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Abstract: A new method for accurately estimating heart rates based on a single photoplethysmography
(PPG) signal and accelerations is proposed in this study, considering motion artifacts due to subjects’
hand motions and walking. The method comprises two sub-algorithms: pre-quality checking and
motion artifact removal (MAR) via Hankel decomposition. PPGs and accelerations were collected
using a wearable device equipped with a PPG sensor patch and a 3-axis accelerometer. The motion
artifacts caused by hand movements and walking were effectively mitigated by the two aforementioned
sub-algorithms. The first sub-algorithm utilized a new quality-assessment criterion to identify highly
noise-contaminated PPG signals and exclude them from subsequent processing. The second sub-
algorithm employed the Hankel matrix and singular value decomposition (SVD) to effectively identify,
decompose, and remove motion artifacts. Experimental data collected during hand-moving and walking
were considered for evaluation. The performance of the proposed algorithms was assessed using the
datasets from the IEEE Signal Processing Cup 2015. The obtained results demonstrated an average error
of merely 0.7345 ± 8.1129 beats per minute (bpm) and a mean absolute error of 1.86 bpm for walking,
making it the second most accurate method to date that employs a single PPG and a 3-axis accelerometer.
The proposed method also achieved the best accuracy of 3.78 bpm in mean absolute errors among all
previously reported studies for hand-moving scenarios.

Keywords: heart rate (HR); photoplethysmogram (PPG); motion artifact; notch filter; Hankel matrix;
singular value decomposition (SVD); beats per minutes (bpm)

1. Introduction

The first on-market PPG (photoplethysmogram) sensor was the pulse oximeter, which
was commercialized around 1980 for hospital use [1]. This PPG sensor device consists
of two alternating LEDs in red/infrared and a photodetector (PD) to obtain information
about blood vessel pulsations from the output signals of the PD. The devices are now
available on the market in the form of wearable smart watches, earphones, etc. [2]. The non-
invasiveness, ease of use, and variety in price, design, and uses have made this industry
of wearable smart watches flourish within a few years. However, further advances of
this PPG technology are nowadays seriously hampered by the unavoidable contamination
of PPG signals by noises mainly from motion artifacts (MAs) [2–5], which are caused by
significantly unavoidable changes in the optical power paths from LEDs and PDs during
motions, resulting in undesired components to be measured in the PPG signals. These
noises become worse when the sensor is dislocated or in loose contact with the body. With
MAs, obtaining the correct heart rate (HR), blood oxygen saturation (SpO2), and blood
pressure (BP) based on PPGs becomes very difficult and sometimes impossible due to the
absence of uncontaminated PPG signals measured from wearable devices.

Many reported studies have been dedicated to detecting, evaluating, mitigating,
and/or removing motion artifacts (MAs) from PPG signals. The detection of MAs can
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be carried out by statistical means. Rajet Krishnan et al. [3] used kurtosis and skewness
in both time and frequency domains to distinguish between clean and MA-corrupted
data. Some researchers, such as Hanyu et al. [6], have also used the standard deviation
and mean error along with selected parameters to detect MAs and remove them. An-
other method is to consider the spectral analysis of measured raw PPG signals based on
ensemble empirical mode decomposition (EEMD) with spectrum subtraction (SS) [7,8].
In this method, corrupted PPG signals are classified into corrupted, moderately cor-
rupted, and clean by the thresholds on the amplitudes and frequencies of dominant peaks.
Bashar et al. [9] developed a method of variable frequency complex demodulation (VFCDM)
and applied this to a set of 200 subjects for PPGs measured at fingers and wrists as
well as with elbow movements. They acquired 449 recordings, with the result that
156 were misclassified and 29 were false-positives. Once detected, the MAs can be removed.
Kong et al. [10] also used VFCDM. Some other studies, such as [11,12], conducted mo-
tion artifact removal (MAR) with assistance from reference signals from multiple LEDs
(blind separation methods, Kalman filtering, etc.) and/or an accelerometer (adaptive filter).
With multiple LEDs, Raghuram et al. [11] and Hara et al. [12] showed an accuracy of
0.392 bpm using PPG with finger motions, achieving a RMSE of 6.5 for walking, running,
and jumping. On the other hand, using accelerometers, Lin and Ma [13] adopted discrete
wavelet transforms for noise reduction. They calculated and tracked heart rates using the
Kalman Filter. Mahdi Boloursaz et al. [14] utilized accelerometer signals before applying
an LMS filter for MAR. Other techniques include an independent component analysis
(ICA), adopted by [15–19]; empirical mode decomposition (EMD), used by [11,20–25]; least
mean squares (LMS), used by [26–29]; wavelet transform (WT), used by [30–32]; a notch
filter, used by [33]; or recently, in 2022, adaptive filters, used by [34]. With advances in
technology, some very recent attempts at using machine learning for MAR have also been
reported [35–39]. Most recently, in 2023, attention has been turned to lightweight machine
learning modules [40] that are implementable in wearable devices.

Different from all the previous studies, this study proposes two sub-algorithms in
a series to remove motion artifacts, which were applied to cases of hand movements
and walking. The first was a new quality-assessment criterion to disregard highly noise-
contaminated PPG signals, while the second employed the Hankel matrix and the associ-
ated SVD to remove motion artifacts. The aforementioned pre-screening of noises by the
first quality-check sub-algorithm, and the capability of the subsequent Hankel matrices
and the associated SVD to identify, decompose, and remove the motion components in
measured PPG were expected to deliver a high-precision HR estimation. Two cases of
walking and hand movement were considered to demonstrate the effectiveness of the
proposed MAR algorithm. The IEEE Signal Processing Cup 2015 dataset was used for
performance evaluation. The average error result was 0.7345 ± 8.1129 bpm, with a mean
absolute error (MAE) of 1.86 bpm (beats per minute); the second-best of all the reported
results. As for hand-moving, this study showed the best accuracy of 3.78 bpm in MAE
compared with all the reported studies.

The remainder of this article is organized into four sections. Section 2 describes
how the PPG signals were collected. Section 3 details the first algorithm of the quality
check on measured PPG signals, while Section 4 describes the algorithm of motion artifact
removal using the Hankel matrix and the associated SVD. Section 5 presents the experi-
mental validation of the performance of the proposed method. Finally, Section 6 concludes
this study.

2. PPG Signals and Motion Artifacts
2.1. Measuring PPG

A typical PPG signal at the wrist artery, where most wearable devices measure PPG, is
shown in Figure 1a, which was measured by the PPG sensor patch developed exclusively
by [41], as given in Figure 1b. This typical PPG waveform consists of AC and DC com-
ponents. The AC component reflects the pulsatile component of blood vessel pulsations
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synchronized with heart beats, while the DC component is the non-pulsatile component
resulting from light absorption in tissue, skin, and bones along the optical paths between
LEDs and PD of the PPG devices. To find the best wavelength of LEDs and the best location
to measure PPG, a series of experiments with the subject sitting still were conducted with
the PPG sensor in Figure 1 emitted at different wavelengths and attached at different
locations 1–3, as illustrated in Figure 2a–c. It can be seen from Figure 2a–c that both green
and infrared (IR) LEDs lead to larger AC components, while locations 1 and 3 lead to larger
ACs in the measured PPGs as opposed to others. This is, in fact, due to the presence of
arteries under the locations as shown in Figure 2a, like seen in [42]. For the remainder of
this study, to develop the algorithm for removing motion artifacts, the PPG sensor patch
in Figure 1b is attached at location 1, as seen in Figure 2b, to obtain the PPG measured
from the green LED. Typical PPGs contaminated by motion artifacts, measured by the
green LED at location 1 on the wrist artery, are shown in Figure 3a,b, which are those
during walking and with hand motion, respectively. Based on the comparison between
Figure 3a,b, it can be seen that the PPG waveforms measured with hand movement exhibit
much smaller DC drifts than walking, while the AC components of both cases are close
to each other. Additionally, the large DC drifts, especially in the case of walking, present
a serious, negative effect of motion artifacts on estimating the heart rate, blood oxygen,
and/or blood pressure based on measured PPG waveforms.
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Figure 1. (a) AC and DC components of a typical PPG signal; (b) PPG sensor patch developed by [41].

2.2. Classification of Motion Artifacts

Motion artifacts are understood nowadays as having two different magnitudes, micro
and macro motions, as shown in Figure 4. The micro-motion artifacts have been defined
as those due to measuring position adjusting, gesture changing, or finger tapping, while
the macro-motion artifacts are those having consistent body motion, such as walking,
jogging, and running. Figure 4 shows the measured PPGs contaminated by the micro- and
macro-motion artifacts due to finger tapping, measuring position adjusting (both leading
to micro-MAs), and walking (macro-MAs). It can be seen from this figure that both micro-
and macro-motion artifacts cause much more significant fluctuations to the measured PPG
signal than sedentary gestures of the subject. All the aforementioned motions could range
between 0.1 and 20 Hz, which is right within the frequency range for heart rate (1–4 Hz),
causing much trouble for estimating heart rate based on measured PPG signals. Figure 5
shows the frequency response of a contaminated PPG signal with a few components away
from the given frequencies. With the presence of micro and macro motions, the estimation
accuracy of heart rate could be seriously compromised. To remedy this problem, two
algorithms are proposed herein for motion artifact reduction (MAR), as described in the
ensuing Sections 3 and 4.
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3. The First Sub-Algorithm of Quality Check on Measured PPG Signals

The algorithm proposed by this study consists of two sub-algorithms to increase the
accuracy of heart rate estimation with serious motion artifacts in PPGs measured by the
wearable device. The first sub-algorithm is designed to check the quality of real-time raw
PPGs measured to rule out those seriously contaminated and keep the information of heart
rate still embedded in the measured PPGs. With this first sub-algorithm, the accuracy of
estimating heart rate is expected to increase. To this end, a new algorithm for signal quality
checking on measured PPG has been developed. Figure 6 elaborates on its computation
flow. Note that a qualified PPG signal at the end is defined as the one that is periodic in
time domain and has the largest frequency component remaining within a limited range
close to that of the legitimate heart rate. Accordingly, specific conditions in a sequence for
checking are defined below for subsequent analysis to extract precision heart rate in the
next section.

(1) The number of valleys and peaks of the measured PPG signal is calculated, and then
it is checked if

(Number o f Valleys) ≤ (Number o f Peaks)± 1, (1)

to affirm the presence of pulsation in the measured PPG; otherwise, the signal is
labeled as “unqualified” and we then return to stage one for motion artifact reduction.

(2) The ti values are defined as the time intervals between peaks that can be extracted
from measured PPGs, as shown in Figure 7. It is next checked if all differences between
consecutive ti values,

∆t = ti+1 − ti, (2)

are each less than or equal to ±0.1 of ti. If this condition is true, the signal is labelled
as “qualified,” and then we go to the next step in Figure 6; otherwise, the signal is
labelled as “unqualified” and we stop the computation.

(3) The statistical measures of kurtosis, mean, and standard deviation of the qualified
PPG segments are calculated further at each cycle. If all calculated statistical values
are within pre-defined thresholds, as shown in Figure 8a, the measured PPG is
identified as “qualified;” otherwise, it is determined as as “unqualified” and then the
computation is stopped. Note that a similar approach was used by [3] for motion
artifact detection.

(4) A marker SQT (Signal Quality Token) is defined as either ’0’ or ‘1’ to label the measured
PPG segment as qualified or unqualified. Figure 8b shows three representative
examples of PPG marked with different SQTs. Only the PPG with SQRT = 1 is passed
on to calculate heart rate based on the Hankel matrix and SVD decomposition.
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4. The Second Sub-Algorithm for Motion Artifact Removal

The PPG signals determined as “qualified” by the first sub-algorithm of quality check-
ing in the previous section are next processed with the motion artifact removal (MAR)
algorithm proposed herein.

4.1. The Hankel Matrix and Its SVD

Precision estimation of heart rate is carried out herein by singular value decomposition
on the Hankel matrix of the measured PPG and motion via an accelerometer also attached
to the PPG sensor, as shown in Figure 1b. The PPG and accelerometer signals are measured
and recorded for six seconds and then first organized into Hankel matrices [43], Hppg, Hx,
Hy, and Hz, respectively, for PPG and accelerations along x, y, and z. For example, Hppg is
in the form of

Hppg =


a(t1) a(t2) . . . a(tn)

a(t2)
. . .

...
...

. . .
...

a(tn) · · · · · · a(t2n)

, (3)

where a(t)’s are PPG data at times of t’s, and there are in total 2n PPG data in the sampled
window of six seconds. Next, the single value decompositions (SVDs) [44] are conducted
on each of Hppg, Hx, Hy, and Hz, leading to

Hppg = UppgΣppgVT
ppg, (4)

Hx = UxΣxVx
T , (5)

Hy = UyΣyVy
T , (6)

and Hz = UzΣzVz
T (7)

respectively, where U, Σ, and V correspond to orthogonal, diagonal, orthogonal matrices.
U contains the orthogonal basis for the column space of H, while V contains the orthogonal
basis for the row space of H. Σ contains the eigenvalues of matrix H. The eigenvalues of
the diagonal matrices Σ are stored as Λppg, Λx, Λy, and Λz for further processing. In the
next steps, the eigenvalues with the associated components highly correlated to motion
artifacts are removed. To this end, the correlation matrix of PPG and 3-axis accelerometer
signals can be calculated; that is [45],

ρx,y= corr(x, y) =
cov(x, y)

σxσy
=

E
(
x − µx) E

(
y − µy

)
σxσy

, (8)

where the correlation value ρx,y gives the similarity index between the two signals, with
expected values µx and µy, and standard σx and σy of the two signals. The components
in measured PPG that are highly correlated to accelerations are removed. Then, the time-
domain PPG signal without motion artifacts can be restored by recovering the frequency
response with the non-MR-related components only via the inverse Fourier transform, as
seen in Figure 9.

4.2. The Computational Flow of the Proposed MAR Algorithm

A new algorithm of motion artifact removal (MAR) is engineered herein for re-
constructing MR-free PPG signals based on the decomposed Hankel matrices in
Equations (5)–(7) and their mutual correlation in Equation (8). The associated compu-
tation flow is shown in Figure 10, while the pseudo-code is given below. The algorithm
(Algorithm 1 in pseudocode) consists of five stages, (a) synthesizing the Hankel matrices



Sensors 2023, 23, 6180 8 of 16

Hppg, Hx, Hy, and Hz in the forms of (3); (b) Conducting singular value decomposition
(SVD) on H’s; (c) Calculating correlation to remove MR-related components; (d) Conduct-
ing discrete Fourier transform on the MR-free PPG signals and then finding the heart rate
by taking the maximum peak of the spectrum as the heartbeat component; (e) Finally, the
heart rate is estimated again to see if the consecutive estimated heart rates are close to each
other to ensure the robustness of the algorithm.
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Algorithm 1 In pseudocode: Motion Artifact Algorithm for Walking.

1: Procedure Record PPG signal and accelerometer signal x,y,z for 8 s
2: Initialize HR_est = 78
3: Construct Hankel matrix Hppg for PPG
4: Construct Hankel matrix Hx for x
5: Construct Hankel matrix Hy for y
6: Construct Hankel matrix Hz for z
7: Find SVD of matrix obtained from step 3, 4, 5, 6
8: Construct a correlation matrix between the 3-axis accelerometer and PPG
9: Select eigenvalues
10: Reconstruct using inverse SVD
11: Find DFT of the reconstructed signal
12: Find HR
13: Heart rate estimation
14: End procedure
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5. Experimental Results

Experiments were conducted for the cases of hand movement and walking, as shown
in Figure 11, to validate the performance of the two sub-algorithms built. A commer-
cially certified oximeter was utilized to provide reference heart rates for validating the
performance of the two designed sub-algorithms. All experiments for collecting data were
conducted at room temperature, 28~31 ◦C. The skin temperature of the subject during the
experiment is noted to be 35~37 ◦C. The PPG signals and the accelerometer signals are
recorded simultaneously using a printed circuit board (PCB). A Bluetooth connection was
established, allowing the subject to freely move his/her arm and walk.
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5.1. Hand Movement

The experiment setup with hand movement is shown in Figure 11a,b. A PPG sensor
was attached to the wrist artery of a subject, while the fingertip of another hand was
clamped with the aforementioned oximeter for reference. The subjects were asked to sit
and relax for some time, and then their information, such as skin color, temperature, and
reference heart rate from the oximeter, was recorded and noted. Then the subjects were
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allowed to move the hand up and down with the PPG sensor patch worn at the wrist. The
algorithm (consisting of two sub-algorithms) was tested on 10 subjects of three different
skin tones (beige, honey, and bronze). The results are shown in Figure 12. The proposed
system achieves an accuracy of 0.6525 ± 4.7 bpm with a window of 6 s. The Pearson
correlation is 0.6, while the average absolute error (MAE) is 3.78 beats per minute (bpm).
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5.2. Walking

The proposed MAR algorithm for walking was tested again on these 10 subjects for
walking, as seen in Figure 11c, while the datasets of the IEEE Signal Processing Cup 2015
were used to evaluate the performance of the developed algorithms. The results are shown
in Figure 13. Seen in Figure 13a is the Bland–Altman plot of the results predicted by the
proposed algorithm for 8-s windows of walking. The resulting average error is as low as
0.7345 ± 8.1129 bpm (beats per minute), with a mean absolute error (MAE) of 1.86 bpm.
The associated Pearson correlation is 0.9499, as seen in Figure 13b. Note herein that the
MAE of 1.86 bpm for walking being lower than 3.78 bpm for hand-moving is due to much
smaller hand-waving amplitudes during walking than intentional hand movement of
the subjects.
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Figure 13. (a) Bland-Atman plot for heart rate estimation; (b) Correlation plot of estimated HRs vs
ground-truth HRs for the case of walking.
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5.3. Discussion

The performance of the proposed two sub-algorithms is compared herein to the results
delivered by other reported past studies. Table 1 [6,13,19] and Table 2 [8,10,22–25,29,46]
show the comparison among the algorithms for hand movement and walking, respectively.
The mean absolute error (MAE) is considered the main metric for performance comparison.
Table 1 gives the performance comparison with other reported studies on MAR for hand
movement, while Table 2 does for walking. It can be seen from Table 1 that the present
study shows the best accuracy of 3.78 bpm in mean absolute error (MAE) as compared to
all the reported studies. The reasons that the present study renders better results compared
to other studies [6,13] are the use of the accelerometer signals as a reference and the much
better quality checking offered by this work. In comparison to [19], this work identifies the
pulsation from PPG before estimating HR, while the work in [19] relies only on a single
accelerometer.

Table 1. Comparison among various techniques for MAR on hand movement.

Year Technique Sensors
(Database)

Reference
Signal Movement Mean Absolute

Error in (bpm)

Mean
Error
(bpm)

Measurement
Location

This study 2023

Quality Check
and Notch

Filtering with
peak selection

and current and
gain tuning

One-channel
PPG and 3-axis
accelerometer

signals recorded
in the lab

Accelerometer Waving
the hand

3.78
95% of HR
estimation

within
± 9.3 bpm

0.6525 Wrist

Lin and
Ma [13] 2016 DWT PPG signals None Waving

the hand 6.87 NA NA

Hanyu
and Xiao

hui [6]
2017 Statistical

Evaluation PPG signals None

Finger
tapping or

hand
swinging

7.85 NA NA

Chao Zhao
et al. [19] 2021

ICA, VMD,
WSST, SSA, and

Kalman
Smoothing

A three-axis
acceleration

signals
None

Finger
tapping or

hand
swinging

95% of HR
estimation

within
±8.86 bpm

NA Wrist

As for walking, the mean absolute error (MAE) offered by our algorithm for walking
is 1.86 bpm (beats per minute), the second best but very close to the best [46] of all the
reported results. Among all the studies in Table 2, most of them [8,10,22,23,29,46] render
better results, with MAEs under 3 bpm, where two-channel PPGs and an accelerometer are
employed for HR estimation, the same as in this study, to achieve favorable performance.
On top of these studies are those [29,46] that achieve MAEs under 2 bpm for walking.
Arunkumar and Bhaskar in 2020 [29] achieved an MAE of 1.89 bpm by developing the
recursive least squares (RLS) and normalized least mean squares (NLMS) adaptive filters
to remove MAs in the frequency domain. As for the work by Motin et al. in 2019 [46],
recursive Wiener filtering was employed. Since Wiener filtering has been considered
effective in removing MAs by many studies, the result showed a very favorable low error
of HR estimation of 1.85 bpm. Even with very low MAEs [29,46], it could be difficult to
remove MAs accurately if the frequency of motion (walking) is close to HR. The methods of
Hankel and SVD proposed by this study are based on correlations, which are supposedly
more capable of identifying and then removing MAs in the frequencies close to HR. In a
nutshell, the favorable precision of HR estimation is due to the pre-screening of noises by
the quality-check sub-algorithm and the capability of the subsequent Hankel matrices and
the associated SVD to identify, decompose, and remove the components in measured PPGs
that are highly correlated to motions.
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Table 2. Performance comparison among various techniques for MAR on walking.

Year Technique Sensors (Database) Reference
Signal Movement Mean Absolute

Error (bpm)
Mean Error

(bpm)
Measurement

Location

This Study 2023
Hankel Matrix,
SVD and
Spectral Analysis

Two-channel PPG
signals, three-axis
accelerations

Accelerometer
and a single
PPG

Walking 1.86 0.7345 Wrist

Amirhossein
Koneshloo
et al. [22]

2019
Joint Basis
Pursuit Linear
Program

Two-channel PPG
signals, three-axis
accelerations

Accelerometer
and PPG
signal.

Walking and
running 2.61 NA Wrist

Mohammod
Abdul Motin
et al. [46]

2019 Recursive
Wiener Filtering

Two-channel PPG
signals, three-axis
accelerations

Accelerometer
and PPG
signal

Walking and
running 1.85 NA Wrist

Wenwen He
et al. [23] 2020

Motion tracking,
Sparse
Representation-
based MA
elimination, and
Spectral Peak
Tracking for HR

PPG signals with 3-axis
accelerometer signal Accelerometer Quasi-periodic

motions. 2.40 NA Wrist

Deniz Alp
Savaskan
et al. [24]

2020

SPECMAR,
TROIKA and
JOSS methods
along with pre
and post
processing

Two-channel PPG
signals, three-axis
acceleration signals for
12 samples

Accelerometer
and PPG
signal

Walking and
running 4.19 NA Wrist

Youngsun
Kong
et al. [10]

2019
VFCDM
approach, Cubic
Spline

Two-channel PPG
signals, three-axis
acceleration signals

Accelerometer
and PPG
signal

Walking and
running

2.94

NA Wrist

Two-channel PPG
signals, three-axis
acceleration signals
(lab)

Accelerometer
and PPG
signal

Walking and
running NA Forehead

Nicholas
Huang
et al. [25]

2020 TAPIR Method
Two-channel PPG
signals, three-axis
acceleration signals

Accelerometer
and PPG
signal

Walking 9.21 NA Wrist

K.R.
Arunkumar
et al. [29]

2020

Recursive Least
Squares (RLS)
and Normalized
Least Mean
Squares (NLMS)

Two-channel PPG
signals, three-axis
acceleration signals
recorded for 23 samples

Accelerometer
and PPG
signal.

Walking and
running 1.89 NA Wrist

S. Friman
et al. [8] 2022

Electromyogram
(EMG) and
accelerometer
(ACC)

PPG signals with
three-axis acceleration
signals

Accelerometer,
EMG and
PPG signal

Walking and
running 2.83 NA Wrist

6. Conclusions

Effort was dedicated to developing new algorithms for motion artifact removal (MAR)
to accurately estimate heart rate when the subject is in motion, such as hand movement
and walking. The proposed algorithm consists of two sub-algorithms. The first is a new
quality-assessment criteria to disregard highly noise-contaminated PPG signals, while the
second employs the Hankel matrix and SVD to remove motion artifacts. The second sub-
algorithm for MAR (motion artifact removal) is built upon (1) assembling Hankel matrices
of PPG and accelerations and (2) singular value decomposition to remove the frequency
components related to motions for accurate heart rate estimation. The result shows a mean
absolute error (MAE) of 1.86 bpm (beats per minute) for walking, the second best but close
to the best among all the reported results. As for hand movement, the algorithm shows the
best accuracy of 3.78 bpm in MAE as compared to all the other reported results.
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