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Abstract: While deep learning algorithms have advanced to a great extent, they are all designed
for frame-based imagers that capture images at a high frame rate, which leads to a high storage
requirement, heavy computations, and very high power consumption. Unlike frame-based imagers,
event-based imagers output asynchronous pixel events without the need for global exposure time,
therefore lowering both power consumption and latency. In this paper, we propose an innovative
image recognition technique that operates on image events rather than frame-based data, paving
the way for a new paradigm of recognizing objects prior to image acquisition. To the best of our
knowledge, this is the first time such a concept is introduced featuring not only extreme early image
recognition but also reduced computational overhead, storage requirement, and power consumption.
Our collected event-based dataset using CeleX imager and five public event-based datasets are used
to prove this concept, and the testing metrics reflect how early the neural network (NN) detects an
image before the full-frame image is captured. It is demonstrated that, on average for all the datasets,
the proposed technique recognizes an image 38.7 ms before the first perfect event and 603.4 ms before
the last event is received, which is a reduction of 34% and 69% of the time needed, respectively.
Further, less processing is required as the image is recognized 9460 events earlier, which is 37% less
than waiting for the first perfectly recognized image. An enhanced NN method is also introduced to
reduce this time.

Keywords: convolutional neural network; early image recognition; event-based camera; sensors

1. Introduction

The rapid development and integration of artificial intelligence with image sensors
has revolutionized machine vision. Real-time image recognition is an essential task for
many applications, such as emerging self-driving vehicles. These applications require
continuous and fast image acquisition combined with computationally intensive machine
learning techniques such as image recognition. The use of frame-based cameras in such
applications introduces four main challenges including: (1) high bandwidth consumption
due to large amounts of data transmission; (2) large memory requirement for data storage
prior to processing; (3) computationally expensive algorithms for real-time processing;
(4) large power and energy consumption for continuous data transmission and processing.

Unlike frame-based cameras, which are based on the concept of sequentially acquiring
frames, an event-based imager generates a series of asynchronous events reflecting the
change in light intensity per pixel. This concept is derived from the operation of biological
vision systems; specifically, the retina. The first functional model to simulate the magno
cells of the retina was introduced in 2008 by Tobi’s group under the term dynamic vision
sensors (DVSs) [1]. An event-based imager, also known as a silicon retina, dynamic vision
sensor (DVS), or neuromorphic camera, is a biologically inspired vision system that acquires
visual information in a different way than conventional cameras. Instead of capturing
absolute brightness of full images at a fixed rate, these imagers asynchronously respond

Sensors 2023, 23, 6195. https://doi.org/10.3390/s23136195 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136195
https://doi.org/10.3390/s23136195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4381-6056
https://orcid.org/0000-0001-8887-9029
https://doi.org/10.3390/s23136195
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136195?type=check_update&version=1


Sensors 2023, 23, 6195 2 of 31

to changes in brightness per pixel. An “event” is generated if the change in brightness
at any pixel surpasses a user-defined threshold. The output of the sensor is a series of
digital events <(x, y), I, t> (or spikes) that includes the pixel’s address (x, y), time of event
(t), and sign of change in brightness (I) [2–6]. Event-based imagers present several major
advantages over normal cameras, including lower latency and power consumption, as well
as higher temporal resolution and dynamic range [6]. This allows them to record well in
both very dark and very bright scenes.

The novel design of event-based imagers introduces a paradigm shift in the camera
sensor design. However, because these sensors produce different data outputs, current
image recognition algorithms for conventional cameras are not suitable for them. To our
knowledge, there does not yet exist an ideal solution for extracting information from the
events produced by the sensors. A few image recognition algorithms have been introduced
in the literature, but they are still far from mature [7].

Event-based imagers are capable of overcoming the lost time between frames; hence,
they are able to process the information in the “blind” time between each frame. The data
collected from event-based imagers have a significantly different structure compared to
frame-based imagers. To effectively extract useful information and utilize the full potential
of the asynchronous, sparse, and timed data collected from event-based images, we need
to either design new processing algorithms or adapt and/or re-design existing vision
algorithms for this purpose. The first approach is expected to provide more reliable and
accurate results; yet, most existing solutions in the literature follow the second approach.
In particular, events are either processed as: (i) a single event, which updates the output of
the algorithm based on every new event received, minimizing latency, or (ii) a group of
events, which updates the output of the algorithm after a group of events has arrived by
using a sliding window. These methodologies are selected based on how much additional
information is required to perform a task. In some cases, a single event cannot be useful on
its own due to having little information or a lot of noise; hence, additional information is
required in the form of either past events or new knowledge.

Frame-based algorithms have advanced to learn features from data using deep learn-
ing. For instance, convolutional neural networks (CNNs) are a mature approach for
object detection; therefore, many works utilize CNNs and apply them to event-based data.
Such works can be divided into two categories: methods that use a frame-based CNN
directly [8–11] and methods that rewire a CNN to take advantage of the structure of event-
based data [11,12]. Recognition can sometimes be applied to events that are transformed
to frames during inference [13,14], or by converting a trained neural network to a spiking
neural network (SNN) which can operate on the event-based data directly [15–17].

In this paper, we propose an innovative image recognition technique that operates
on image events rather than frame-based data, paving the way to a new paradigm of
recognizing objects prior to image acquisition. A faster object recognition technique is
proposed using event-based imagers instead of frame-based imagers to achieve on-the-
fly object recognition. Using event sequences from the event-based imager, objects are
recognized on-the-fly before waiting for the full-frame image to appear. To the best of
our knowledge, this is the very first time such a concept is being introduced, other than
our initial work in [18], which not only achieves an early image recognition, but also
addresses all four challenges mentioned previously, as less data will be transmitted and
processed, enabling faster object recognition for applications with real-time constraints.
This work explores dataset acquisition and labeling requirements and methodologies using
an event-based imager (Celepixel). It adapts existing frame-based algorithms to implement
early image recognition by testing the concept on both publicly available datasets and the
datasets collected in this work using Celepixel. It also explores enhancing the algorithms to
achieve even earlier image recognition.

The rest of the paper is organized as follows. Section 2 introduces the concept of early
recognition. Section 3 explains and analyzes the datasets used to validate our concept.
Section 4 describes the proposed early recognition algorithm and testing metrics. Section 5
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presents and analyzes our experimental results. Section 6 describes an enhanced early
recognition method and presents the results. Finally, Section 7 concludes this work.

2. Early Recognition

The main idea of this work is to utilize event-based imagers to achieve early image
recognition, as illustrated in Figure 1. The concept of early recognition is defined as accurate
image recognition before the last event is received from the event-based imager. In other
words, this implies the ability to detect an object without waiting for the full picture to be
captured. The idea is derived from the main feature of event-based imagers, where each
pixel fires asynchronously in response to any brightness change. An “event” is generated if
the change in brightness at any pixel surpasses a user-defined threshold. The output of the
sensor is a series of digital events in the form of 〈(x, y), I, t〉 that includes the pixel’s location
(x, y), time of event (t), and the sign of change in brightness (I). We aim to process these
events as they arrive in real time to perform recognition, which enables us to process the
data faster, as there is no longer frame rate limitations; meanwhile, redundant background
data are also eliminated.

Figure 1. Concept of early image recognition.

To achieve early recognition, existing frame-based algorithms can be used and adapted
to work with event data. The data used to train the algorithm can be normal images (frame-
based) or event data. The data need to be pre-processed to match the input of the algorithm
selected, which includes operations such as resizing, compression, noise reduction, etc.

To test the concept, the events are fed to the algorithm as they arrive, and two main metrics
are evaluated:

• First Zero Event (FZE): the first time that the algorithm is able to obtain a zero error
rate for the input (this condition starts with the first pixel change and ends before the
full image is detected by the sensor).

• First Perfect Event (FPE): the first time that the algorithm is able to obtain a zero
error rate and a confidence level of more than 0.95 (this condition starts after the FZE
is detected).

The first zero metric is used to determine the time when the algorithm can guess what
the displayed image will be.

In this work, our collected dataset using CeleX (CeleX-MNIST) in Section 3.1 and
five different public datasets (MNIST-DVS [19], FLASH-MNIST [19], N-MNIST [20], CIFAR-
10 [21], and N-Caltech-101 [20]), collected using different image sensors, are utilized to
perform experiments. Two different types of neural networks (InceptionResNetV2 and
ResNet50) are trained on the original images (MNIST [22], CIFAR-10 [23], and Caltech-
101 [24]), and then tested on the above-mentioned event-based images to demonstrate
the ability of early recognition on event-based data. The recognition is then enhanced
by training the same neural network on noisy images, referred to in this work as partial
pictures (PP).

3. Data Acquisition and Analysis

This section discusses the method to collect each dataset. Moreover, each dataset has
different statistical properties that change based on the recording method, sensor sensitivity,
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and the data being captured. In this section, we explain how the five datasets selected
are analyzed to identify their properties and statistical differences, which are summarized
in Table 1.

Basic statistical analysis has been performed to identify how long each recording is (in
ms) and obtain the total average for each dataset. This helps in calculating how long each
saccade (in ms) takes as part of the recording, whether created by either sensor or image
movement. Further analysis is conducted to calculate the average number of events per
recording, which is affected by the image size, details within each image, and the sensor’s
sensitivity. The ON and OFF events average is also calculated. The ranges of the x- and
y-addresses are also calculated to make sure that there are no fault data outside of the
sensor size.

The datasets are arranged from least to most complex. MNIST is considered one of the
basic datasets as it only includes numbers. CIFAR10 has more details within each image,
and yet only contains 10 classes. Caltech101 is the most complex as it contains a large
number of classes and each image has detailed objects and backgrounds.

3.1. CeleX-MNIST

MNIST-CeleX is collected in this work using the CeleX sensor, which is a 1 Mega Pixel
(800 Rows × 1280 Columns) event-based sensor designed for machine vision [25]. It can
produce three outputs in parallel: motion detection, logarithmic picture, and full-frame
optical flow. The output of the sensor can be either a series of events that are produced in
an asynchronous manner or synchronous full-frame images. The sensor can be configured
in many modes including: event off-pixel timestamp, event in-pixel timestamp, event
intensity, full picture, optical flow, or multi-read optical-flow. Moreover, within the modes,
the sensor is able to generate different event image frames: event binary pic, event gray
pic, event accumulated gray pic, or event count pic. The output data contain different
information depending on the mode selected, including: address, off-pixel timestamp,
in-pixel timestamp, intensity, polarity, etc. [26].

To collect the dataset, the CeleX sensor is mounted on a base opposite a computer
screen that displays the dataset as shown in Figure 2. While collecting the dataset, the envi-
ronment around the imager must be controlled in order not to allow any glare or reflection
from the screen. In Figure 3, the difference between a controlled well-lit environment vs.
an environment with flickering lights is displayed. In order to avoid any artifacts and false
pixel changes, the same stable conditions should be used throughout the data collection.

To capture the MNIST, the 600 training samples of MNIST were scaled to fit the sensor
sizes and flashed on an LCD screen. As noted in Table 1, both the total time average and
Saccade time average of the recordings was 631 ms, as we only flashed the image once.
The size of the full sensor is shown in the min and max values; however, the image is only
shown on an estimate of 800 × 800 of the sensor.

Figure 2. CelePixel data acquisition setup.



Sensors 2023, 23, 6195 5 of 31

(a) (b)

Figure 3. CelePixel data acquisition conditions: (a) regular conditions; (b) with flickering light.

Table 1. Dataset statistics results.

Dataset
Average

Min X Min Y Max X Max Y
Total E Events ON E OFF E Saccade T

CeleX-MNIST [this work] 631 420,546 268,129 152,417 631 0 1279 0 799

MNIST-DVS (Scale 4) [19] 2261 17,011 8662 8349 2261.11 0 127 0 127

MNIST-DVS (Scale 8) [19] 2371 43,764 21,841 21,922 2370.70 0 127 0 127

MNIST-DVS (Scale 16) [19] 2412 103,144 50,985 52,158 2411.81 0 127 0 127

FLASH-MNIST (Test) [19] 2103 27,321 16,410 10,910 420.65 1 128 1 128

FLASH-MNIST (Train) [19] 2147 26,713 16,018 10,694 429.35 1 128 1 128

N-MNIST (Test) [20] 306 4204 2116 2087 102.07 1 34 1 34

N-MNIST (Train) [20] 307 4172 2088 2084 102.17 1 34 1 34

CIFAR-10 [21] 1300 183,145 76,870 106,276 54.19 0 127 0 127

N-Caltech 101 [20] 300 115,298 58,289 57,009 100.05 1 233 1 173

Algorithm 1 explains in detail the methodology followed in this work for data acqui-
sition. Once the mode is selected, each image is scaled to 800 × 800, then flashed once
and followed by a black image. Resetting the scene to black allows the sensor to detect
the change in the flashed image only. The dataset consists of 600 recordings for 10 classes
(digits 0–9). Each collected event in the recording includes five pixel information:

• Row address: range 0 to 799;
• Column address: range 0 to 1279;
• Event timestamp: range 0 to 231 in microseconds;
• Intensity polarity: −1: OFF, 0: unchanged, +1: ON;
• Intensity: range 0 to 4095.

3.2. MNIST-DVS

The dataset [19] was created using a 128 × 128 event-based imager [27]. To obtain
the dataset, the original test set (10,000 images) of the MNIST dataset was scaled to three
different sizes (4, 8, and 16). Each scaled digit was then displayed slowly on an LCD screen
and captured by the imager.

The dataset consists of 30,000 recordings, 10,000 per scale, for 10 classes (digit 0–9).
Each collected event in the recording includes four pixel attributes:

• Row address: range 0 to 127;
• Column address: range 0 to 127;
• Event timestamp: in microseconds;
• Intensity polarity: −1: OFF, +1: ON.
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Algorithm 1 CeleX-MNIST dataset acquisition using CelePixel

Sensor Mode: intensity
Picture Mode: gray picture
Input: image matrix
Output: raw events

INITIALIZATION :
1: load dataset

LOOP PROCESS
2: for i = 0 to 599 do
3: display black image
4: pause for 0.2 s
5: start collecting events
6: scale image to 800 × 800
7: display image
8: label event
9: pause for 0.2 s

10: stop collecting events
11: display black image
12: pause for 0.2 s
13: export collected events

As explained in [19], to capture the MNIST-DVS, the 10,000 training samples of
MNIST were scaled to three different sizes and displayed slowly on an LCD screen. It
can be observed from Table 1 that as the scale of the image increases, the number of
events produced by the imager increase as well, ranging from 17,011 events per image to
103,133 events. However, the recording period is almost similar for all three scales with
an average of 2347 ms. As the number of saccade movements performed to create the
movement was not mentioned in [19], we assumed that one recording is one saccade.

3.3. FLASH-MNIST

The dataset [19] is created using a 128 × 128 event-based imager [27]. To obtain the
dataset, each of the 70,000 images in the original MNIST dataset is flashed on a screen.
In particular, each digit is flashed five times on an LCD screen and captured by the imager.

The dataset consists of 60,000 training recordings and 10,000 testing recordings, with
10 classes (digits 0–9). Each collected event in the recording includes four pieces of
pixel information:

• Row address: range 1 to 128;
• Column address: range 1 to 128;
• Event timestamp: in microseconds;
• Intensity polarity: 0: OFF, +1: ON.

The Flash-MNIST dataset is divided into training and testing recordings. The average
total time for both datasets is 2125 ms. As explained in [19], each image is flashed for
five times on the screen. Each saccade duration is an average of 425 ms.

3.4. N-MNIST

The dataset [20] is created using a 240 × 180 event-based imager ATIS [28]. To capture
the dataset, this work uses an imager mounted on a motorized pan-tilt unit. The imager is
mounted on the motorized system consisting of two motors and positioned in front of an
LCD monitor, as shown in Figure 4. To create movements, the imager moves up and down
(three micro-saccades), creating motion and capturing the images on the monitor.
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Figure 4. (a) ATIS mounted on a motorized pan-tilt unit. (b) ATIS positioned in front of an LCD
monitor [20].

The original images were resized, while maintaining the aspect ratio, to ensure that
the size does not exceed 240 × 180 pixels (ATIS size), before being displayed on the screen.
The MNIST were resized to fill up 28 × 28 pixels on the ATIS sensor. The dataset consists
of 60,000 training recordings and 10,000 testing recordings for 10 classes (digits 0–9). Each
collected event in the recording includes four aspects of pixel information:

• Row address: range 1 to 34;
• Column address: range 1 to 34;
• Event timestamp: in microseconds;
• Intensity polarity: +1: OFF, +2: ON.

The imager used to record N-MNIST [20] is 240× 180; however, the dataset is recorded
only with 34 × 34 pixels. The dataset is divided into training and testing recordings. Each
recording contains three saccades, each with a duration of 102 ms, leading to a total
recording for a single image of 306 ms. Compared to MNIST-DVS and FLASH-MNIST, this
dataset has a very low average number of events considering its small pixel size.

3.5. CIFAR-10

The dataset [21] is created using a 128 × 128 event-based imager [1], as shown in
Figure 5A. To capture the dataset, a repeated closed-loop smooth (RCLS) image movement
method is used. The recording setup is placed inside a dark compartment and does not
require any motors or control circuits. The recording starts with an initialization stage
that loads all the data. Then, each loop in the RCLS has four moving paths at an angle of
45 degrees, as shown in Figure 5B, and the full loop is repeated six times. A 2000 ms wait is
required between every image so that the next recording is not affected.

Figure 5. (a) Recording setup of sensor positioned in front of an LCD monitor. (b) Image movement
sequence on screen [21].

The original images were upsampled, while maintaining the aspect ratio, from 32× 32
to 512 × 512. The dataset consists of 10,000 recordings, as images were randomly selected
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from the original dataset with 1000 image per class. Each collected event in the recording
includes four pixels of information:

• Row address: range 0 to 127;
• Column address: range 0 to 127;
• Event timestamp: in microseconds;
• Intensity polarity: −1: OFF, +1: ON.

In this dataset [21], the recordings are created by moving the image on the screen to
four locations and repeating this loop six times; hence, having 24 saccades. Each saccade
lasts for 54 ms and adds up to an average total time of 1300 ms per recording. The event
count is very high compared to MNIST-DVS which has the same 128 × 128 size. The reason
behind the increase in events generated by the imager is that the CIFAR10 dataset has
images with complex details and backgrounds, unlike MNIST which only has numbers.

3.6. N-Caltech 101

The dataset [20] was created using a 240 × 180 event-based imager ATIS [28]. The
dataset was captured using the same recording technique explained for N-MINST.

The original images vary in size and aspect ratio. However, every image was scaled
as large as possible, while maintaining the aspect ratio, to ensure the size did not exceed
240 × 180 pixels (ATIS size) before being displayed on the screen. The dataset consists of
8709 recordings for 10 classes. Each collected event in the recording includes four pixels
of information:

• Row address: range 1 to 180;
• Column address: range 1 to 240;
• Event timestamp: in microseconds;
• Intensity polarity: +1: OFF, +2: ON.

This dataset was recorded using the same method and imager as the N-MNIST. How-
ever, for N-Caltech 101 [20], the full imager size is used, as these images are bigger and
have more details. Each recording contains three saccades, each with a duration of 100 ms,
which creates a total recording for a single image of 300 ms. Due to using the full sensor
size and the number of details in these images, it is noticed that the number of events is
almost 28 times more than N-MNIST.

4. Early Recognition Method

An existing image recognition algorithm was used with a group events methodology,
as described in Section 1, which waits for a group of events to occur then passes the data to
the recognition algorithm. This section describes the network architectures used for early
image recognition as well as the testing methodology and metrics.

4.1. Neural Network

Two network architectures are used to process the data.

4.1.1. InceptionResNetV2

The network architecture used is shown in Figure 6 [29], which consists of stem
block, Inception-Resnet (A, B, and C) with reduction, average pooling, dropouts, and fully
connected output layers. The InceptionResNetV2 is pre-trained on ImageNet [30], which
consists of 1.2 million images. The original network has an output of 1000 classes; hence,
a new output layer is added and trained on the original dataset (MNIST or CIFAR-10) to
be tested. All inputs are pre-processed by being resized to match the image size that the
network has been trained on.
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Figure 6. Original InceptionResNetV2 architecture.

4.1.2. ResNet50

The network architecture used is shown in Figure 7 [31], which consists of convolu-
tional, average pooling, and fully connected output layers. The ResNet50 is pre-trained
on ImageNet [30], which consists of 1.2 million images. The weights of the ResNet50
convolutional layers are frozen, while the fully connected output layer is removed. A new
output layer is added and trained on the original dataset (Caltech-101) to be tested. All
inputs are pre-processed by being resized to match the image size that the network has
been trained on.

Figure 7. Original ResNet50 architecture.

4.2. Testing on Collected Events

• Input Preprocessing
The size of the events collected is not fixed, and thus it is resized to match the input of
the neural network architecture. As the dataset is very big, the recognition is conducted
after every group of event, noting that time will be more accurate if event-by-event
methodology was used instead of group events.

• Testing and Metrics
Algorithm 2 describes the testing algorithm. The events are feedforwarded to the
neural network model after each group of events and then two main metrics, FZE and
FPE, explained in Section 2, are calculated.
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Algorithm 2 Event-based dataset testing on NN architecture

Input: raw events from dataset
Output: FZE, FPE

INITIALIZATION :
1: load trained weight of network model
2: load raw events
3: initialize a matrix with zeros (image)

DATA PREPROCESSING :
4: resize raw events to match input

LOOP PROCESS
5: for i = 1 to events count do
6: update the image with event i
7: if (i mod #eventPerGroup) = 0 then
8: test the image in the neural network
9: if class_code is correct & FZE f lag = 0 then

10: FZE equals i
11: FZE flag equals 1
12: if class_code is correct & probability >= 0.95 & FPE f lag = 0 then
13: FPE equals i
14: FPE flag equals 1
15: calculate the difference between FZE and FPE

5. Early Recognition Analysis and Results
5.1. CeleX-MNIST

As stated in Section 4, the InceptionResNetV2 is trained on the original MNSIT dataset.
To calculate its accuracy, the trained model is tested on 10,000 images of the original MNIST
dataset and reports an accuracy of 99.07%.

The 600 raw event-based recording images are selected from the CeleX-MNIST dataset.
The set contains recordings with events collected on an average time of 631 (ms) and an aver-
age event count of 420,546 per recording. The size of the events collected is 800 × 1280 pixels,
so it is first cropped to 800 × 800 then resized to 28 × 28 to match the input of the Incep-
tionResNetV2 architecture. As the dataset is very big, the recognition is conducted every
1000 events. The results are analyzed as per the testing metrics described in Table 2.

Table 2. Testing metrics.

Zero_Time Average time of FZE (ms).

Zero_Event Average event of FZE.

Zero_Prob Average probability of FZE.

Perfect_Time Average time of FPE (ms).

Perfect_Event Average event of FPE.

Perfect_Prob Average probability of FPE.

Time_Diff Average time difference between FPE and FZE, which determines how early an image is detected in terms of
time (ms).

Time % Average time difference percentage between FPE and FZE, which determines how early an image is detected in
terms of time.

Event_Diff Average event difference between FPE and FZE, which determines how early an image is detected in terms of
event number.

Event % Average event difference percentage between FPE and FZE, which determines how early an image is detected
in terms of event number

Sacc_Time_Diff Average time difference between saccade end and FZE, which determines how early an image is detected in
terms of time (ms).
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• Average Results: As shown in Table 3, on average the images are detected 14.81 (ms)
earlier, which is around 28.78% before the full image is displayed. In terms of event
sequence, the image is detected around 18.92% before, or 32,558 events before the full
image is accumulated.
Table 4 summarizes the testing metrics per image category; only three categories are
reported here for reference.

Table 3. Average results for CeleX-MNIST test images.

Zero_Time 39.69 (ms) Zero_Prob 56.20%

Perfect_Time 51.46 (ms) Perfect_Prob 78.72%

Zero_Event 153,598 (events) Perfect_Event 172,121 (events)

Time_Diff 14.81 (ms) Time % 28.78%

Event_Diff 32,558 (events) Event % 18.92%

Sacc_Diff 613.73 (ms) Sacc % 93.98%

Table 4. Average results for (3) Categories of CeleX-MNIST test images.

Class 3 (30 images)

Zero_Time 51.81 (ms) Zero_Prob 47.72%

Perfect_Time 64.18 (ms) Perfect_Prob 74.17%

Zero_Event 198,633 (events) Perfect_Event 222,683 (events)

Time_Diff 17.00 (ms) Time % 26.48%

Event_Diff 36,016 (events) Event % 16.17%

Sacc_Diff 621.71 (ms) Sacc % 92.31%

Class 6 (30 images)

Zero_Time 65.37 (ms) Zero_Prob 50.95%

Perfect_Time 80.19 (ms) Perfect_Prob 73.17%

Zero_Event 189,450 (events) Perfect_Event 213,350 (events)

Time_Diff 14.97 (ms) Time % 18.66%

Event_Diff 29,550 (events) Event % 13.85%

Sacc_Diff 636.20 (ms) Sacc % 90.68%

Class 9 (30 images)

Zero_Time 38.11 (ms) Zero_Prob 49.71%

Perfect_Time 54.68 (ms) Perfect_Prob 80.85%

Zero_Event 158,433 (events) Perfect_Event 185,833 (events)

Time_Diff 20.46 (ms) Time % 37.42%

Event_Diff 40,066 (events) Event % 21.56%

Sacc_Diff 557.90 (ms) Sacc % 93.61%

• Sample test image results: Figure 8 illustrates sample test images at the first zero, first
perfect, and saccade events. It can be noticed that at the FZE images, the details of the
image are not yet displayed; however, the network can still recognize the image with
an average probability of 56.20%. The probability keeps increasing as more events are
processed, as illustrated in Figure 9.
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The result of processing a single raw image file from class (2), which is shown in
Figure 8 (first row), is discussed here in detail. The selected raw file contains an event
count of 742,268 events which are collected at a duration of 479.95 (ms). As the events
are processed, the image is updated and feedforwarded to the InceptionResNetV2
trained network. The network predicts the category of the image and provides prob-
ability against the 10 classes. Figure 9 illustrates the probability of the image (black
line) against the time sequence. As discussed above, as more events are processed, the
probability increases. For this image, the network is able to detect the zero and perfect
event, as described in Table 5.

Figure 8. Sample CeleX-MNIST test images at event (left) FZE, (middle) FPE, (right) saccade end.

Figure 9. Testing result of CeleX-MNIST class 2 image using time sequence.

Table 5. Average results for CeleX-MNIST class 2 test image.

Zero_Time 3.80 (ms) Zero_Prob 55.77%

Perfect_Time 101.57 (ms) Perfect_Prob 96.65%

Zero_Event 221,000 (events) Perfect_Event 505,000 (events)

Time_Diff 97.7 (ms) Time % 96.26%

Event_Diff 284,000 (events) Event % 56.24%
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5.2. MNIST-DVS

The same trained neural network in Section 5.2 is used to test this datatset.
The 10,000 (scale 16) raw event-based recording images are selected from the MNIST-

DVS dataset. The set contains recordings with events collected on an average time of
2411.81 (ms) and an average event count of 103,144 per recording. The size of the events
collected is 128 × 128 pixels, so it is resized to 28 × 28 to match the input of the Incep-
tionResNetV2 architecture. As the dataset is very big, the recognition is conducted every
50 events. The results are analyzed as per the testing metrics described in Table 2.

• Average results: As shown in Table 6, on average the images are detected 108.69 (ms)
earlier, which is around 35.51% before the full image is displayed. In terms of event
sequence, the image is detected around 34.57% earlier, or 3400 events before the full
image is accumulated.
Table 7 summarizes the testing metrics per image category; only three categories are
reported here for reference.

• Sample test image results: Figure 10 illustrates sample test images at the first zero,
first perfect, and end of saccade events. It can be noticed that at the FZE images, the
details of the image are not yet displayed; however, the network can still recognize
the image with an average probability of 61.65%.

Figure 10. Sample MNIST-DVS test images at event (left) FZE, (middle) FPE, (right) saccade end.

Table 6. Average results for MNIST-DVS test images.

Zero_Time 235.45 (ms) Zero_Prob 61.65%

Perfect_Time 306.11 (ms) Perfect_Prob 87.22%

Zero_Event 7616 (events) Perfect_Event 9834 (events)

Time_Diff 108.69 (ms) Time % 35.51%

Event_Diff 3400 (events) Event % 34.57%

Sacc_Diff 2176.37 (ms) Sacc % 90.24%
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Table 7. Average results for (3) categories of MNIST-DVS test images.

Class 2 (1000 images)

Zero_Time 546.72 (ms) Zero_Prob 47.71%

Perfect_Time 578.64 (ms) Perfect_Prob 82.70%

Zero_Event 17,582 (events) Perfect_Event 18,303 (events)

Time_Diff 101.3 (ms) Time % 17.51%

Event_Diff 1865 (events) Event % 16.31%

Sacc_Diff 1865.09 (ms) Sacc % 77.33%

Class 4 (1000 images)

Zero_Time 188.48 (ms) Zero_Prob 65.67%

Perfect_Time 322.13 (ms) Perfect_Prob 78.24%

Zero_Event 5185 (events) Perfect_Event 8546 (events)

Time_Diff 179.34 (ms) Time % 55.67%

Event_Diff 4633 (events) Event % 54.21%

Sacc_Diff 2223.33 (ms) Sacc % 92.19%

Class 6 (1000 images)

Zero_Time 452.23 (ms) Zero_Prob 50.70%

Perfect_Time 515.07 (ms) Perfect_Prob 79.66%

Zero_Event 12,301 (events) Perfect_Event 13,844 (events)

Time_Diff 146.05 (ms) Time % 28.35%

Event_Diff 3650 (events) Event % 26.36%

Sacc_Diff 1959.59 (ms) Sacc % 81.25%

5.3. FLASH-MNIST

The same trained neural network in Section 5.2 is used to test this datatset.
The 10,000 (test dataset) raw event-based recording images are selected from the

FLASH-MNIST dataset. The set contains recordings with events collected on an average
time of 2103.25 (ms) and an average event count of 27,321 per recording. The size of the
events collected is 128 × 128 pixels, so it is resized to 28 × 28 to match the input of the
InceptionResNetV2 architecture. As the dataset is very big, the recognition is conducted
every 50 events. The results are analyzed as per the testing metrics described in Table 2.

• Average results: As shown in Table 8, on average the images are detected 5.76 (ms)
earlier, which is around 1.72% before the full image is displayed at the end of the
saccade. In terms of event sequence, the image is detected around 8.43% earlier, or
1883 events before the end of the saccade image is accumulated. It is also noted that the
average zero time and perfect time are both below 420.65 (ms), which is the duration
of the first saccade.
Table 9 summarizes the testing metrics per image category; only three categories are
reported here for reference.

• Sample test image results: Figure 11 illustrates sample test images at the first zero,
first perfect, and end of saccade events. It can be noticed that with the FZE images, the
details of the image are not yet displayed; however, the network can still recognize
the image with an average probability of 66.80%. The probability keeps increasing as
more events are processed, as illustrated in Figure 12.
The result of processing a single raw image file from class (0), which is shown in
Figure 11 (first row), is discussed here in detail. The selected raw file contains an event
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count of 38,081 events which are collected on a duration of 2095.34 (ms). Each saccade
is 419.07 (ms). As the events are processed, the image is updated and feedforwarded
to the InceptionResNetV2 trained network. The network predicts the category of
the image and provides probability against the 10 classes. Figure 12 illustrates the
probability of the image (black line) against the time sequence. As discussed above,
as more events are processed, the probability increases. For this image, the network is
able to detect the zero and perfect event as described in Table 10.

Figure 11. Sample FLASH-MNIST test images at event (left) FZE, (middle) FPE, (right) saccade end.

Figure 12. Testing result of FLASH-MNIST class 0 image using time sequence.

Table 8. Average results for FLASH-MNIST test images.

Zero_Time 336.79 (ms) Zero_Prob 66.80%

Perfect_Time 335.82 (ms) Perfect_Prob 96.00%

Zero_Event 3581 (events) Perfect_Event 3842 (events)

Time_Diff 5.76 (ms) Time % 1.72%

Event_Diff 324 (events) Event % 8.43%

Sacc_Diff 83.86 (ms) Sacc % 19.94%
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Table 9. Average results for (3) categories of FLASH-MNIST test images.

Class 0 (980 images)

Zero_Time 372.41 (ms) Zero_Prob 63.15%

Perfect_Time 375.58 (ms) Perfect_Prob 97.64%

Zero_Event 4402 (events) Perfect_Event 4860 (events)

Time_Diff 3.17 (ms) Time % 0.84%

Event_Diff 458 (events) Event % 9.41%

Sacc_Diff 51.60 (ms) Sacc % 12.20%

Class 3 (1010 images)

Zero_Time 374.31 (ms) Zero_Prob 60.56%

Perfect_Time 372.17 (ms) Perfect_Prob 96.87%

Zero_Event 4229 (events) Perfect_Event 4532 (events)

Time_Diff 2.36 (ms) Time % 0.63%

Event_Diff 329 (events) Event % 7.27%

Sacc_Diff 52.80 (ms) Sacc % 12.60%

Class 7 (1028 images)

Zero_Time 369.08 (ms) Zero_Prob 65.89%

Perfect_Time 366.89 (ms) Perfect_Prob 93.78%

Zero_Event 3030 (events) Perfect_Event 3313 (events)

Time_Diff 7.29 (ms) Time % 1.99%

Event_Diff 350 (events) Event % 10.57%

Sacc_Diff 42.62 (ms) Sacc % 10.14%

Table 10. Average results for FLASH-MNIST class 0 test image.

Zero_Time 370.63 (ms) Zero_Prob 26.64%

Perfect_Time 385.58 (ms) Perfect_Prob 98.15%

Zero_Event 4200 (events) Perfect_Event 6400 (events)

Time_Diff 14.95 (ms) Time % 3.88%

Event_Diff 2200 (events) Event % 34.38%

5.4. N-MNIST

The same trained neural network in Section 5.2 is used to test this datatset. The 10,000 (test
dataset) raw event-based recording images are selected from the N-MNIST dataset. The set
contains recordings with events collected on an average time of 306.20 (ms) and an average
event count of 4204 per recording. The size of the events collected is 34 × 34 pixels, so it is
resized to 28 × 28 to match the input of the InceptionResNetV2 architecture. As the dataset
is smaller than previous ones, the recognition is conducted every 10 events. The results are
analyzed as per the testing metrics described in Table 2.

• Average results: As shown in Table 11, on average the images are detected 7.89 (ms)
earlier, which is around 19.91% before the full image is captured perfectly in FPE.
In terms of event sequence, the image is detected around 32.26% earlier, or 167 events
before the end of the image is accumulated in FPE. It is also noted that the average
zero time and perfect time are both below 102.07 (ms), which is the duration of the
first saccade.
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Table 12 summarizes the testing metrics per image category; only three categories are
reported here for reference.

• Sample test image results: Figure 13 illustrates sample test images at the first zero,
first perfect, and end of saccade events. It can be noticed that with the FZE images, the
details of the image are not yet displayed; however, the network can still recognize
the image with an average probability of 67.09%. The probability keeps increasing as
more events are processed as illustrated in Figure 14.
The result of processing a single raw image file from class (3), which is shown in
Figure 13 (second row), is discussed here in detail. The selected raw file contains an
event count of 5857 events which are collected at a duration of 306.17 (ms). Each
saccade is 102.07 (ms). As the events are processed, the image is updated and feedfor-
warded to the InceptionResNetV2 trained network. The network predicts the category
of the image and provides probability against the 10 classes. Figure 14 illustrates the
probability of the image (black line) against the time sequence. As discussed above,
as more events are processed, the probability increases. For this image, the network is
able to detect the zero and perfect event as described in Table 13.

Figure 13. Sample N-MNIST test images at event (left) FZE, (middle) FPE, (right) saccade end.

Figure 14. Testing result of N-MNIST class 3 image using time sequence.
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Table 11. Average results for N-MNIST test images.

Zero_Time 32.47 (ms) Zero_Prob 67.09%

Perfect_Time 39.65 (ms) Perfect_Prob 96.40%

Zero_Event 358 (events) Perfect_Event 516 (events)

Time_Diff 7.89 (ms) Time % 19.91%

Event_Diff 167 (events) Event % 32.26%

Sacc_Diff 69.60 (ms) Sacc % 68.18%

Table 12. Average results for (3) categories of N-MNIST test images.

Class 5 (892 images)

Zero_Time 25.17 (ms) Zero_Prob 66.09%

Perfect_Time 29.88 (ms) Perfect_Prob 97.31%

Zero_Event 207 (events) Perfect_Event 313 (events)

Time_Diff 4.74 (ms) Time % 15.86%

Event_Diff 107 (events) Event % 34.07%

Sacc_Diff 76.90 (ms) Sacc % 75.34%

Class 8 (974 images)

Zero_Time 34.89 (ms) Zero_Prob 67.58%

Perfect_Time 44.24 (ms) Perfect_Prob 96.78%

Zero_Event 396 (events) Perfect_Event 598 (events)

Time_Diff 9.96 (ms) Time % 22.51%

Event_Diff 210 (events) Event % 35.11%

Sacc_Diff 67.18 (ms) Sacc % 65.81%

Class 9 (1009 images)

Zero_Time 31.75 (ms) Zero_Prob 60.02%

Perfect_Time 36.82 (ms) Perfect_Prob 95.01%

Zero_Event 252 (events) Perfect_Event 357 (events)

Time_Diff 6.33 (ms) Time % 17.19%

Event_Diff 116 (events) Event % 32.36%

Sacc_Diff 70.32 (ms) Sacc % 68.90%

Table 13. Average results for N-MNIST class 3 test image.

Zero_Time 39.34 (ms) Zero_Prob 86.44%

Perfect_Time 96.79 (ms) Perfect_Prob 99.88%

Zero_Event 700 (events) Perfect_Event 1950 (events)

Time_Diff 57.45 (ms) Time % 59.36%

Event_Diff 1250 (events) Event % 64.10%

5.5. CIFAR-10

As stated in Section 4, the InceptionResNetV2 is trained on the original CIFAR-10
dataset. To calculate its accuracy, the trained model is tested on 10,000 of the original
CIFAR-10 dataset and reports an accuracy of 90.18%.
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The 5509 (test dataset) raw event-based recording images are selected from the CIFAR-
10 DVS dataset. The set contains recordings with events collected on an average time of
1300 (ms) and an average event count of 189,145 per recording. The size of the events
collected is 128 × 128 pixels, so it is resized to 32 × 32 to match the input of the Inception-
ResNetV2 architecture. As the dataset is very large, the recognition is conducted every
100 events. The results are analyzed as per the testing metrics described in Table 2.

• Average results: As shown in Table 14, on average the images are detected 82.12 (ms)
earlier, which is around 66.54% before the full image is captured perfectly in FPE.
In terms of event sequence, the image is detected around 60.57% earlier, or 14,239 events
before the end of the image is accumulated in FPE.
Table 15 summarizes the testing metrics per image category; only three categories are
reported here for reference.

• Sample test image results: Figure 15 illustrates sample test images at the first zero,
first perfect, and end of saccade events. It can be noticed that at the FZE images, the
details of the image are not yet displayed; however, the network can still recognize
the image with an average probability of 45.0%. The probability keeps increasing as
more events are processed as illustrated in Figure 16.
The result of processing a single raw image file from class (automobile), which is
shown in Figure 15 (second row), is discussed here in detail. The selected raw file con-
tains an event count of 230,283 events which are collected on a duration of 1330 (ms).
Each saccade is 55.53 (ms). As the events are processed, the image is updated and
feedforwarded to the InceptionResNetV2 trained network. The network predicts
the category of the image and provides probability against the 10 classes. Figure 16
illustrates the probability of the image (black line) against the time sequence. As dis-
cussed above, as more events are processed, the probability increases. For this image,
the network is able to detect the zero and perfect events as described in Table 16. It is
also noted that the zero time and perfect time are both below 55.53 (ms), which is the
duration of the first saccade.

Figure 15. Sample CIFAR-10 DVS test images at event (left) FZE, (middle) FPE, (right) saccade end.
Row (1) left: airplane, right: cat. Row (2) left: automobile, right: dog.
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Figure 16. Testing result of CIFAR-10 DVS class (automobile) image using time sequence.

Table 14. Average results for CIFAR-10 DVS test images.

Zero_Time 88.96 (ms) Zero_Prob 44.99%

Perfect_Time 123.42 (ms) Perfect_Prob 58.45%

Zero_Event 18,519 (events) Perfect_Event 23,507 (events)

Time_Diff 82.12 (ms) Time % 66.54%

Event_Diff 14,239 (events) Event % 60.57%

Table 15. Average results for (3) categories of CIFAR-10 DVS test images.

Class Airplane (1000 images)

Zero_Time 11.88 (ms) Zero_Prob 54.40%

Perfect_Time 43.97 (ms) Perfect_Prob 92.69%

Zero_Event 3960 (events) Perfect_Event 9679 (events)

Time_Diff 33.77 (ms) Time % 72.98%

Event_Diff 6062 (events) Event % 59.09%

Class Bird (380 images)

Zero_Time 129.43 (ms) Zero_Prob 43.95%

Perfect_Time 155.67 (ms) Perfect_Prob 45.78%

Zero_Event 26,341 (events) Perfect_Event 26,521 (events)

Time_Diff 32.09 (ms) Time % 16.86%

Event_Diff 180 (events) Event % 0.68%

Class Cat (1000 images)

Zero_Time 93.39 (ms) Zero_Prob 52.39%

Perfect_Time 180.91 (ms) Perfect_Prob 65.54%

Zero_Event 22,720 (events) Perfect_Event 35,133 (events)

Time_Diff 87.52 (ms) Time % 48.38%

Event_Diff 12,414 (events) Event % 35.33%
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Table 16. Average results for CIFAR-10 DVS class (automobile) test image.

Zero_Time 2.77 (ms) Zero_Prob 30.01%

Perfect_Time 48.08 (ms) Perfect_Prob 95.71%

Zero_Event 1700 (events) Perfect_Event 7800 (events)

Time_Diff 45.31 (ms) Time % 94.25%

Event_Diff 6100 (events) Event % 78.21%

5.6. N-Caltech 101

As stated in Section 4, the ResNet50 is trained on the original Caltech-101 dataset.
To calculate its accuracy, the trained model is tested on 20% of the original Caltech101
dataset and reports an accuracy of 94.87%.

The 1601 raw event-based recording images are selected from the N-CALTECH101
dataset. The set contains recordings with events collected at an average time of 300.14 (ms)
and an average event count of 115,298 per recording. The size of the events collected is
240 × 180 pixels, so it is resized to 224× 224 to match the input of the ResNet50 architecture.
As the dataset is very large, the recognition is conducted every 50 events. The results are
analyzed as per the testing metrics described in Table 2.

• Average results: As shown in Table 17, on average the images are detected 12.58 (ms)
earlier, which is around 52.15% before the full image is captured perfectly in FPE.
In terms of event sequence, the image is detected around 69.20% earlier, or 6074 events
before the end of the image is accumulated in FPE.
Table 18 summarizes the testing metrics per image category; only three categories are
reported here for reference.

• Sample test image results: Figure 17 illustrates sample test images at the first zero,
first perfect, and end of saccade events. It can be noticed that in the FZE images, the
details of the image are not yet displayed; however, the network can still recognize
the image with an average probability of 20.46%. The probability keeps increasing as
more events are processed as illustrated in Figure 18.

Figure 17. Sample N-CALTECH101 test images at event (left) FZE, (middle) FPE, (right) saccade
end. Row (1) left: accordion, right: ant. Row (2) left: anchor, right: chair.

The result of processing a single raw image file from class (automobile), which is
shown in Figure 17 (first row), is discussed here in detail. The selected raw file contains an
event count of 171,982 events which are collected at a duration of 300.33 (ms). Each saccade
is 100.11 (ms). As the events are processed, the image is updated and feedforwarded to the
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ResNet50 trained network. The network predicts the category of the image and provides
probability against the 101 classes. Figure 18 illustrates the probability of the image (black
line) against the time sequence. As discussed above, as more events are processed the
probability increases. For this image, the network is able to detect the zero and perfect
event, as described in Table 19. It is also noted that the zero time and perfect time are both
below 100.11 (ms) which is the duration of the first saccade.

Figure 18. Testing result of N-CALTECH101 class (accordion) image using time sequence.

Table 17. Average results for N-CALTECH101 test images.

Zero_Time 26.60 (ms) Zero_Prob 20.46%

Perfect_Time 24.11 (ms) Perfect_Prob 45.46%

Zero_Event 7701 (events) Perfect_Event 8778 (events)

Time_Diff 12.58 (ms) Time % 52.15%

Event_Diff 6074 (events) Event % 69.20%

Sacc_Diff 73.45 (ms) Sacc % 73.41%

6. Enhanced Early Recognition Analysis and Results

The recognition is enhanced by training the InceptionResNetV2 neural network in
Section 4 on noisy images, as shown in Figure 19, referred to in this work as partial pictures
(PP). To calculate its accuracy, the trained model is tested on 10,000 images of the noised
MNIST dataset and reports an accuracy of 98.4%.

Figure 19. Sample of noised original MNIST dataset (partial pictures).
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The same setup and input preprocessing techniques mentioned in previous sections
are used and results are reported in this section.

Table 18. Average results for (3) categories of N-CALTECH101 test images.

Class menorah (87 images)

Zero_Time 18.17 (ms) Zero_Prob 18.33%

Perfect_Time 427.92 (ms) Perfect_Prob 92.45%

Zero_Event 3836 (events) Perfect_Event 8069.54 (events)

Time_Diff 11.24 (ms) Time % 40.25%

Event_Diff 5252 (events) Event % 65.09%

Sacc_Diff 81.88 (ms) Sacc % 81.84%

Class stop_sign (64 images)

Zero_Time 45.42 (ms) Zero_Prob 22.70%

Perfect_Time 50.11 (ms) Perfect_Prob 52.7%

Zero_Event 15,113 (events) Perfect_Event 19,893 (events)

Time_Diff 27.71 (ms) Time % 55.31%

Event_Diff 11,881 (events) Event % 59.73%

Sacc_Diff 54.63 (ms) Sacc % 54.60%

Class yin_yang (60 images)

Zero_Time 15.96 (ms) Zero_Prob 21.60%

Perfect_Time 38.39 (ms) Perfect_Prob 70.39%

Zero_Event 3200 (events) Perfect_Event 9685 (events)

Time_Diff 28.32 (ms) Time % 73.76%

Event_Diff 8649 (events) Event % 89.30%

Sacc_Diff 84.09 (ms) Sacc % 84.05%

Table 19. Average results for N-CALTECH101 class (accordion) test image.

Zero_Time 11.85 (ms) Zero_Prob 22.32%

Perfect_Time 39.51 (ms) Perfect_Prob 95.50%

Zero_Event 1650 (events) Perfect_Event 18,100 (events)

Time_Diff 27.65 (ms) Time % 70.00%

Event_Diff 16,450 (events) Event % 90.88%

6.1. CeleX-MNIST

• Average results: As shown in Table 20, on average the images are detected 13.85 (ms)
earlier, which is around 47.35% before the full image is displayed. In terms of event
sequence, the image is detected around 35.87% before, or 46,368 events before the full
image is accumulated.
Table 21 summarizes the testing metrics per image category; only three categories are
reported here for reference.
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Table 20. Average PP results for CeleX-MNIST test images.

Zero_Time 18.17 (ms) Zero_Prob 58.45%

Perfect_Time 28.64 (ms) Perfect_Prob 81.29%

Zero_Event 104,198 (events) Perfect_Event 133,067 (events)

Time_Diff 13.85 (ms) Time % 47.35%

Event_Diff 46,368 (events) Event % 35.87%

Sacc_Diff 635.24 (ms) Sacc % 97.23%

Table 21. Average PP results for (3) categories of CeleX-MNIST test images.

Class 3 (30 images)

Zero_Time 21.21 (ms) Zero_Prob 56.17%

Perfect_Time 25.50 (ms) Perfect_Prob 81.07%

Zero_Event 127,317 (events) Perfect_Event 141,867 (events)

Time_Diff 8.75 (ms) Time % 34.31%

Event_Diff 38,983 (events) Event % 27.48%

Sacc_Diff 652.31 (ms) Sacc % 96.85%

Class 6 (30 images)

Zero_Time 25.95 (ms) Zero_Prob 49.57%

Perfect_Time 44.33 (ms) Perfect_Prob 85.98%

Zero_Event 106,300 (events) Perfect_Event 164,700 (events)

Time_Diff 21.04 (ms) Time % 47.47%

Event_Diff 74,933 (events) Event % 45.50%

Sacc_Diff 675.63 (ms) Sacc % 96.30%

Class 9 (30 images)

Zero_Time 4.89 (ms) Zero_Prob 66.06%

Perfect_Time 20.62 (ms) Perfect_Prob 95.64%

Zero_Event 34,817 (events) Perfect_Event 103,483 (events)

Time_Diff 15.73 (ms) Time % 76.28%

Event_Diff 68,717 (events) Event % 66.40%

Sacc_Diff 591.12 (ms) Sacc % 99.18%

6.2. MNIST-DVS

• Average results: As shown in Table 22, on average the images are detected 24.47 (ms)
earlier, which is around 50.46% before the full image is displayed. In terms of event
sequence, the image is detected around 51.42% before, or 865 events before the full
image is accumulated.
Table 23 summarizes the testing metrics per image category; only three categories are
reported here for reference.
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Table 22. Average PP results for MNIST-DVS test images.

Zero_Time 29.85 (ms) Zero_Prob 62.87%

Perfect_Time 43.81 (ms) Perfect_Prob 79.49%

Zero_Event 998 (events) Perfect_Event 1495 (events)

Time_Diff 24.47 (ms) Time % 50.46%

Event_Diff 865 (events) Event % 51.42%

Sacc_Diff 2366.45 (ms) Sacc % 98.76%

Table 23. Average PP results for (3) categories of MNIST-DVS test images.

Class 2 (1000 images)

Zero_Time 76.47 (ms) Zero_Prob 44.14%

Perfect_Time 91.50 (ms) Perfect_Prob 61.66%

Zero_Event 2308 (events) Perfect_Event 2696 (events)

Time_Diff 48.53 (ms) Time % 53.04%

Event_Diff 1455 (events) Event % 53.99%

Sacc_Diff 2313.96 (ms) Sacc % 96.80%

Class 4 (1000 images)

Zero_Time 23.18 (ms) Zero_Prob 72.23%

Perfect_Time 36.18 (ms) Perfect_Prob 91.88%

Zero_Event 610 (events) Perfect_Event 961 (events)

Time_Diff 16.44 (ms) Time % 45.43%

Event_Diff 438 (events) Event % 45.63%

Sacc_Diff 2364.61 (ms) Sacc % 99.03%

Class 6 (1000 images)

Zero_Time 21.75 (ms) Zero_Prob 59.56%

Perfect_Time 34.78 (ms) Perfect_Prob 75.12%

Zero_Event 547 (events) Perfect_Event 896 (events)

Time_Diff 20.09 (ms) Time % 57.76%

Event_Diff 527 (events) Event % 58.85%

Sacc_Diff 2364.90 (ms) Sacc % 99.09%

6.3. FLASH-MNIST

• Average results: As shown in Table 24, on average the images are detected 24.47 (ms)
earlier, which is around 50.46% before the full image is displayed. In terms of event
sequence, the image is detected around 51.42% before, or 865 events before the full
image is accumulated.
Table 25 summarizes the testing metrics per image category; only three categories are
reported here for reference.
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Table 24. Average PP results for FLASH-MNIST test images.

Zero_Time 335.37 (ms) Zero_Prob 72.52%

Perfect_Time 338.37 (ms) Perfect_Prob 97.33%

Zero_Event 3460 (events) Perfect_Event 3820 (events)

Time_Diff 5.73 (ms) Time % 1.51%

Event_Diff 391 (events) Event % 9.33%

Sacc_Diff 83.86 (ms) Sacc % 19.94%

Table 25. Average PP results for (3) categories of FLASH-MNIST test images.

Class 0 (980 images)

Zero_Time 371.17 (ms) Zero_Prob 61.54%

Perfect_Time 374.80 (ms) Perfect_Prob 97.49%

Zero_Event 4862 (events) Perfect_Event 5516 (events)

Time_Diff 3.63 (ms) Time % 0.97%

Event_Diff 654 (events) Event % 11.85%

Sacc_Diff 51.60 (ms) Sacc % 12.20%

Class 3 (1010 images)

Zero_Time 366.30 (ms) Zero_Prob 69.26%

Perfect_Time 371.96 (ms) Perfect_Prob 97.55%

Zero_Event 4723 (events) Perfect_Event 5059 (events)

Time_Diff 7.21 (ms) Time % 1.94%

Event_Diff 370 (events) Event % 7.31%

Sacc_Diff 52.80 (ms) Sacc % 12.60%

Class 7 (1028 images)

Zero_Time 377.81 (ms) Zero_Prob 68.64%

Perfect_Time 384.87 (ms) Perfect_Prob 95.39%

Zero_Event 3368 (events) Perfect_Event 3991 (events)

Time_Diff 16.79 (ms) Time % 4.36%

Event_Diff 718 (events) Event % 17.98%

Sacc_Diff 42.62 (ms) Sacc % 10.14%

6.4. N-MNIST

• Average results: As shown in Table 26, on average the images are detected 10.79 (ms)
earlier, which is around 22.49% before the full image is displayed. In terms of event
sequence, the image is detected around 36.33% before, or 218 events before the full
image is accumulated.
Table 27 summarizes the testing metrics per image category; only three categories are
reported here for reference.
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Table 26. Average PP results for N-MNIST test images.

Zero_Time 33.33 (ms) Zero_Prob 71.49%

Perfect_Time 43.28 (ms) Perfect_Prob 96.38%

Zero_Event 383 (events) Perfect_Event 592 (events)

Time_Diff 10.79 (ms) Time % 22.49%

Event_Diff 218 (events) Event % 36.33%

Sacc_Diff 69.11 (ms) Sacc % 67.46%

Table 27. Average PP results for (3) categories of N-MNIST test images.

Class 5 (892 images)

Zero_Time 35.02 (ms) Zero_Prob 69.90%

Perfect_Time 47.41 (ms) Perfect_Prob 9713%

Zero_Event 476 (events) Perfect_Event 765 (events)

Time_Diff 12.92 (ms) Time % 27.24%

Event_Diff 298 (events) Event % 38.92%

Sacc_Diff 67.59 (ms) Sacc % 65.87%

Class 8 (974 images)

Zero_Time 49.57 (ms) Zero_Prob 71.91%

Perfect_Time 59.69 (ms) Perfect_Prob 96.82%

Zero_Event 854 (events) Perfect_Event 1077 (events)

Time_Diff 11.47 (ms) Time % 19.21%

Event_Diff 239 (events) Event % 22.18%

Sacc_Diff 52.91 (ms) Sacc % 51.63%

Class 9 (1009 images)

Zero_Time 22.55 (ms) Zero_Prob 71.26%

Perfect_Time 30.42 (ms) Perfect_Prob 98.05%

Zero_Event 117 (events) Perfect_Event 236 (events)

Time_Diff 78.65 (ms) Time % 25.86%

Event_Diff 119 (events) Event % 50.53%

Sacc_Diff 79.99 (ms) Sacc % 78.01%

7. Conclusions

In this work, fast and early object recognition for real-time applications is explored
by using event-based imagers instead of full-frame cameras. The main concept is to be
able to recognize an image before it is fully displayed, using events sequence rather than
full-frame images. This technique allows us to decrease the time and processing power
required for object recognition, leading to lower power consumption as well.

First, the InceptionResNetV2 and RestNet50 neural networks are trained on the origi-
nal MNIST, CIFAR-10, and Caltech101 datasets and then tested using a pre-collected CeleX-
MNIST, MNIST-DVS, FLASH-MNIST, N-MNIST, DIFAR-10, and N-Caltech101 datasets
using an event-based imager. The testing metrics are based on calculating how early the
network can detect an image before the full-frame image is captured.

As summarized in Table 28, we notice that on average for all the datasets, we were
able to recognize an image 38.7 (ms) earlier, which is a reduction of 34% of the time needed.
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Less processing is also required for the image recognized 9460 events earlier, which is 37%
less.These early timings are compared to the first perfect event, which is when the algorithm
can detect an image with an accuracy of 95%. However, this is not when the last event
is displayed. The last is event is received at the end of the saccade. The time difference
between the first zero and saccade end on average is 603 (ms), excluding CIFAR-10, which
did not perform well. In other words, we are able to detect an image 69.1% earlier.

Table 28. Dataset recognition results summary.

Dataset

MNIST
CIFAR 10 N-CALTECH 101

Total
Average

CeleX DVS FLASH N avg

Zero

Time (ms) 36.7 235.5 336.8 32.5 160.4 89.0 26.6 126.2
Prob % 56.2 61.7 66.8 67.1 63.0 45.0 20.5 52.9
Event 153,598 7616 3518 358 41,273 18,519 7701 31,885

Perfect

Time (ms) 51.5 306.1 335.9 39.65 183.3 123.4 24.1 146.8
Prob % 78.7 87.2 96.0 96.4 89.6 58.5 45.5 77.1
Event 172,121 7616 3842 516 46,024 23,507 8778 36,063

Time

Diff (ms) 14.8 108.7 5.8 7.9 34.3 82.1 12.6 38.7
Diff % 28.8 35.5 1.7 19.9 21.5 66.5 52.2 34.1

Event

Diff 32,558 3400 324 167 9112 14,239 6074 9460
Diff % 18.9 34.6 8.43 32.3 23.6 60.6 69.2 37.3

Saccade

Diff 613.7 2176.4 83.9 69.6 735.9 - 73.5 603.4
Diff % 93.9 90.2 19.9 68.2 68.1 - 73.4 69.1

Furthermore, the same neural network architecture is then trained on partial pictures
to explore enhancing the early recognition time (FZE) and the saccade difference time,
which refers to when the last event is received. This test was only performed on MNIST
datasets, and as shown in Table 29, it can be noticed that FZE is reduced and is detected at
104.2 (ms) instead of 160.4 (ms). Moreover, the time difference between the first zero and
saccade end is also reduced, and on average is 789.1 (ms); in other words, we are able to
detect an image 71.0% earlier.



Sensors 2023, 23, 6195 29 of 31

Table 29. Dataset partial pictures recognition results summary.

Dataset

AverageMNIST

CeleX DVS FLASH N

Zero

Time (ms) 18.2 29.8 335.4 33.3 104.2
Prob % 58.5 62.9 73.5 71.5 66.6
Event 104,198 998 3460 383 27,260

Perfect

Time (ms) 28.6 43.8 338.4 43.3 113.5
Prob % 81.3 79.5 97.3 96.4 88.6
Event 133,067 1495 3820 592 34,743

Time

Diff (ms) 13.9 24.5 5.7 10.8 13.7
Diff % 47.3 50.5 1.5 22.5 30.5

Event

Diff 46,368 865 391 218 11,960
Diff % 35.9 51.4 9.3 36.3 33.2

Saccade

Diff 635.2 2366.5 85.6 69.1 789.1
Diff % 97.2 98.8 20.4 67.5 71.0
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