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Abstract: Existing diagnosis methods for bearing faults often neglect the temporal correlation of
signals, resulting in easy loss of crucial information. Moreover, these methods struggle to adapt to
complex working conditions for bearing fault feature extraction. To address these issues, this paper
proposes an intelligent diagnosis method for compound faults in metro traction motor bearings. This
method combines multisignal fusion, Markov transition field (MTF), and an optimized deep residual
network (ResNet) to enhance the accuracy and effectiveness of diagnosis in the presence of complex
working conditions. At the outset, the acquired vibration and acoustic emission signals are encoded
into two-dimensional color feature images with temporal relevance by Markov transition field.
Subsequently, the image features are extracted and fused into a set of comprehensive feature images
with the aid of the image fusion framework based on a convolutional neural network (IFCNN).
Afterwards, samples representing different fault types are presented as inputs to the optimized
ResNet model during the training phase. Through this process, the model’s ability to achieve
intelligent diagnosis of compound faults in variable working conditions is realized. The results of the
experimental analysis verify that the proposed method can effectively extract comprehensive fault
features while working in complex conditions, enhancing the efficiency of the detection process and
achieving a high accuracy rate for the diagnosis of compound faults.

Keywords: metro traction motor bearings; multisignal fusion; Markov transition field; optimized
deep residual network; diagnosis of compound faults

1. Introduction

As the power source of metro trains, the quality of the traction motor bearings directly
affects the normal operation of the motor. The frequent starting and stopping of the metro
causes alternating changes in the speed of the traction motor bearings and the loads they
are subjected to. With long-term harsh working conditions, the inner and outer rings of
bearings and rolling elements will produce varying degrees of pitting, cracking and more
complex forms of failure. The adverse vibrations generated by a faulty bearing, when input
into the entire system over an extended period, not only damage the traction motor but
also pose a risk to other structural components. This poses a serious threat to the safety and
reliability of metro trains. The intelligent diagnosis of bearings fault in complex working
conditions enables the timely identification of fault types, facilitating early maintenance
intervention and providing significant engineering value for practical applications.

Conventional approaches for bearing fault diagnosis predominantly rely on signal
processing techniques. To address the issue of noise interference during feature extraction,
wavelet thresholding was employed to effectively eliminate significant noise components
from the raw data [1,2]. In an effort to enhance the signal-to-noise ratio, ref. [3,4] adopted
empirical mode decomposition (EMD) to decompose the signal into multiple intrinsic mode
functions. Furthermore, ref. [5] introduced an optimized variational mode decomposition
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(VMD) method to facilitate the selection of intrinsic mode functions containing pertinent
fault information. Despite the promising outcomes achieved by these traditional methods
in bearing fault diagnosis, they are accompanied by inherent limitations. These drawbacks
encompass restricted generalization capability, challenges in extracting deep fault features,
and complexities associated with parameter optimization. Signal analysis technology, as a
research hotspot, has been receiving attention from scholars. Subsequently, the introduction
of new methods has successfully addressed many challenges [6,7].

With the development of artificial intelligence technology, machine learning and deep
learning [8] have gained significant attention in various fields, and numerous researchers
have started extracting deeper features and making notable contributions [9–11]. A con-
volutional neural network (CNN), as one of their important representatives, possesses a
powerful adaptive feature extraction capability. Moreover, CNN has demonstrated remark-
able performance in the field of image processing. As such, scholars have increasingly
introduced CNN into the field of fault diagnosis and conducted a series of research studies
in this area. Ref. [12] has recently proposed a CNN model that utilizes widened convo-
lutional kernels to improve the feature extraction efficiency of the network. Ref. [13] has
deployed a CNN to extract features from Mel spectrum generated from the voiceprint
signals of motors. Ref. [14] has presented a multiscale CNN model that effectively extracts
signal features at different frequencies. This advanced model is further combined with
LSTM to identify fault types. In the field of medical imaging, ref. [15] proposed an improved
CNN model architecture for the identification of a lung nodule and early-stage cancer di-
agnosis by comparing multiple photos. In big data environments, to reduce the costs
associated with data collection and processing, some researchers have explored unsuper-
vised learning techniques. To synchronously extract local and global structural information
from the raw unlabeled industrial data, ref. [16] proposed a new multiple-order graphical
deep extreme learning machine (MGDELM) algorithm. Ref. [17] proposed a novel self-
training semi-supervised deep learning (SSDL) approach to train a fault diagnosis model
together with few labeled and abundant unlabeled samples. The previously discussed
research studies have made notable advances in fault diagnosis. However, because of their
reliance on single-sensor signals, there may be limitations in accurately characterizing fault
information, which could ultimately reduce their overall reliability.

Multisignal fusion technology enables the simultaneous processing of time-series data
obtained from multiple sensors, thereby capturing a broader range of system variability
while offering heightened complementarity and fault tolerance. In one study, feature
extraction was performed on original vibration and acoustic signals, which were subse-
quently fused using a 1DCNN-based network model [18]. Another approach proposed a
frequency-domain multilinear principal component analysis to effectively identify faults
by integrating diverse vibration and acoustic signals [19]. Similarly, a two-dimensional
matrix was constructed from multi-axial vibration signals, and an enhanced 2DCNN model
was employed for fault diagnosis [20]. These methods have demonstrated commendable
enhancements in diagnostic accuracy. However, it is worth noting that a limitation common
to these approaches is the omission of time correlation among signals, which may result in
the loss of crucial fault-related information.

Upon a comprehensive analysis of existing literature, it has been observed that di-
agnostic approaches leveraging deep learning techniques frequently employ increasing
network depths to enhance the model’s learning capacity and improve diagnostic perfor-
mance. Nevertheless, the utilization of progressively deeper networks may give rise to
challenges such as the vanishing or exploding gradient problem. To address this issue,
deep residual networks were introduced [21], effectively mitigating the aforementioned
problem. Furthermore, an innovative activation function named STAC-tanh was proposed
by [22], which enables adaptive feature extraction in the bearing system by employing
the hyperbolic tangent function with slope and threshold adaptivity. Another compelling
approach involved the fusion of Gramian angular field (GAF) with ResNet, leading to
notable advancements in bearing fault diagnosis [23]. Additionally, ref. [24] combined
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transfer learning with ResNet, utilizing a pretrained ResNet model on ImageNet as a fault
feature extractor, which yielded remarkably accurate results. These aforementioned studies
have demonstrated promising outcomes in the realm of bearing fault diagnosis. However,
certain limitations persist, including the sole reliance on a single sensor signal and the
absence of experimental verification through the use of a purpose-built platform.

In summary, most of the studies are based on open source datasets with simple
working conditions and failure forms, but the actual working conditions of bearings are
complex and can present different parts and degrees of failure. To address the challenges
faced in compound bearing fault diagnosis under complex working conditions, such as
the low reliability of single sensor signals, the tendency for traditional data processing
methods to result in important information loss, the degradation of diagnostic models
with increasing network depth, and the difficulty of feature extraction, this paper proposes
an intelligent diagnosis method for compound bearing faults in metro traction motors by
combining MTF-processed acoustic-vibration signals using IFCNN for feature fusion along
with an optimized version of ResNet. The main contributions of the paper are expressed
as follows:

1. The application of IFCNN in compound bearing fault diagnosis allows for the fusion
of multiple signal features, reducing the limitations of single sensor signals and
providing more reliable diagnostic results.

2. The optimized ResNet model improves the efficiency of feature extraction by address-
ing the vanishing gradient problem. Combined with the MTF data processing method,
it can effectively extract complex bearing fault features under varying working condi-
tions with good accuracy and stability.

3. The construction of a test platform for metro traction motor bearings was completed,
and intelligent diagnosis of composite faults under variable working conditions was
conducted, validating the effectiveness of the proposed methods.

The remaining sections of this paper are arranged as follows: In Section 2, the data
processing method used in this study and the construction of the dataset are introduced.
Section 3 focuses on the multisignal fusion technology used in this study. Section 4 provides
a detailed description of the fault diagnosis model and the corresponding diagnostic
process. Section 5 explains the specific experimental design, as well as the diagnostic
scheme adopted in this study. Section 6 analyzes the experimental results and carries out
a series of method comparisons to validate the effectiveness of the proposed approach.
Section 7 summarizes the main content of the paper and draws conclusions.

2. Data Preprocessing

In this study, a signal acquisition system will be built to obtain a large amount of raw
data using acoustic emission sensors, vibration sensors and PCI acquisition cards. The
research focuses on compound faults, with pitting as the main defect. The location of the
defect is used as a classification criterion. A total of eight fault types including normal
bearings are designed and labeled for subsequent study, using different fault locations as
classification indicators. The fault types and labels are shown in Table 1.

Table 1. Label settings for different fault types.

Fault Types

Normal Inner
Ring

Outer
Ring

Rolling
Element

Inner Ring +
Outer Ring

Inner Ring +
Rolling
Element

Outer Ring +
Rolling Element

Inner Ring +
Outer Ring +

Rolling Element

Label 0 1 2 3 4 5 6 7

2.1. Dataset Construction

The vibration and acoustic emission signals were acquired using a PCI data acquisition
card with a sampling frequency of 50 kS/s and a sampling time of 10 s, giving a total
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of 5 × 105 sampling points. In this experiment, the minimum speed of the bearing is
determined to be 800 rpm. Based on this speed, the number of sampling points obtained
from one cycle of bearing rotation can be calculated to be 3750. In order to ensure the
completeness of the sampled fault information, it is recommended that the number of
sampling points be at least twice that of the calculated value, resulting in a sampling
length of 8192 (213). With a limited amount of data, the vibration and acoustic emission
signals were data augmented using overlapping sampling so that each fault type under
each working condition contained 1000 samples for a total of 8000 samples, which were
randomly divided into a training set and a testing set at 9:1. Under fixed working conditions,
the dataset is divided as shown in Table 2.

Table 2. Dataset partitioning under fixed working conditions.

Data Set

Sample Size for Different Fault Types

Normal Inner
Ring

Outer
Ring

Rolling
Element

Inner Ring +
Outer Ring

Inner Ring +
Rolling
Element

Outer Ring
+ Rolling
Element

Inner Ring +
Outer Ring +

Rolling Element

Training Set 900 900 900 900 900 900 900 900
Testing Set 100 100 100 100 100 100 100 100

2.2. MTF Image Encoding

In this paper, MTF is used to process vibration signals and acoustic emission signal
data, converting the acquired data samples into image samples. MTF is an image encoding
method that converts original vibration or acoustic emission signals into time series two-
dimensional images through Markov transition probabilities [25].

Suppose a discretized segment of time series data X = {x1, x2, · · · , xn} is partitioned
into intervals of its value domain by quantile Q. Each xt in the sequence can be mapped
to the corresponding interval qn(n ∈ [1, Q]). By calculating the state transfer probabilities
through the Markov chain principle, a state transfer probability matrix W of size Q× Q
can be obtained, with an expression, as shown in Equation (1), where wij denotes the
probability that a sample point in interval qj at moment t is transferred to interval qi at
moment t + 1 [26].

W =


w11|P(xt+1∈q1|xt∈q1)

· · · w1Q|P(xt+1∈q1|xt∈qQ)

w21|P(xt+1∈q2|xt∈q1)
· · · w2Q|P(xt+1∈q2|xt∈qQ)

...
. . .

...
wQ1|P(xt+1∈qQ |xt∈q1)

· · · wQQ|P(xt+1∈qQ |xt∈qQ)

 (1)

By incorporating the temporal information into the state transfer probability matrix W
and arranging each state transition probability wij in time sequence, a Markov transition
field (MTF) matrix M of size n× n is obtained as expressed in shown Equation (2) where
mij denotes the transition probability wij between the intervals (qj → qi) in which the
sample points are located in time sequence.

M =


m11 m12 · · · m1n
m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn

 =


wij|x1∈qi ,x1∈qj

· · · wij|x1∈qi ,xn∈qj

wij|x2∈qi ,x1∈qj
· · · wij|x2∈qi ,xn∈qj

...
. . .

...
wij|xn∈qi ,x1∈qj

· · · wij|xn∈qi ,xn∈qj

 (2)

The elements mij in the MTF matrix are transformed as pixel points into a two-
dimensional feature image with temporal correlation. As the number of sample points
selected directly affects the size of the generated coded image, it is clearly inappropriate for
an image with too large a size to be used directly as input to the CNN. To improve compu-
tational efficiency, a fuzzy kernel

{
1

m2

}
m×m

is used to pixel average each region without
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overlap. Figure 1 shows images of different fault types after encoding each sample, consist-
ing of 8192 sampling points, using MTF image encoding and subsequently subjecting them
to pixel averaging processing. Compared to traditional time domain analysis methods,
MTF encoding images preserve time-related information and enable clearer differentiation
of various fault types in rolling bearings.
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Figure 1. MTF-encoded images of 8 types of fault: (a) normal; (b) inner ring; (c) outer ring; (d) roll-
ing element; (e) inner ring + outer ring; (f) inner ring + rolling element; (g) outer ring + rolling ele-
ment; (h) inner ring + outer ring + rolling element. 

3. Multisignal Fusion 
To enhance system stability and increase diagnostic reliability, this article collected 

vibration signals and acoustic emission signals and fused them for processing. This fusion 
processing can establish correlations between multiple signal sources. Usually, infor-
mation fusion can be divided into three levels: data-level fusion, feature-level fusion, and 
decision-level fusion. Considering that the sample data in this study consist of MTF en-
coded images of different fault types, it is advantageous to employ CNN for image pro-
cessing. Therefore, this paper adopted the IFCNN for feature-level fusion of the data. 

IFCNN consists of three modules, namely, the feature extraction module, the feature 
fusion module and the feature reconstruction module [27], and the structure of this frame-
work is shown in Figure 2. 

Figure 1. MTF-encoded images of 8 types of fault: (a) normal; (b) inner ring; (c) outer ring; (d) rolling
element; (e) inner ring + outer ring; (f) inner ring + rolling element; (g) outer ring + rolling element;
(h) inner ring + outer ring + rolling element.

3. Multisignal Fusion

To enhance system stability and increase diagnostic reliability, this article collected
vibration signals and acoustic emission signals and fused them for processing. This fusion
processing can establish correlations between multiple signal sources. Usually, information
fusion can be divided into three levels: data-level fusion, feature-level fusion, and decision-
level fusion. Considering that the sample data in this study consist of MTF encoded images
of different fault types, it is advantageous to employ CNN for image processing. Therefore,
this paper adopted the IFCNN for feature-level fusion of the data.

IFCNN consists of three modules, namely, the feature extraction module, the fea-
ture fusion module and the feature reconstruction module [27], and the structure of this
framework is shown in Figure 2.
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fusion
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reconstruction Output

Figure 2. The structure of IFCNN.
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The feature extraction module consists of two convolutional layers. The first layer
uses the first convolutional layer of the ResNet101 network model, pretrained on the
ImageNet dataset. This layer includes 64 convolutional kernels with a size of 7 × 7 and
retains the training parameters, enabling effective extraction of image features. The second
convolutional layer includes 64 convolutional kernels with a size of 3 × 3, which are used
to adjust the features extracted by the first layer in order to adapt to feature fusion. For
this study, the feature fusion module adopts an element-wise maximum fusion strategy.
The final module is the image reconstruction module, in which the third convolutional
layer includes 64 convolutional kernels with a size of 3 × 3. This layer adjusts the fused
convolutional features and plays an important role in reconstructing the image. The fourth
convolutional layer reconstructs the feature map with three-channel output, and it includes
3 convolutional kernels with a size of 1 × 1.

This framework uses the mean squared error (MSE) as the basic loss function and
adds a perceptual loss to optimize the model. The expression for the perceptual loss (Ploss)
is as follows:

Ploss =
1

C f H f W f
∑
i,x,y

[
f i
p(x, y)− f i

g(x, y)
]2

(3)

where fp and fg are the feature maps of the predicted fused image and the true fused image,
respectively; i is the feature map channel index; C f , H f and W f are the number of channels,
height and width of the feature map, respectively. The expression for the basic loss (Bloss) is
as follows:

Bloss =
1

3HgWg
∑
i,x,y

[
Ii
p(x, y)− Ii

g(x, y)
]2

(4)

where Ip and Ig are the predicted fused image and the true fused image, respectively; i is
the RGB image channel index; Hg and Wg are the height and width of the true fused image,
respectively. The expression for the total loss (Tloss) is as follows:

Tloss = w1Bloss + w2Ploss (5)

where w1 and w2 are the weighting coefficients. For the fusion of MTF-encoded images in
this study, the sums are both set to 1.

4. Fault Diagnosis Method
4.1. Optimized Deep Residual Network

ResNet is built on the basis of CNN and solves the gradient vanishing problem by
adding skip connections between the input and output of each convolutional layer. The
classic residual module structure is shown in Figure 3.
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The structure contains two mappings, the part of the main path is called the residual
mapping and the part of the bypass connection is called the constant mapping. The final
output of the residual block is therefore the superposition of the outputs obtained from the
two mappings:

H(x) = F(x) + x (6)

The structure of the residual network model constructed in this study is shown in
Table 3. It includes an input layer, a maximum pooling layer, convolutional layers, an
average pooling layer, a fully connected layer and a softmax classifier. Conv2, Conv3,
Conv4 and Conv5 are residual modules.

Table 3. ResNet model structure.

Layer Name Kernel Size Channel Stride Padding Output

Input Image - - - - 3 × 224 × 224
Conv1 7 × 7 64 2 3 64 × 112 × 112

Maxpool 3 × 3 64 2 1 64 × 56 × 56

Conv2

Conv2_1 3 × 3 64 1 1 64 × 56 × 56
Conv2_2 3 × 3 64 1 1 64 × 56 × 56
Conv2_3 3 × 3 64 1 1 64 × 56 × 56
Conv2_4 3 × 3 64 1 1 64 × 56 × 56

Conv3

Conv3_1 3 × 3 128 2 1 128 × 28 × 28
Conv3_2 3 × 3 128 1 1 128 × 28 × 28
Conv3_3 3 × 3 128 1 1 128 × 28 × 28
Conv3_4 3 × 3 128 1 1 128 × 28 × 28

Conv4

Conv4_1 3 × 3 256 2 1 256 × 14 × 14
Conv4_2 3 × 3 256 1 1 256 × 14 × 14
Conv4_3 3 × 3 256 1 1 256 × 14 × 14
Conv4_4 3 × 3 256 1 1 256 × 14 × 14

Conv5

Conv5_1 3 × 3 512 2 1 512 × 7 × 7
Conv5_2 3 × 3 512 1 1 512 × 7 × 7
Conv5_3 3 × 3 512 1 1 512 × 7 × 7
Conv5_4 3 × 3 512 1 1 512 × 7 × 7

Avgpool - - - - 512 × 1 × 1

Fc, Softmax

Convolutional layers are the core of CNNs, responsible for extracting features from
large amounts of input data. Typically, convolutional layers can be described by the
following expression:

xl
j = σ(∑i∈Mj

xl−1
j ∗ kl

ij + bl
j) (7)

where xl−1
j is the input of the (l − 1)-th layer of the network; xl

j is the output of the l-th

layer of the network; kl
ij is the weight matrix of the convolutional kernel; bl

j is the bias term;
Mj is the set of input feature maps; σ is the nonlinear activation function; and ∗ represents
the convolution operation.

Pooling aims to reduce the size of feature maps while retaining the most important
feature information. It can effectively reduce computational complexity and improve the
model’s robustness and generalization capabilities. The pooling process involves four steps:
input feature map, sliding window coverage, feature aggregation, and output feature map.
The pooling process can be described by the following expression:

xl
j = σ(βl

jdown(xl−1
j ) + bl

j) (8)
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where xl−1
j is the input of the (l − 1)-th layer of the network; xl

j is the output of the l-th

layer of the network; bl
j is the bias term; σ is the nonlinear activation function; down(·) is

the down-sampling function; and βl
j is the weight.

To improve the efficiency of fault diagnosis, a convolutional block attention module
(CBAM) is introduced to optimize the model by focusing it more on important features [28].
CBAM consists of channel attention module, which captures the connections between
channels of the feature map, and spatial attention module, which captures the connections
between spatial regions of the feature map.

The channel attention module feeds the features Fc
avg and Fc

max obtained after using
average pooling and max pooling in the channel dimension into the convolutional network,
respectively, and sums the results and outputs them. The process is described as:

Mc(F) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))) (9)

where σ is a sigmoid function; W0 and W1 are convolution operations with a convolution
kernel size of 1 × 1.

The spatial attention module performs a convolution operation on the features Fs
avg

and Fs
max obtained after stitching using average pooling and max pooling in the channel

dimension. The process is described as:

Ms(F) = σ( f 7×7([Fs
avg; Fs

max])) (10)

where σ is a sigmoid function; f 7×7 is convolution operation with a convolution kernel size
of 7 × 7.

This study introduced CBAM into ResNet without changing the overall structure of the
network. The input data are MTF feature images of size 224 × 224. After passing through
the first convolutional layer with a kernel size of 7 × 7 and a stride of 2, the image size is
reduced to 112 × 112. This is followed by a max pooling layer with a stride of 2, which
further reduces the data dimensionality and the image size to 56× 56. The channel attention
and spatial attention modules are added sequentially after the batch normalization (BN)
layer at the end of the residual modules Conv2, Conv3, Conv4 and Conv5, respectively.
After passing through the Conv2, which has 64 channels and convolutional kernels of
size 3 × 3 with a stride of 1, deeper features are extracted while maintaining the same
image size as the previous layer. The channels in Conv3, Conv4, and Conv5 are doubled
successively to 128, 256 and 512. At the same time, down-sampling is implemented in
the first convolutional layer with a stride of 2 in each residual module. This results in
output image sizes that progressively decrease to 28 × 28, 14 × 14 and 7 × 7, respectively.
Afterwards, the network passes through an average pooling layer to reduce the number
of parameters and mitigate the occurrence of overfitting. Then, a fully connected layer is
used for nonlinear combination of the extracted features, followed by a softmax classifier
to produce the final output.

The proposed model uses a cross-entropy loss function to evaluate the error between
the predicted and true values, avoiding gradient dispersion, which is defined in the context
of a multiclassification problem as:

L =
1
N ∑

i
Li =−

1
N ∑

i

M

∑
c=1

yic log(pic) (11)

where M is the number of categories; yic is the sign function, taking 1 if the true value of
sample i is equal to c and 0 otherwise; and pic is the predicted probability that sample i
belongs to category c.

An initial test was carried out with a constant speed of 1600 rpm and a load of 7 kN,
the number of epochs was set to 50 and the loss and accuracy (Acc) in training are shown
in Figure 4.
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Overall, from the graph, it can be seen that when the epoch reaches 40, the loss
and accuracy have basically converged, and the accuracy has reached nearly 100%. This
indicates that the model performs well on the training set and has good generalization
ability, which also verifies that the model structure and parameters chosen in this paper
are correct. Setting the number of epochs too large can significantly prolong the training
time and even cause overfitting, while setting it too small may not find the global optimal
solution. After multiple tests, this paper set the learning rate to 0.001 and the number of
epochs to 40, which is a good choice. To intuitively demonstrate the advantages of the
proposed method in extracting fault features, this paper utilized the uniform manifold
approximation and projection (UMAP) algorithm to perform dimensionality reduction
on the data and visualize the results. Taking the steady state condition with a speed
of 1600 rpm and a load of 7 kN as an example, this paper conducted a layer-by-layer
analysis of ResNet models with and without CBAM and extracted the output features of
the intermediate layers for calculation. Then, UMAP is utilized to reduce the dimensionality
of the extracted features to two dimensions. This paper extracted the fault features from
the avgpool layer and visualized the results using a scatter plot where different fault types
are marked with different colors. The visualization is shown in Figure 5.
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As can be seen from the figure above, there is a significant difference in the clustering
degree of data samples between the two models, and introducing CBAM to ResNet can
yield more obvious clustering effect in the avgpool layer. Therefore, it can be concluded
that the proposed optimized ResNet has excellent abilities in extracting fault features under
complex working conditions.

4.2. Fault Diagnosis Process

This paper proposes a compound fault diagnosis method of rolling bearings based
on multisignal fusion and MTF-ResNet. The fused MTF-encoded images are input into
the ResNet model for training, and the fault is intelligently diagnosed under different
working conditions. The basic process is shown in Figure 6, and the main steps are as
follows: (1) acquire vibration and acoustic emission signals; (2) generate feature images of
size 224 × 224 by MTF encoding of the original data to build a training set and a test set;
(3) fuse the MTF encoded images of the two signals using IFCNN; (4) input the training set
into the optimized ResNet model built for training, and save the optimal parameters; and
(5) test the test samples and output the results to complete the intelligent fault diagnosis.
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5. Fault Diagnosis Experiment
5.1. Experimental Design

The experimental bearing was selected as NU216 cylindrical roller bearing. Defects
were artificially introduced to the inner and outer rings, as well as the rolling elements using
a YLP-MDF-152 laser marking machine from Han’s Laser. Taking into account the failure
mechanism of bearings in actual working environments, alternating loads can cause cracks
to form at a certain depth below the surface, which may then propagate to the surface and
cause spalling. Fatigue spalling increases vibration and noise during rotation and is usually
the main form of rolling bearing failure. Therefore, pitting was produced on the surface of
the bearing at different locations to simulate early defects. The pitting diameter was set to
40 µm and the depth was set to 30% of the laser energy. Eight types of faults, as described
in Section 2, were designed using different fault positions as classification criterion.

In order to simulate the working conditions of metro traction motors, three addi-
tional speeds and three additional loads were included in the experimental design. In
consideration of both actual working conditions and minimizing the impact of bearing
degradation on the experiment, gradient speeds of 800 rpm (low), 1600 rpm (medium) and
2400 rpm (high) were chosen, along with gradient equivalent dynamic loads of 5 kN (light),
7 kN (medium) and 9 kN (heavy) as the radial loads. There are a total of 72 (8 × 3 × 3)
subexperiments. The experimental arrangement is shown in Table 4.

Table 4. Experimental arrangement.

Speed/rpm

Radial Loads for Different Fault Types/kN

Normal Inner
Ring

Outer
Ring

Rolling
Element

Inner Ring +
Outer Ring

Inner Ring +
Rolling
Element

Outer Ring
+ Rolling
Element

Inner Ring +
Outer Ring +

Rolling Element

800 5 5 5 5 5 5 5 5
800 7 7 7 7 7 7 7 7
800 9 9 9 9 9 9 9 9

1600 5 5 5 5 5 5 5 5
1600 7 7 7 7 7 7 7 7
1600 9 9 9 9 9 9 9 9
2400 5 5 5 5 5 5 5 5
2400 7 7 7 7 7 7 7 7
2400 9 9 9 9 9 9 9 9

5.2. Construction of the Signal Acquisition System

This study utilized the intelligent testing platform for comprehensive bearing per-
formance, jointly developed by Henan University of Science and Technology, Luoyang
Bearing Research Institute, and Intelligent Numerical Control Equipment Henan Provincial
Engineering Laboratory, as the signal acquisition system. The testing machine allows for
a maximum inner diameter of 120 mm, a maximum speed of 5000 r/min, a maximum
radial load of 300 kN, and a maximum axial load of 200 kN for the bearing. The platform is
equipped with a PCI-8 acoustic emission transmitter, two R50S-TC acoustic emission sen-
sors, two LC0151T acceleration sensors, two LC0201-5 signal conditioners, and a PCI8510
data acquisition card.

During the experiment, a healthy bearing and a faulty bearing were installed at both
ends of the testing machine’s spindle, and vibration and acoustic emission signals were
collected from both bearings simultaneously. The loading system applies radial loads to
the spindle via a pair of NU2218 cylindrical roller bearings, which in turn are transferred
to the test bearings at both ends of the spindle. The sensor signals are amplified and
conditioned by signal amplifiers, signal conditioners, and input to the computer through a
PCI acquisition card. The principle of the signal acquisition system is shown in Figure 7.
The physical set-up of the system is shown in Figure 8.
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5.3. Diagnostic Scheme Design

To further validate the effectiveness of the proposed method, three types of diagnostic
schemes were designed for single working condition changes, compound working condi-
tion changes, and generic working conditions, considering two different factors (speed and
load) that affect the test results.

When studying single working condition changes, first control the speed to be constant,
put data of two different loads in the training set, and put data of another load in the test
set to verify the robustness of the model. When controlling the load to be constant, the
method is similar to the above. The specific diagnostic program is shown in Table 5.
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Table 5. Diagnostic scheme for single working condition change.

Fixed Variable Variable Training Set Testing Set

Speed/rpm Load/kN
5, 7 9
5, 9 7
7, 9 5

Load/kN Speed/rpm
800, 1600 2400
800, 2400 1600

1600, 2400 800

When studying the change of compound working condition, it is required that the
training set contains data with different speeds and loads at the same time. For generic
working conditions, it is required that all fault types data under all conditions exist in both
the training and testing sets.

6. Experimental Results and Comparison of Methods

During the operational process of a metro system, variations in bearing speed and load
are inevitable. While previous steady-state tests have certain limitations, it becomes crucial
to analyze the results of variable working condition tests to validate the effectiveness of the
proposed method. To further explore the changes in compound working conditions, an
additional analysis comparing the fusion of acoustic emission and vibration signals with a
single signal was incorporated to emphasize the advantages of the proposed method. In the
generic working condition tests, the feature extraction capabilities of four models, namely
the proposed model, RepVGG, CBAM-CNN and ResNet, were compared to evaluate
their performance.

6.1. Single Working Condition Changes

Based on the fault diagnosis method proposed in Section 5.3, with the control of
constant speed and load, the training set was input into the model constructed in this paper,
and fault diagnosis was performed on the test set. The diagnostic results are shown in
Table 6.

Table 6. The diagnostic results for single working condition changes.

No. Speed of
Training Set/rpm

Load of
Training Set/kN

Speed of
Testing Set/rpm

Load of
Testing Set/kN

Diagnostic
Accuracy/%

1 800 5, 7 800 9 99.5
2 800 5, 9 800 7 100
3 800 7, 9 800 5 93
4 1600 5, 7 1600 9 100
5 1600 5, 9 1600 7 99.4
6 1600 7, 9 1600 5 92.4
7 2400 5, 7 2400 9 100
8 2400 5, 9 2400 7 100
9 2400 7, 9 2400 5 94

10 800, 1600 5 2400 5 100
11 800, 2400 5 1600 5 100
12 1600, 2400 5 800 5 78
13 800, 1600 7 2400 7 98.6
14 800, 2400 7 1600 7 90.4
15 1600, 2400 7 800 7 81
16 800, 1600 9 2400 9 98.8
17 800, 2400 9 1600 9 99.4
18 1600, 2400 9 800 9 83

Based on a comprehensive examination of the aforementioned table, it is observed that
when maintaining a constant speed while altering the load, the fault diagnosis accuracy



Sensors 2023, 23, 6281 14 of 19

reaches nearly 100%. Conversely, in cases where the load remains constant but the speed
varies, a decrease in fault diagnosis accuracy is observed, indicating a substantial influence
of rotational speed on diagnostic outcomes. Subsequent analysis reveals that the accuracy
of items numbered 12, 15 and 18 is significantly low, whereas items numbered 3, 6 and
9 demonstrate accuracy close to 100%, albeit slightly lower than other items within the
initial nine numbers. This discrepancy can be attributed to the fact that fault characteristics
extracted under medium- to high-speed and medium to heavy load conditions are more
discernible compared to those under low-speed and light load conditions.

6.2. Compound Working Condition Changes

Mixed data with different speeds and loads were included in the training set and
used to train the model proposed for fault diagnosis on the testing set. Subsequently, a
comparison was made between the fusion of acoustic emission and vibration signals and
using a single signal. The diagnostic results are shown in Table 7.

Table 7. The diagnostic results for compound working condition changes.

No.
Speed of Training

Set/rpm
Load of Training

Set/kN
Speed of Testing

Set/rpm
Load of Testing

Set/kN

Diagnostic Accuracy/%

Vibration Acoustic
Emission Fusion

1 800, 1600 5, 7, 9 2400 5, 7, 9 90 82 94.1
2 800, 2400 5, 7, 9 1600 5, 7, 9 93.4 88.1 97.6
3 1600, 2400 5, 7, 9 800 5, 7, 9 71.4 66 75
4 800, 1600, 2400 5, 7 800, 1600, 2400 9 98 90.5 100
5 800, 1600, 2400 5, 9 800, 1600, 2400 7 96.5 85 99.4
6 800, 1600, 2400 7, 9 800, 1600, 2400 5 97.1 83.4 98.6

The table clearly indicates that the diagnostic results of items numbered 4 to 6 surpass
those of items numbered 1 to 3. Notably, the training and testing sets for items numbered 1
to 3 encompass varying rotation speeds, whereas items numbered 4 to 6 involve different
loads. It is observed that the diagnostic accuracy of items numbered 4 to 6 remains relatively
stable, whereas item numbered 3 exhibits significantly lower accuracy compared to items
numbered 1 and 2. The underlying reason behind this phenomenon aligns with the findings
presented in Section 6.1 of this paper.

From the standpoint of signal acquisition, the fusion of acoustic emission and vibration
signals yields higher diagnostic accuracy in fault diagnosis compared to utilizing a single
signal. This finding provides further substantiation that the application of multisignal
fusion technology can effectively enhance system stability and diagnostic accuracy. Further-
more, it is evident that employing a single vibration signal for diagnostics yields superior
results in comparison to employing a single acoustic emission signal. This can be attributed
to the fact that the acoustic emission acquisition system exhibits heightened sensitivity to
environmental noise, primarily stemming from the operational testing equipment, which
poses challenges in noise elimination.

6.3. Generic Working Conditions

To evaluate the performance of the proposed fault diagnosis model, all fault samples
involving three different speeds and three different loads were included in both the training
and testing sets. The sample ratio between the two sets was set to 9:1 to ensure the training
set was large enough to enable the model to effectively learn the fault data while still
reserving an adequate number of samples for testing. Subsequently, the model was applied
to diagnose faults on the testing set. To visualize the diagnostic results, a confusion matrix
was employed, providing an intuitive and reliable representation of classifications made by
the model. The confusion matrix is presented in Figure 9.
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Figure 9. The diagnostic results for generic working condition: (a) based on vibration signal (with
an accuracy rate of 97%); (b) based on acoustic emission signal (with an accuracy rate of 94.88%);
(c) based on the fusion of acoustic emission and vibration signals (with an accuracy rate of 99.25%).

The confusion matrix provides a clear and intuitive visualization of the model’s mis-
classifications and the types of errors. It can be seen that the overall diagnostic performance
is good, and the accuracy rate for the fusion of acoustic emission and vibration signals is
almost 100%. However, the diagnosis accuracy rate for label 6, which corresponds to the
“outer Ring + rolling element pitting” fault type, is relatively low. The model misclassified
three test samples as “rolling element pitting”. Further analysis revealed that the two types
of faults have similar features, making it difficult to extract differences between them. By
comparing (a–c) in Figure 9, the results further confirm that multisignal fusion technology
has higher reliability and accuracy compared to a single signal, especially under changing
working conditions.

To compare the feature extraction capabilities of different models, the training and
testing sets samples of above-mentioned generic working conditions were respectively
input into RepVGG, CBAM-CNN and ResNet models for diagnosis. Two types of faults
were selected as examples: label 1 (corresponding to “inner ring pitting”) with better
diagnostic results and label 6 (corresponding to “outer ring + rolling element pitting”)
with poorer results. The precision–recall (PR) curves and receiver operating characteristic
(ROC) curves were generated for the optimized ResNet, RepVGG, CBAM-CNN and ResNet
models and evaluation indicators, such as average precision (AP) and area under the curve
(AUC) were introduced.
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The precision–recall (PR) curve is a graphical representation of the performance of
a binary classification model, with recall on the x-axis and precision on the y-axis. It
illustrates the trade-off between precision and recall at various classification thresholds.
The relevant theoretical formulas for the PR curve are as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

where TP represents the number of true positive instances; FP represents the number of
false positive instances; and FN represents the number of false negative instances.

The principle of average precision (AP) is to summarize the Precision-Recall (PR)
curve by calculating the average precision value. It can be obtained by computing the
area under the PR curve. It provides a comprehensive assessment of how well the model
balances precision and recall across different recall levels.

The receiver operating characteristic (ROC) curve is a tool used to evaluate the perfor-
mance of binary classification models. It plots the false positive rate (FPR) on the x-axis and
the true positive rate (TPR) on the y-axis. The principle of the ROC curve can be described
using the following formulas:

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

where FP represents the number of negative instances incorrectly classified as positive; TN
represents the number of negative instances correctly classified as negative; TP represents
the number of positive instances correctly classified as positive; and FN represents the
number of positive instances incorrectly classified as negative.

Area under the curve (AUC) is obtained by calculating the area under the ROC curve.
The resulting AUC value ranges from 0 to 1, where 0.5 represents a random classifier and 1
represents a perfect classifier. A higher AUC value indicates better classifier performance.

The diagnostic results are presented in the form of PR and ROC curves in Figures 10
and 11. The overall accuracy rate, AP and AUC for all fault types were calculated for the
four models, and the weighted average values were recorded in Table 8.
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Table 8. The accuracy evaluation indicators of the four models.

Model
Evaluation Indicator

Accuracy/% AP AUC

Proposed 99.25 0.989 1.000
RepVGG 96.72 0.967 0.996

CBAM-CNN 94.16 0.953 0.993
ResNet 88.35 0.935 0.988

Generally, the closer the PR curve in Figure 10 is to the upper right corner, the larger
the AP value, and the better the model performance. The closer the ROC curve in Figure 11
is to the upper left corner, the larger the AUC value, and the better the model performance.
Observing the figure above, it can be seen that for the two selected fault types with different
diagnostic effects, the PR and ROC curves of proposed model are both closer to the right-
angle edge than those of RepVGG, CBAM-CNN and ResNet, indicating better performance.
Combined with the data in Table 8, the three accuracy evaluation indicators of the proposed
model are higher than those of the compared models, validating the good feature extraction
ability of the proposed model.

7. Conclusions

This paper focused on the study of the feature extraction ability of the model for
complex working conditions, using the metro traction motor bearings as the research
object. On the basis of ResNet, CBAM was introduced to optimize the ResNet model.
Nine different working conditions and eight compound fault types were designed for
experimentation. In addition, a dataset was constructed using MTF image encoding and
IFCNN image fusion technology. During the model training process, UMAP was used
for visualization to intuitively demonstrate the feature extraction effect of the proposed
model. After the experiment, three evaluation indicators were used for objective evaluation
of the feature extraction ability of the optimized ResNet, RepVGG, CBAM-CNN and
ResNet models.

The results of the experiment show that the MTF-ResNet model with multisignal fusion
performs well under complex working conditions, with a diagnostic accuracy rate of up to
99.25%. Based on the results, some important conclusions can be drawn. Specifically, in
terms of sensors, using only vibration signals produces better diagnostic results than using
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only acoustic emission signals. In addition, compared with a single signal, using acoustic
emission and vibration signal fusion can provide more comprehensive and integrated
information, while reducing misclassifications caused by the limitations of a single signal,
thereby improving fault diagnosis accuracy and making the diagnosis result more reliable.
In terms of data processing, MTF image encoding technology is a simple data processing
method that retains the time correlation of the data, making it easier for the model to extract
more comprehensive fault features. For feature extraction models, introducing CBAM after
the batch normalization layers of the ResNet model can make the model more focused
on capturing important features, quickly distinguishing different types of fault features,
and improving diagnostic efficiency. Furthermore, the ResNet structure can effectively
alleviate the gradient disappearance phenomenon that occurs as the network deepens,
thereby preventing model degradation.

Undoubtedly, this study presents several avenues for future research in the proposed
methodologies. Firstly, the inclusion of additional sensors or exploration of different sensor
types holds promise. For instance, incorporating multidirectional vibration sensors or tem-
perature sensors could offer a more comprehensive spectrum of fault information, thereby
enhancing diagnostic fault tolerance. Secondly, exploring more advanced data processing
techniques warrants investigation to enhance the quality of input signals. The acoustic
emission signals acquired in this study exhibited significant levels of environmental noise
that proved challenging to eliminate. Therefore, employing sophisticated techniques may
substantially improve the value derived from these acoustic emission signals. Moreover,
conducting model testing on larger datasets utilizing more complex compound faults can
effectively confirm the feature extraction capabilities and generalization of the model. This
approach will serve as a more robust means of validation. Furthermore, future research
focusing on feature extraction models should prioritize the development of lightweight
and efficient models to facilitate practical implementation.

Despite the inherent limitations of the methods proposed in this paper, they exhibit com-
mendable feature extraction capabilities within intricate operational scenarios. Consequently,
these methods hold potential for application in fault diagnosis tasks related to metro traction
motor bearings, thereby possessing appreciable value in engineering applications.

Author Contributions: Conceptualization, K.H. and Y.X.; methodology, K.H. and Y.X.; valida-
tion, K.H., Y.X. and Y.W.; formal analysis, K.H.; investigation, K.H.; data curation, K.H. and Y.W.;
writing—original draft preparation, K.H.; writing—review and editing, K.H., Y.X. and J.W.; visual-
ization, K.H.; supervision, T.X.; funding acquisition, Y.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number: 51805151) and the Key Scientific Research Project of the University of Henan Province of
China (grant number: 21B460004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Z.; Zhang, L.; Carrasco, J. Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical

wavelet thresholding method. Renew. Energy 2020, 146, 99–110. [CrossRef]
2. Chen, W.; Li, J.; Wang, Q.; Han, K. Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding

denoising with CEEMDAN energy entropy and PSO-LSSVM. Measurement 2021, 172, 108901. [CrossRef]
3. Sun, Y.; Li, S.; Wang, X. Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image. Measurement

2021, 176, 109100. [CrossRef]
4. Zhao, X.; Qin, Y.; He, C.; Jia, L. Underdetermined blind source extraction of early vehicle bearing faults based on EMD and

kernelized correlation maximization. J. Intell. Manuf. 2022, 33, 185–201. [CrossRef]

https://doi.org/10.1016/j.renene.2019.06.094
https://doi.org/10.1016/j.measurement.2020.108901
https://doi.org/10.1016/j.measurement.2021.109100
https://doi.org/10.1007/s10845-020-01655-1


Sensors 2023, 23, 6281 19 of 19

5. Li, H.; Liu, T.; Wu, X.; Chen, Q. An optimized VMD method and its applications in bearing fault diagnosis. Measurement 2020,
166, 108185. [CrossRef]

6. Li, Y.; Tang, B.; Geng, B.; Jiao, S. Fractional order fuzzy dispersion entropy and its application in bearing fault diagnosis. Fractal
Fract. 2022, 6, 544. [CrossRef]

7. Li, Y.; Geng, B.; Tang, B. Simplified coded dispersion entropy: A nonlinear metric for signal analysis. Nonlinear Dyn. 2023, 111,
9327–9344. [CrossRef]

8. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
9. Mazhar, T.; Irfan, H.M.; Khan, S.; Haq, I.; Ullah, I.; Iqbal, M.; Hamam, H. Analysis of Cyber Security Attacks and Its Solutions for

the Smart Grid Using Machine Learning and Blockchain Methods. Future Internet 2023, 15, 83. [CrossRef]
10. Naqvi, R.A.; Hussain, D.; Loh, W.-K. Artificial Intelligence-Based Semantic Segmentation of Ocular Regions for Biometrics and

Healthcare Applications. Comput. Mater. Contin. 2021, 66, 715–732. [CrossRef]
11. Rahmani, A.M.; Ali, S.; Yousefpoor, M.S.; Yousefpoor, E.; Naqvi, R.A.; Siddique, K.; Hosseinzadeh, M. An area coverage scheme

based on fuzzy logic and shuffled frog-leaping algorithm (sfla) in heterogeneous wireless sensor networks. Mathematics 2021,
9, 2251. [CrossRef]

12. Song, X.; Cong, Y.; Song, Y.; Chen, Y.; Liang, P. A bearing fault diagnosis model based on CNN with wide convolution kernels.
J. Ambient Intell. Humaniz. Comput. 2021, 13, 4041–4056. [CrossRef]

13. Shan, S.; Liu, J.; Wu, S.; Shao, Y.; Li, H. A motor bearing fault voiceprint recognition method based on Mel-CNN model.
Measurement 2023, 207, 112408. [CrossRef]

14. Chen, X.; Zhang, B.; Gao, D. Bearing fault diagnosis base on multi-scale CNN and LSTM model. J. Intell. Manuf. 2021, 32, 971–987.
[CrossRef]

15. Haq, I.; Mazhar, T.; Malik, M.A.; Kamal, M.M.; Ullah, I.; Kim, T.; Hamdi, M.; Hamam, H. Lung Nodules Localization and Report
Analysis from Computerized Tomography (CT) Scan Using a Novel Machine Learning Approach. Appl. Sci. 2022, 12, 12614.
[CrossRef]

16. Zhao, X.; Jia, M.; Bin, J.; Wang, T.; Liu, Z. Multiple-order graphical deep extreme learning machine for unsupervised fault
diagnosis of rolling bearing. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [CrossRef]

17. Long, J.; Chen, Y.; Yang, Z.; Huang, Y.; Li, C. A novel self-training semi-supervised deep learning approach for machinery fault
diagnosis. Int. J. Prod. Res. 2022, 1–14. [CrossRef]

18. Wang, X.; Mao, D.; Li, X. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement 2021,
173, 108518. [CrossRef]

19. Al Mamun, A.; Bappy, M.M.; Mudiyanselage, A.S.; Li, J.; Jiang, Z.; Tian, Z.; Fuller, S.; Falls, T.; Bian, L.; Tian, W. Multi-channel
sensor fusion for real-time bearing fault diagnosis by frequency-domain multilinear principal component analysis. Int. J. Adv.
Manuf. Technol. 2023, 124, 1321–1334. [CrossRef]

20. Wang, J.; Wang, D.; Wang, S.; Li, W.; Song, K. Fault diagnosis of bearings based on multi-sensor information fusion and 2D
convolutional neural network. IEEE Access 2021, 9, 23717–23725. [CrossRef]

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

22. Zhang, T.; Liu, S.; Wei, Y.; Zhang, H. A novel feature adaptive extraction method based on deep learning for bearing fault
diagnosis. Measurement 2021, 185, 110030. [CrossRef]

23. Yu, H.; Miao, X.; Wang, H. Bearing fault reconstruction diagnosis method based on ResNet-152 with multi-scale stacked receptive
field. Sensors 2022, 22, 1705. [CrossRef] [PubMed]

24. Wen, L.; Li, X.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl.
2020, 32, 6111–6124. [CrossRef]

25. Wang, Z.; Oates, T. Encoding time series as images for visual inspection and classification using tiled convolutional neural
networks. In Proceedings of the Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015.

26. Liu, L.; Wang, Z. Encoding temporal markov dynamics in graph for time series visualization. arXiv 2016, arXiv:1610.07273.
27. Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural

network. Inf. Fusion 2020, 54, 99–118. [CrossRef]
28. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.measurement.2020.108185
https://doi.org/10.3390/fractalfract6100544
https://doi.org/10.1007/s11071-023-08339-4
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/fi15020083
https://doi.org/10.32604/cmc.2020.013249
https://doi.org/10.3390/math9182251
https://doi.org/10.1007/s12652-021-03177-x
https://doi.org/10.1016/j.measurement.2022.112408
https://doi.org/10.1007/s10845-020-01600-2
https://doi.org/10.3390/app122412614
https://doi.org/10.1109/TIM.2020.3041087
https://doi.org/10.1080/00207543.2022.2032860
https://doi.org/10.1016/j.measurement.2020.108518
https://doi.org/10.1007/s00170-022-10525-4
https://doi.org/10.1109/ACCESS.2021.3056767
https://doi.org/10.1016/j.measurement.2021.110030
https://doi.org/10.3390/s22051705
https://www.ncbi.nlm.nih.gov/pubmed/35270851
https://doi.org/10.1007/s00521-019-04097-w
https://doi.org/10.1016/j.inffus.2019.07.011

	Introduction 
	Data Preprocessing 
	Dataset Construction 
	MTF Image Encoding 

	Multisignal Fusion 
	Fault Diagnosis Method 
	Optimized Deep Residual Network 
	Fault Diagnosis Process 

	Fault Diagnosis Experiment 
	Experimental Design 
	Construction of the Signal Acquisition System 
	Diagnostic Scheme Design 

	Experimental Results and Comparison of Methods 
	Single Working Condition Changes 
	Compound Working Condition Changes 
	Generic Working Conditions 

	Conclusions 
	References

