of the vehicle can mitigate our method’s drawbacks.

5.3. Formal Verification

To analyze our method’s security properties, we used ProVerif, an automated tool for
formally verifying security protocols, as it is designed to help security researchers identify
and eliminate security vulnerabilities in cryptographic protocols. Security properties are
typically secrecy, authenticity, and integrity. For these properties, the tool automatically
generates attack scenarios that expose weaknesses in the protocol. As it already supports a
variety of cryptographic primitives and protocol specifications, we were able to analyze
our protocol easily and quickly. For details about ProVerif, refer to article [22], and note
that the manual can be found in [22,23] and also online at [24].

We defined three processes for the execution processes of the server, the client, and the
AS along with eight events for sending, identifying, and verifying each node following the
secure scheme shown in Figure 3. The eight events are:

Events:

• event offer_service: This event denotes that a server sent an OfferService message
with its HMAC to a client. It is set after the OfferService message has been sent from a
server to a client.

Sensors 2023, 23, 6293 12 of 19

• event request_ticket: This event denotes that a client sent a RequestTicket message
with their HMAC to the AS. It is set after the RequestTicket message has been sent
from a client to an AS.

• event verify_node: This event confirms the validity of a target node. It is set after
validating a node’s HMAC and policies.

• event return_ticket: This event denotes that an AS sent a ReturnTicket message that
includes server and client tokens as well as encrypted session key containers via their
keys.

• event verify_ticket: This event confirms the validity of a node’s authentication ticket
and obtains a session key. It is set after the ticket sent from an AS is validated and
decrypted and the session key is obtained.

• event request: This event denotes that a client sent a Request message that includes
FreshnessToken and AuthServerTicket to the server’s endpoint, configured in Auth-
ClientTicket. It is set after a Request message is sent from a client to a server.

• event server_verify_freshness: This event confirms the validity of FreshnessToken
from a client’s Request message. It is set after FreshnessToken is validated using a
session key.

• event response: This event denotes that a server sent a Response message to a client.
It is set after a Response message has been sent from a server to a client.

We also set eight queries to confirm the security properties of the proposed security
protocol. Figure 10 shows the result of the secrecy analysis of keys used for this scheme for
an attacker.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20

We defined three processes for the execution processes of the server, the client, and
the AS along with eight events for sending, identifying, and verifying each node following
the secure scheme shown in Figure 3. The eight events are:

Events:
• event offer_service: This event denotes that a server sent an OfferService message

with its HMAC to a client. It is set after the OfferService message has been sent from
a server to a client.

• event request_ticket: This event denotes that a client sent a RequestTicket message
with their HMAC to the AS. It is set after the RequestTicket message has been sent
from a client to an AS.

• event verify_node: This event confirms the validity of a target node. It is set after
validating a node’s HMAC and policies.

• event return_ticket: This event denotes that an AS sent a ReturnTicket message that
includes server and client tokens as well as encrypted session key containers via their
keys.

• event verify_ticket: This event confirms the validity of a node’s authentication ticket
and obtains a session key. It is set after the ticket sent from an AS is validated and
decrypted and the session key is obtained.

• event request: This event denotes that a client sent a Request message that includes
FreshnessToken and AuthServerTicket to the server’s endpoint, configured in
AuthClientTicket. It is set after a Request message is sent from a client to a server.

• event server_verify_freshness: This event confirms the validity of FreshnessToken
from a client’s Request message. It is set after FreshnessToken is validated using a
session key.

• event response: This event denotes that a server sent a Response message to a client.
It is set after a Response message has been sent from a server to a client.
We also set eight queries to confirm the security properties of the proposed security

protocol. Figure 10 shows the result of the secrecy analysis of keys used for this scheme
for an attacker.

Figure 10. The result of security analysis via ProVerif.

Queries:
• Query not attacker:secretA[]: This query investigates whether or not a pre-defined

server key shared with an AS has been leaked by an attacker. In Figure 10, it returned
true, which means the key is secure.

• Query not attacker:secretB[]: This query investigates whether or not a pre-defined
client key shared with an AS has been leaked by an attacker. In Figure 10, it returned
true, which means the key is secure.

• Query not attacker:secretK_2[]: This query investigates whether or not a session key
distributed by an AS has been leaked or not. In Figure 10, it returned true, which
means the key is secure from an attacker.

• Query evinj:verify_node(x) ==> evinj:verify_node(y): This query investigates whether
or not client verification occurred before server verification occurred. It returned true,
which means a server node verification was always performed after a client node

Figure 10. The result of security analysis via ProVerif.

Queries:

• Query not attacker:secretA[]: This query investigates whether or not a pre-defined
server key shared with an AS has been leaked by an attacker. In Figure 10, it returned
true, which means the key is secure.

• Query not attacker:secretB[]: This query investigates whether or not a pre-defined
client key shared with an AS has been leaked by an attacker. In Figure 10, it returned
true, which means the key is secure.

• Query not attacker:secretK_2[]: This query investigates whether or not a session key
distributed by an AS has been leaked or not. In Figure 10, it returned true, which
means the key is secure from an attacker.

• Query evinj:verify_node(x) ==> evinj:verify_node(y): This query investigates whether
or not client verification occurred before server verification occurred. It returned true,
which means a server node verification was always performed after a client node
verification. Combined with the following query, the return_ticket event should occur
after verifying both nodes.

• Query evinj:return_ticket(x,y) ==> evinj:verify_node(x): This query investigates whether
or not server verification occurred before the return_ticket event occurred. It returned
true, which means the return_ticket event was always sent after server node verification.

• Query evinj:request(x) ==> evinj:verify_ticket(y): This query investigates whether or
not a client ticket verification occurred before the request event occurred. It returned
true, which means the request event always happened after client ticket verification.

Sensors 2023, 23, 6293 13 of 19

• Query evinj: verify_ticket(y) ==> evinj:verify_freshness(x): This query investigates
whether or not a ticket freshness verification occurred before a server ticket verification.
It returned true, which means the verify_ticket event for the server always happened
after freshness verification.

• Query evinj: response(x) ==> evinj:verify_ticket(y): This query investigates whether
or not a server ticket verification occurred before a response event. It returned true,
which means the response event always happened after server ticket verification.

Following the listed queries, an attacker cannot modify an endpoint because the
endpoint is included in each authentication ticket from an AS, and the messages are sent
after verification of the tickets. By doing this, MITM and spoofing attacks are mitigated.
As part of a suggested process, a client may encrypt FreshnessToken with a shared key
via an AS, which ensures that the ticket’s freshness is verified before sending a response
from the server. This provides mitigation of replay and DDoS attacks. To sum up, the
result of ProVerif shows that our suggested security scheme has the secrecy of a session
key, can authenticate nodes, and mitigates various attacks. Please refer to Appendix A for
the detailed result of running ProVerif.

6. Evaluation

Verification was carried out through three Raspberry Pi 4 Model b+ units and one
gateway with Ubuntu loaded, as shown in Figure 11, for the configuration of the server,
client, and AS. We used GENEVI’s SOME/IP open source, vsomeip [25], for SOME/IP
security extension implementation and compared it to another solution that called secure-
vsomeip (implementation of Secure SOME/IP), which is available on GitHub. For a fair
comparison, we tested on the same devices, and in the case of a symmetric algorithm, both
solutions were set to operate with the AES-GCM-128 algorithm using OpenSSL. The testing
security level of secure-vsomeip was set to “authentication” to provide a security level
similar to that of our proposed model.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 20

Figure 11. Experimental environment.

For convenience, we refer to our implementation as “ticket-based vsomeip”. Figure
12 shows the total time taken to send a Request message to a specific service and receive
a Response message after one client app starts to run. The result represents the average
value of 100 tests. In the case of secure-vsomeip, we measured the time to run the re-
quest_response client app in its benchmark and receive an actual response. While the cli-
ent node was running, it also performed an additional asymmetric key operation to hand-
shake with the server node. Ticket-based vsomeip performed symmetric key operations
and included additional communication overhead with the AS. The result shows that the
ticket-based vsomeip performed slightly faster than or similarly to secure-vsomeip. Please
note that these measurement data represent the total Round Trip Time (RTT) and include
the time required for the operations on all nodes. CPU usage refers to how many resources
the processor consumes to perform a given task. Therefore, we proceeded to measure the
CPU usage as well. When measuring the CPU on the server side, using secure-vsomeip,
we observed an average value of 25.546%. In comparison, ticket-based vsomeip showed a
usage of 6.67%, indicating a reduction of approximately 76%. This difference in CPU usage
can be attributed to the way each method processes the task and the complexity of the
algorithms involved.

Figure 12. Total elapsed time to obtain a response from a server, including each security extension
operation.

Since this proposed method performs most of the core operations for security expan-
sion in an AS, it reduces overhead caused by added security implementations on the

Figure 11. Experimental environment.

For convenience, we refer to our implementation as “ticket-based vsomeip”. Figure 12
shows the total time taken to send a Request message to a specific service and receive a Re-
sponse message after one client app starts to run. The result represents the average value of
100 tests. In the case of secure-vsomeip, we measured the time to run the request_response
client app in its benchmark and receive an actual response. While the client node was

Sensors 2023, 23, 6293 14 of 19

running, it also performed an additional asymmetric key operation to handshake with the
server node. Ticket-based vsomeip performed symmetric key operations and included
additional communication overhead with the AS. The result shows that the ticket-based
vsomeip performed slightly faster than or similarly to secure-vsomeip. Please note that
these measurement data represent the total Round Trip Time (RTT) and include the time
required for the operations on all nodes. CPU usage refers to how many resources the
processor consumes to perform a given task. Therefore, we proceeded to measure the CPU
usage as well. When measuring the CPU on the server side, using secure-vsomeip, we
observed an average value of 25.546%. In comparison, ticket-based vsomeip showed a
usage of 6.67%, indicating a reduction of approximately 76%. This difference in CPU usage
can be attributed to the way each method processes the task and the complexity of the
algorithms involved.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 20

Figure 11. Experimental environment.

For convenience, we refer to our implementation as “ticket-based vsomeip”. Figure
12 shows the total time taken to send a Request message to a specific service and receive
a Response message after one client app starts to run. The result represents the average
value of 100 tests. In the case of secure-vsomeip, we measured the time to run the re-
quest_response client app in its benchmark and receive an actual response. While the cli-
ent node was running, it also performed an additional asymmetric key operation to hand-
shake with the server node. Ticket-based vsomeip performed symmetric key operations
and included additional communication overhead with the AS. The result shows that the
ticket-based vsomeip performed slightly faster than or similarly to secure-vsomeip. Please
note that these measurement data represent the total Round Trip Time (RTT) and include
the time required for the operations on all nodes. CPU usage refers to how many resources
the processor consumes to perform a given task. Therefore, we proceeded to measure the
CPU usage as well. When measuring the CPU on the server side, using secure-vsomeip,
we observed an average value of 25.546%. In comparison, ticket-based vsomeip showed a
usage of 6.67%, indicating a reduction of approximately 76%. This difference in CPU usage
can be attributed to the way each method processes the task and the complexity of the
algorithms involved.

Figure 12. Total elapsed time to obtain a response from a server, including each security extension
operation.

Since this proposed method performs most of the core operations for security expan-
sion in an AS, it reduces overhead caused by added security implementations on the

Figure 12. Total elapsed time to obtain a response from a server, including each security extension
operation.

Since this proposed method performs most of the core operations for security expan-
sion in an AS, it reduces overhead caused by added security implementations on the server
and the client. Since ticket requests from multiple nodes can be demanded simultaneously,
it is necessary to verify the processing capacity of the AS according to the increase in
client ticket requests. Figure 13 illustrates the average measurements corresponding to the
number of clients over 100 tests.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

server and the client. Since ticket requests from multiple nodes can be demanded simul-
taneously, it is necessary to verify the processing capacity of the AS according to the in-
crease in client ticket requests. Figure 13 illustrates the average measurements corre-
sponding to the number of clients over 100 tests.

Figure 13. Evaluated elapsed time to handle all RequestTicket messages on an AS.

All clients receive an OfferService message that requires a ticket provided by the
server and want to use the service, then send RequestTicket messages to the AS. The meas-
ured time is the total time taken by the AS to transmit ReturnTicket messages to all clients
(see Figure 13, which shows a linear increase in the elapsed time in relation to increasing
numbers of clients). Due to parallel processing, the actual measured results show a speed
increase that is less than the anticipated linear growth based on increased client nodes. As
such, using an AS is a feasible method.

7. Conclusions
As the automotive industry continues to evolve and the demand for data increases,

Ethernet technology is poised to play an increasingly important role in vehicle communi-
cation. In this context, the security of SOME/IP, an Ethernet standard protocol, is crucial
for ensuring safety, privacy, and cybersecurity in modern vehicles. The proposed method
mitigates known MITM attacks on SOME/IP using a ticket that guarantees end node end-
points from an AS. Compared to methods proposed in other studies, our approach offers
an advantage in terms of scalability, requiring only minimal additional work to accom-
modate changes such as adding or deleting nodes. This is thanks to the fact that key
changes and policy changes due to node changes are possible only with an AS software
update. Additionally, the proposed method can be implemented and used without signif-
icantly affecting the existing SOME/IP protocol, making it compatible with current sys-
tems. Furthermore, as it relies only on symmetric key operations, the operation of our
method is relatively light. Through the session key distributed by the AS and Fresh-
nessToken protected by the key, the server can self-verify the freshness of a ticket, effec-
tively preventing replay attacks. We proved the security properties of the proposed
method through ProVerif and confirmed feasibility in our evaluation. In future research,
we plan to consider the use of a distributed session key to ensure message confidentiality
based on the importance of the service.

Author Contributions: Writing—review & editing, W.C.; Supervision, D.H.L.; Project administra-
tion, S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute for Information and Communications Technol-
ogy Promotion (Development of Security Primitives for Unmanned Vehicles) under Grant 2020-0-
00374.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 13. Evaluated elapsed time to handle all RequestTicket messages on an AS.

All clients receive an OfferService message that requires a ticket provided by the server
and want to use the service, then send RequestTicket messages to the AS. The measured
time is the total time taken by the AS to transmit ReturnTicket messages to all clients
(see Figure 13, which shows a linear increase in the elapsed time in relation to increasing
numbers of clients). Due to parallel processing, the actual measured results show a speed
increase that is less than the anticipated linear growth based on increased client nodes. As
such, using an AS is a feasible method.

7. Conclusions

As the automotive industry continues to evolve and the demand for data increases,
Ethernet technology is poised to play an increasingly important role in vehicle communi-

Sensors 2023, 23, 6293 15 of 19

cation. In this context, the security of SOME/IP, an Ethernet standard protocol, is crucial
for ensuring safety, privacy, and cybersecurity in modern vehicles. The proposed method
mitigates known MITM attacks on SOME/IP using a ticket that guarantees end node end-
points from an AS. Compared to methods proposed in other studies, our approach offers an
advantage in terms of scalability, requiring only minimal additional work to accommodate
changes such as adding or deleting nodes. This is thanks to the fact that key changes and
policy changes due to node changes are possible only with an AS software update. Addi-
tionally, the proposed method can be implemented and used without significantly affecting
the existing SOME/IP protocol, making it compatible with current systems. Furthermore,
as it relies only on symmetric key operations, the operation of our method is relatively light.
Through the session key distributed by the AS and FreshnessToken protected by the key,
the server can self-verify the freshness of a ticket, effectively preventing replay attacks. We
proved the security properties of the proposed method through ProVerif and confirmed
feasibility in our evaluation. In future research, we plan to consider the use of a distributed
session key to ensure message confidentiality based on the importance of the service.

Author Contributions: Writing—review & editing, W.C.; Supervision, D.H.L.; Project administration,
S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute for Information and Communications Technology
Promotion (Development of Security Primitives for Unmanned Vehicles) under Grant 2020-0-00374.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There is no additional data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The result of running the ProVerif
Process 0 (that is, the initial process):
{1}new kA;
{2}new kB;
{3}let hostA = host(kA) in
{4}let hostB = host(kB) in
{5}out(c, hostA);
{6}out(c, hostB);
(

{7}!
{8}new SD;
{9}event offer_service(hostB);
{10}out(c, (hostA,hostB,SD,keyhash((hostA,hostB,SD),kA)));
{11}event offer_service(hostB);
{12}in(c, (=hostA,hostB1,Ea1,h31,ft));
{13}if (h31 = keyhash((hostA,hostB1,Ea1),kA)) then
{14}event verify_ticket(hostA);
{15}let (=hostA,=hostB,secretK) = decrypt(Ea1,kB) in
{16}let (=hostB,t2) = decrypt(ft,secretK) in
{17}event verify_freshness(hostB1);
{18}event response(hostB1)

) | (
{19}!
{20}new CD;
{21}in(c, (hostA1,=hostB,SD1,h1));
{22}out(c, (hostA1,hostB,SD1,h1,CD,keyhash((hostA1,hostB,SD1,h1,CD),kB)));

Sensors 2023, 23, 6293 16 of 19

{23}event request_ticket();
{24}in(c, (hostA2,=hostB,Ea,h3,Eb1,h4));
{25}if (h4 = keyhash((hostA2,hostB,Ea,h3,Eb1),getkey(hostB))) then
{26}let (=hostB,=hostA,secretK_1) = decrypt(Eb1,kB) in
{27}new t1;
{28}event verify_ticket(hostB);
{29}out(c, (hostA2,hostB,Ea,h3,encrypt((hostB,t1),secretK_1)));
{30}event request(hostA2)

) | (
{31}!
{32}in(c, (hostA2_1,hostB1_1,SD12,h12,CD12,h22));
{33}if (h22 = keyhash((hostA2_1,hostB1_1,SD12,h12,CD12),getkey(hostB))) then
{34}event verify_node(hostB);
{35}if (h12 = keyhash((hostA2_1,hostB1_1,SD12),getkey(hostA))) then
{36}event verify_node(hostA);
{37}new k;
{38}out(c, (hostA2_1,hostB1_1,encrypt((hostA2_1,hostB1_1,k),getkey(hostA)),key-

hash((encrypt((hostA2_1,hostB1_1,k),getkey(hostA))),getkey(hostA)),encrypt((hostB1_1,ho-
stA2_1,k),getkey(hostB)),keyhash((encrypt((hostA2_1,hostB1_1,k),getkey(hostA)),keyhash
((encrypt((hostA2_1,hostB1_1,k),getkey(hostA))),getkey(hostA)),encrypt((hostB1_1,hostA2
_1,k),getkey(hostB))),getkey(hostB))));

{39}event response_ticket(hostA2_1,hostB1_1)
)

-- Process 1 (that is, process 0, with let moved downwards):
{1}new kA;
{2}new kB;
{3}let hostA = host(kA) in
{5}out(c, hostA);
{4}let hostB = host(kB) in
{6}out(c, hostB);
(

{7}!
{8}new SD;
{9}event offer_service(hostB);
{10}out(c, (hostA,hostB,SD,keyhash((hostA,hostB,SD),kA)));
{11}event offer_service(hostB);
{12}in(c, (=hostA,hostB1,Ea1,h31,ft));
{13}if (h31 = keyhash((hostA,hostB1,Ea1),kA)) then
{14}event verify_ticket(hostA);
{15}let (=hostA,=hostB,secretK) = decrypt(Ea1,kB) in
{16}let (=hostB,t2) = decrypt(ft,secretK) in
{17}event verify_freshness(hostB1);
{18}event response(hostB1)

) | (
{19}!
{20}new CD;
{21}in(c, (hostA1,=hostB,SD1,h1));
{22}out(c, (hostA1,hostB,SD1,h1,CD,keyhash((hostA1,hostB,SD1,h1,CD),kB)));
{23}event request_ticket();
{24}in(c, (hostA2,=hostB,Ea,h3,Eb1,h4));
{25}if (h4 = keyhash((hostA2,hostB,Ea,h3,Eb1),getkey(hostB))) then
{26}let (=hostB,=hostA,secretK_1) = decrypt(Eb1,kB) in
{27}new t1;
{28}event verify_ticket(hostB);

Sensors 2023, 23, 6293 17 of 19

{29}out(c, (hostA2,hostB,Ea,h3,encrypt((hostB,t1),secretK_1)));
{30}event request(hostA2)

) | (
{31}!
{32}in(c, (hostA2_1,hostB1_1,SD12,h12,CD12,h22));
{33}if (h22 = keyhash((hostA2_1,hostB1_1,SD12,h12,CD12),getkey(hostB))) then
{34}event verify_node(hostB);
{35}if (h12 = keyhash((hostA2_1,hostB1_1,SD12),getkey(hostA))) then
{36}event verify_node(hostA);
{37}new k;
{38}out(c, (hostA2_1,hostB1_1,encrypt((hostA2_1,hostB1_1,k),getkey(hostA)),key-

hash((encrypt((hostA2_1,hostB1_1,k),getkey(hostA))),getkey(hostA)),encrypt((hostB1_1,ho-
stA2_1,k),getkey(hostB)),keyhash((encrypt((hostA2_1,hostB1_1,k),getkey(hostA)),keyhash
((encrypt((hostA2_1,hostB1_1,k),getkey(hostA))),getkey(hostA)),encrypt((hostB1_1,hostA2
_1,k),getkey(hostB))),getkey(hostB))));

{39}event response_ticket(hostA2_1,hostB1_1)
)

-- Query not attacker:secretA[]; not attacker:secretB[]; not attacker:secretK_2[] in pro-
cess 1.

Translating the process into Horn clauses...
Completing...
ok, secrecy assumption verified: fact unreachable attacker:kA[]
ok, secrecy assumption verified: fact unreachable attacker:kB[]
Starting query not attacker:secretA[]
RESULT not attacker:secretA[] is true.
Starting query not attacker:secretB[]
RESULT not attacker:secretB[] is true.
Starting query not attacker:secretK_2[]
RESULT not attacker:secretK_2[] is true.
-- Query evinj:verify_node(x) ==> evinj:verify_node(y) in process 1.
Translating the process into Horn clauses...
Completing...
ok, secrecy assumption verified: fact unreachable attacker:kA[]
ok, secrecy assumption verified: fact unreachable attacker:kB[]
Starting query evinj:verify_node(x) ==> evinj:verify_node(y)
goal reachable: begin:verify_node(host(kB[])),@occ34_1 -> end:@occ36_1,verify_node

(host(kA[]))
The hypothesis occurs strictly before the conclusion.
Abbreviations:
SD_1 = SD[!1 = @sid]
CD_1 = CD[!1 = @sid_1]
@occ36_1 = @occ36[h22 = keyhash((host(kA[]),host(kB[]),SD_1,keyhash((host(kA[]),

host(kB[]),SD_1),kA[]),CD_1),kB[]),CD12 = CD_1,h12 = keyhash((host(kA[]),host(kB[]),SD_1),
kA[]),SD12 = SD_1,hostB1_1 = host(kB[]),hostA2_1 = host(kA[]),!1 = @sid_2]

@occ34_1 = @occ34[h22 = keyhash((host(kA[]),host(kB[]),SD_1,keyhash((host(kA[]),
host(kB[]),SD_1),kA[]),CD_1),kB[]),CD12 = CD_1,h12 = keyhash((host(kA[]),host(kB[]),SD_1),
kA[]),SD12 = SD_1,hostB1_1 = host(kB[]),hostA2_1 = host(kA[]),!1 = @sid_2]

goal reachable: attacker:hostA2_2 & attacker:SD12_1 & attacker:h12_1 -> end:@occ34_1,
verify_node(host(kB[]))

The 1st, 2nd, 3rd hypotheses occur before the conclusion.
Abbreviations:
CD_1 = CD[!1 = @sid]
@occ34_1 = @occ34[h22 = keyhash((hostA2_2,host(kB[]),SD12_1,h12_1,CD_1),kB[]),CD12

= CD_1,h12 = h12_1,SD12 = SD12_1,hostB1_1 = host(kB[]),hostA2_1 = hostA2_2,!1 = @sid_1]

Sensors 2023, 23, 6293 18 of 19

RESULT evinj:verify_node(x) ==> evinj:verify_node(y) is true.
-- Query evinj:response_ticket(x,y) ==> evinj:verify_node(x) in process 1.
Translating the process into Horn clauses...
Completing...
ok, secrecy assumption verified: fact unreachable attacker:kA[]
ok, secrecy assumption verified: fact unreachable attacker:kB[]
Starting query evinj:response_ticket(x,y) ==> evinj:verify_node(x)
goal reachable: begin:verify_node(host(kA[])),@occ36_2 & begin:verify_node(host(kB[])),

@occ34_2 -> end:@occ39_1,response_ticket(host(kA[]),host(kB[]))
The 1st, 2nd hypotheses occur strictly before the conclusion.
Abbreviations:
SD_1 = SD[!1 = @sid]
CD_1 = CD[!1 = @sid_1]
@occ39_1 = @occ39[h22 = keyhash((host(kA[]),host(kB[]),SD_1,keyhash((host(kA[]),host

(kB[]),SD_1),kA[]),CD_1),kB[]),CD12 = CD_1,h12 = keyhash((host(kA[]),host(kB[]),SD_1),
kA[]),SD12 = SD_1,hostB1_1 = host(kB[]),hostA2_1 = host(kA[]),!1 = @sid_2]

@occ36_2 = @occ36_1[h22 = keyhash((host(kA[]),host(kB[]),SD_1,keyhash((host(kA[]),
host(kB[]),SD_1),kA[]),CD_1),kB[]),CD12 = CD_1,h12 = keyhash((host(kA[]),host(kB[]),SD_1),
kA[]),SD12 = SD_1,hostB1_1 = host(kB[]),hostA2_1 = host(kA[]),!1 = @sid_2]

@occ34_2 = @occ34_1[h22 = keyhash((host(kA[]),host(kB[]),SD_1,keyhash((host(kA[]),
host(kB[]),SD_1),kA[]),CD_1),kB[]),CD12 = CD_1,h12 = keyhash((host(kA[]),host(kB[]),SD_1),
kA[]),SD12 = SD_1,hostB1_1 = host(kB[]),hostA2_1 = host(kA[]),!1 = @sid_2]

RESULT evinj:response_ticket(x,y) ==> evinj:verify_node(x) is true.
-- Query evinj:request(x) ==> evinj:verify_ticket(x) in process 1.
Translating the process into Horn clauses...
Completing...
ok, secrecy assumption verified: fact unreachable attacker:kA[]
ok, secrecy assumption verified: fact unreachable attacker:kB[]
Starting query evinj:request(x) ==> evinj:verify_ticket(x)
RESULT evinj:request(x) ==> evinj:verify_ticket(x) is true.
-- Query evinj:response(x) ==> evinj:verify_freshness(x) in process 1.
Translating the process into Horn clauses...
Completing...
ok, secrecy assumption verified: fact unreachable attacker:kA[]
ok, secrecy assumption verified: fact unreachable attacker:kB[]
Starting query evinj:response(x) ==> evinj:verify_freshness(x)
RESULT evinj:response(x) ==> evinj:verify_freshness(x) is true.

References
1. AUTOSAR. Specification of Service Discovery—CP Released R22-11. 2022. Available online: https://www.autosar.org/fileadmin/

standards/classic/22-11/AUTOSAR_SWS_ServiceDiscovery.pdf (accessed on 9 January 2023).
2. AUTOSAR. Specification of SOME/IP Transformer—CP Released R22-11. 2022. Available online: https://www.autosar.org/

fileadmin/standards/classic/22-11/AUTOSAR_SWS_SOMEIPTransformer.pdf (accessed on 9 January 2023).
3. AUTOSAR. Specification of SOME/IP Transport Protocol (SOME/IP-TP)—CP Released R22-11. 2022. Available online: https://www.

autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf (accessed on 9 January 2023).
4. AUTOSAR. SOME/IP Protocol Specification—FO Released R22-11. 2022. Available online: https://www.autosar.org/fileadmin/

standards/foundation/22-11/AUTOSAR_PRS_SOMEIPProtocol.pdf (accessed on 9 January 2023).
5. AUTOSAR. SOME/IP Service Discovery Protocol Specification—FO Released R22-11. 2022. Available online: https://www.

autosar.org/fileadmin/standards/foundation/22-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf (accessed on 9
January 2023).

6. AUTOSAR. Specification of Communication Management—AP Released R22-11. 2022. Available online: https://www.autosar.
org/fileadmin/standards/adaptive/22-11/AUTOSAR_SWS_CommunicationManagement.pdf (accessed on 9 January 2023).

7. Miller, C.; Valasek, C. Adventures in automotive networks and control units. In Proceedings of the DEFCON, Las Vegas, NV,
USA, 1–4 August 2013; Volume 21, pp. 260–264.

8. Miller, C.; Valasek, C. Remote Compromise of an Unaltered Passenger Vehicle; Black Hat: San Francisco, CA, USA, 2015; p. 91.

https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_ServiceDiscovery.pdf
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_ServiceDiscovery.pdf
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_SOMEIPTransformer.pdf
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_SOMEIPTransformer.pdf
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.autosar.org/fileadmin/standards/foundation/22-11/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/foundation/22-11/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/foundation/22-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/foundation/22-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/adaptive/22-11/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/standards/adaptive/22-11/AUTOSAR_SWS_CommunicationManagement.pdf

Sensors 2023, 23, 6293 19 of 19

9. Cai, Z.; Wang, A.; Zhang, W.; Gruffke, M.; Schweppe, H. 0-Days & Mitigations: Roadways to Exploit and Secure Connected BMW Cars;
Black Hat: San Francisco, CA, USA, 2019.

10. Nie, S.; Liu, L.; Du, Y. Free-Fall: Hacking Tesla from Wireless to CAN Bus. Briefing; Black Hat: San Francisco, CA, USA, 2017; pp. 1–16.
11. Seyler, J.; Navet, N.; Fejoz, L. Insights on the Configuration and Performances of SOME/IP Service Discovery. SAE Int. J. Passeng.

Cars Electron. Electr. Syst. 2015, 8, 124–129. [CrossRef]
12. Shir Moussenri. Hijacking SOME/IP Protocol with Man in the Middle Attack. 2020. Available online: https://argus-sec.com/

blog/cyber-security-blog/some-ip-protocol-man-in-the-middle-attack/ (accessed on 15 May 2022).
13. Zelle, D.; Lauser, T.; Kern, D.; Krauß, C. Analyzing and Securing SOME/IP Automotive Services with Formal and Practical

Methods. In Proceedings of the 16th International Conference on Availability, Reliability and Security (ARES 2021), Vienna,
Austria, 17–20 August 2021; ACM: New York, NY, USA, 2021. [CrossRef]

14. Iorio, M.; Buttiglieri, A.; Reineri, M.; Risso, F.; Sisto, R.; Valenza, F. Protecting In-Vehicle Services: Security-Enabled SOME/IP
Middleware. IEEE Veh. Technol. Mag. 2020, 15, 77–85. [CrossRef]

15. Iorio, M.; Reineri, M.; Risso, F.; Sisto, R.; Valenza, F. Securing SOME/IP for In-Vehicle Service Protection. IEEE Trans. Veh. Technol.
2020, 11, 13450–13466. [CrossRef]

16. Ma, B.; Yang, S.; Zuo, Z.; Zou, B.; Cao, Y.; Yan, X.; Zhou, S.; Li, J. An Authentication and Secure Communication Scheme for
In-Vehicle Networks Based on SOME/IP. Sensors 2022, 22, 647. [CrossRef] [PubMed]

17. Du, J.; Tang, R.; Feng, T. Security Analysis and Improvement of Vehicle Ethernet SOME/IP Protocol. Sensors 2022, 22, 6792.
[CrossRef] [PubMed]

18. Paar, C.; Pelzl, J. Message authentication codes (MACs). In Understanding Cryptography: A Textbook for Students and Practitioners;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 319–330.

19. Hamad, M.; Nolte, M.; Prevelakis, V. A framework for policy based secure intra vehicle communication. In Proceedings of the
IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 1–8.

20. Kâafar, M.A.; Benazzouz, L.; Kamoun, F.; Males, D. A Kerberos-Based Authentication Architecture for Wireless LANs. In
Networking 2004; Mitrou, N., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 3042. [CrossRef]

21. Wardana, A.A.; Perdana, R.S. Access Control on Internet of Things based on Publish/Subscribe using Authentication Server
and Secure Protocol. In Proceedings of the 10th International Conference on Information Technology and Electrical Engineering
(ICITEE), Bali, Indonesia, 24–26 July 2018; pp. 118–123. [CrossRef]

22. Blanchet, B. Automatic Verification of Security Protocols in the Symbolic Model: The Verifier ProVerif. In Foundations of Security
Analysis and Design VII. FOSAD FOSAD 2013 2012; Aldini, A., Lopez, J., Martinelli, F., Eds.; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2014; Volume 8604. [CrossRef]

23. Blanchet, B.; Smyth, B.; Cheval, V.; Sylvestre, M. ProVerif 2.04: Automatic Cryptographic Protocol Verifier, User Manual and
Tutorial. 2021. Available online: https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf (accessed on 23 April 2023).

24. Blanchet, B. ProVerif: Cryptographic Protocol Verifier in the Formal Model. Available online: https://bblanche.gitlabpages.inria.
fr/proverif/ (accessed on 23 April 2023).

25. BMW AG. vSomeIP 3.3.0. 2023. Available online: https://github.com/COVESA/vsomeip (accessed on 15 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4271/2015-01-0197
https://argus-sec.com/blog/cyber-security-blog/some-ip-protocol-man-in-the-middle-attack/
https://argus-sec.com/blog/cyber-security-blog/some-ip-protocol-man-in-the-middle-attack/
https://doi.org/10.1145/3465481.3465748
https://doi.org/10.1109/MVT.2020.2980444
https://doi.org/10.1109/TVT.2020.3028880
https://doi.org/10.3390/s22020647
https://www.ncbi.nlm.nih.gov/pubmed/35062608
https://doi.org/10.3390/s22186792
https://www.ncbi.nlm.nih.gov/pubmed/36146142
https://doi.org/10.1007/978-3-540-24693-0_117
https://doi.org/10.1109/ICITEED.2018.8534855
https://doi.org/10.1007/978-3-319-10082-1_3
https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf
https://bblanche.gitlabpages.inria.fr/proverif/
https://bblanche.gitlabpages.inria.fr/proverif/
https://github.com/COVESA/vsomeip

	Introduction
	SOME/IP
	SOME/IP
	SOME/IP-SD
	SOME/IP MITM Attack

	Related Works
	Secure SOME/IP
	SESO-RC, SESO-AS
	Comparison

	Proposed Scheme
	Prerequisites
	Attack Models
	Overall Flow
	OfferService Phase
	RequestTicket Phase
	ReturnTicket Phase
	Request Phase

	Security Analysis
	Considering the Replay Attack
	Benefits and Concerns of Using an AS
	Formal Verification

	Evaluation
	Conclusions
	Appendix A
	References

