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Abstract: Machining is a crucial constituent of the manufacturing industry, which has begun to
transition from precision machinery to smart machinery. Particularly, the introduction of artificial
intelligence into computer numerically controlled (CNC) machine tools will enable machine tools
to self-diagnose during operation, improving the quality of finished products. In this study, feature
engineering and principal component analysis were combined with the online and real-time Gaussian
mixture model (GMM) based on the Kullback–Leibler divergence’s measure to achieve the real-time
monitoring of changes in manufacturing parameters. Based on the attached accelerometer device’s
vibration signals and current sensing of the spindle, the developed GMM unsupervised learning
was successfully used to diagnose the spindle speed changes of a CNC machine tool during milling.
The F1-scores with improved experimental results for X, Y, and Z axes were 0.95, 0.88, and 0.93,
respectively. The established FE-PCA-GMM/KLD method can be applied to issue warnings when it
predicts a change in the manufacturing process parameter. A smart sensing device for diagnosing the
machining status can be fabricated for implementation. The effectiveness of the developed method
for determining the manufacturing parameter changes was successfully verified by experiments.

Keywords: machine tool; Gaussian mixture model; principal component analysis; feature engineering

1. Introduction

In the manufacturing industry, every aspect of a machine tool directly affects the
quality of the finished product in terms of geometric precision, surface roughness, or other
criteria. From the perspectives of a good finished product and determining the machine
tool status, such as part wear or other abnormalities, the machine operation was previously
handled by on-site engineers. However, this method requires high staffing costs and cannot
guarantee a consistent finished product quality. Accordingly, the objectives of new smart
manufacturing methods are to reduce time costs and improve product quality. Some
scholars have attempted to improve product quality by optimizing controller, finishing, or
interpolation parameters. For instance, Chiu and Lee [1] proposed an intelligent machining
system named the adaptive-network-based fuzzy inference system (ANFIS) that was
optimized using particle swarm optimization. Selecting optimal computer numerical
control (CNC) controller parameters was a key factor for obtaining favorable performance
indicators because these five parameters, namely jerk, acceleration, feed rate, angular
jerk, and centripetal acceleration, affect the interpolation process of both trajectory and
speed planning. After analyzing the machining data to obtain contouring and tracking
errors, Chiu and Lee used ANFIS to establish a relationship model between the five
aforementioned CNC parameters and three machining performance indices, namely, speed,
milling accuracy, and surface smoothness. Hence, users could adjust the weight of each
performance index in accordance with their needs, and ANFIS could generate the optimal
CNC parameters accordingly. Tsai et al. [2] proposed an optimization algorithm that
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used a backpropagation neural network to predict three machining performance indices
based on interpolated parameters (acceleration, time constant, S-shaped time constant,
corner velocity, and feed rate). These parameters were treated as the input. Then, they
applied the genetic algorithm (GA) to search for the optimal interpolation parameters
based on an objective function without constraints. The accuracy and efficiency of this
algorithm were verified by the study results. Huang and Liao [3] used a GA-optimized
general regression neural network to build a model that predicts the corner error, 45◦

corner jerk, 60◦ corner jerk, and machining time from CNC controller parameters. And
they successfully established a system that generates a set of optimized CNC parameters
in accordance with user-provided machining requirements. However, these three studies
performed parameter optimization for machine tools in healthy or normal states. They
did not discuss parameter optimization for machine tools with deteriorated components,
which may lead to inconsistencies between the machine tool state and the machining,
interpolation, or controller parameter values.

From the perspective of machine health status, machine tools state monitoring is
mainly performed using supervised learning. Azamfar et al. [4] proposed a deep-learning-based
domain adaptation method that used a deep convolutional neural network to perform
feature extraction and identify machine health status. They used the maximum mean
discrepancy to evaluate and optimize data distributions in various operating conditions
and validated the method by monitoring a ball screw in different conditions. The results
indicated that their proposed method can effectively extract universal features for fault
diagnosis. Lin et al. [5] proposed an innovative smart system for the early detection of
failures in automatic tool change (ATC) systems. The open and close signals of the system’s
tool magazine door were used as input, and 41 indicators were obtained from 26 machines
with statistics-based feature extraction methods. These were used to train lightweight
supervised learning algorithms, such as support vector machine and k-nearest neighbor,
for early failure detection. Their system classified the ATC system state into predefined
risk levels of 0 for “normal,” 1 for “caution,” and 2 for “danger.” They further introduced
feature selection, correlation, and regression models to assist in the extraction of features
associated with ATC failure. Their smart box can monitor ATC system states in real time
on the production line and discover potential failures in advance. Li et al. [6] developed
an approach to monitoring the health conditions of cutting tools in CNC machine tools. A
high-precision Hall sensor was used to collect spindle current data from the CNC. These
data can reflect the tool state, such as the cutting force, tool wear, and tool breakage,
during machining. A deep learning model for anomaly detection was constructed by
analyzing features such as the oscillations and frequencies in the spindle current signal.
This model used a simple and deep learning model denoted CNN-AD to learn and extract
features in the spindle current signal for abnormality detection. The effectiveness of the
model was validated by testing on an experimental dataset that included signals generated
both during normal operation and anomalous operation, such as with tool wear or tool
breakage. The results demonstrated that their proposed model could accurately detect
tool abnormalities. Irgat et al. [7] collected three-axis vibration signals of a healthy motor
and a motor with inner-race and outer-race bearing faults. They found that peak-to-peak
and root-mean-square statistical features for each vibration axis are the key features for
differentiating between healthy and faulty motors. Classification was performed using
the k-nearest-neighbor algorithm and decision trees because of their relative simplicity,
since k-nearest neighbor is known for its simplicity and low computational complexity.
And the decision tree has low computational costs, high efficiency, and high speed. Ball
screws are widely used in mechanical processes, but long operation leads to reductions in
the preload and rigidity of the lead screw, resulting in inaccurate positioning. However,
these supervised learning approaches are not without shortcomings—the data must be
labeled, which requires high labor costs [8]. For a supervised-learning tool wear model [9]
to determine the tool wear value or lifespan for a tooling process, it must be provided with
a dataset labeled with these values for the specific tooling conditions of that process. Any
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changes to the tool type, workpiece material, or cutting parameters may reduce model
accuracy, restricting the practical applications of state diagnosis methods.

Hence, researchers have begun investigating unsupervised learning for failure detec-
tion. Hong et al. [10] presented an effective analytical technique for the early diagnosis of
ball bearing faults based on vibration signals from bearings by using the feature extrac-
tion technique based on spectral kurtosis (SK) and a Gaussian mixture model (GMM) to
evaluate bearing defects. Principal component analysis (PCA) was employed to reduce
misclassifications due to noise. The SK and root-mean-square (RMS) diagnostic results
for an experiment were compared, and the SK-GMM results could effectively evaluate the
level and severity of faults. The use of the extracted features, PCA, and GMM for composite
structures was shown in [11]. Guo and Chen [12] developed a variable-refrigerant-flow
air-conditioning system by modifying the PCA-GMM fault diagnosis model and rating
four types of system faults. The experimental results indicated that incorporating PCA
increased the fault diagnosis accuracy and reduced runtime. Yu [13] used PCA and GMM
by solving the nonlinearity and multimodal trajectories issues for the semiconductor man-
ufacturing system. Liu et al. [14] proposed a GMM-based outlier detection algorithm,
which used a global optimization expectation maximization algorithm to fit the testing
dataset to a GMM. They adopted the Mahalanobis squared distance as the measure index.
For each Gaussian component, data points more than three standard deviations from the
mean were considered outliers. Experiments involving the simulation dataset and the real
dataset verified the effectiveness of the algorithm in detecting outliers in high-dimensional
datasets. In [15], a Hellinger distance measure with GMM was discussed for bearing
prognosis. Nam and Kwon [16] developed a model that combined an LSTM-Autoencoder
for feature extraction and GMM to create a precise model of tool breakage. Combining the
approaches improved the detection accuracy and response speed. He et al. [17] developed
a fast clustering algorithm and GMM for the fault prognosis of a photovoltaic inverter.
Lucà et al. [18] proposed a GMM-based damage detection approach for axially loaded
beam-like structures. After damaging a specific part of the test structure, a sensor was used
to measure the vibration response. And GMM was analyzed and was used to model the
response signal. The eigenfrequencies of multiple vibration modes were composed into
a multivariate damage features. By framing the damage detection problem as an unsu-
pervised outlier detection problem and using the Mahalanobis squared distance to define
the effective damage index, this proposed approach could accurately detect the location
and degree of the damage with higher precision and sensitivity than existing methods.
In [19], to avoid hidden misclassification for the bearing fault diagnosis of industrial elec-
tric motor, a broadened GMM-window-based signal processing approach was proposed.
Zhang [20] et al. studied an improved ensemble empirical mode decomposition hard
threshold denoising (EEMD-HTD) and GMM multisource sensor fault diagnosis method
for chillers. EEMD-HTD decomposed data signals through empirical mode decomposition
and then input the decomposed signals to the GMM model to detect and diagnose chiller
sensor faults. They used their approach to detect faults in a heating, ventilation, and air
conditioning (HVAC) chiller system and validated the effectiveness of their approach in
diagnosing single-source and multisource HVAC faults. Some useful EMD information
of intrinsic model functions gathered with PCA and GMM for the pump’s degradation
was studied by [21]. Jianbo Yu [22] presented an adaptive GMM (AGMM) and employed
Kullback–Leibler divergence (KLD) as an indicator for quantifying tool performance degra-
dation. AGMM is capable of the online and adaptive learning of the dynamic changes in
tool performance throughout the tool lifetime by dynamically adjusting the learning rate
and parameters and merging and splitting Gaussian components. Moreover, tool perfor-
mance changes were quantified by measuring the distance between density distributions
produced by the AGMM and the baseline GMM. After conducting a machine tool test,
the experimental results demonstrated that the AGMM-based KLD indicator is effective
for assessing tool performance degradation. In [23], the PCA and KLD were used as a
method for improving an incipient fault detection of an electrical drive system under the
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multivariate statistical analysis frame. Cao et al. [24] proposed a GMM-based variational
Bayesian PCA with KLD for the industrial hydrocracking process. They succeeded in
detecting the incipient faults without monitoring delay.

As mentioned, in CNC machine tools diagnostic studies, the tool type, workpiece
material, and cutting parameters affect the results of supervised learning when determining
tool wear during the machining process. Parameter combinations in actual machining
change frequently. Previous studies have not investigated some potential anomalies, for
example, reducing spindle speed as a protective measure when encountering cutting
resistance. This may result in gaps in the cutting surface that affect the finish quality.
Some surface anomalies or poor spindle temperature control may also cause the spindle
speed change or lead to spindle displacement. Restrictions on the CNC feed axis servo
acceleration and jerk settings can cause stress changes on the tool surface at the moment of
feed. The supervised learning and monitoring of these scenarios during actual machining
states are difficult. Clustering algorithms, such as k-means or hierarchical clustering, only
yield the center point and size of each cluster. They do not describe the data distribution or
trends within each cluster. Therefore, GMM can estimate the parameters of each Gaussian
distribution (i.e., the means and covariance matrix) and thereby determine the probability
density function of the whole dataset, offering a richer description of the data.

The static and dynamic forces in between the spindle tool and workpiece are extremely
complicated when machining a product. A smart spindle is mostly fabricated and embed-
ded with an accelerator and a temperature sensor in smart manufacturing. However, if it is
not a smart spindle, an attached accelerator near to the spindle is a solution to the sensing
source for diagnosis. A dynameter under the workpiece for determining the dynamic force
of the spindle tool is also used. However, the dynameter costs a lot and is not very practical
in industrial applications. In [25], the cutting path effect on the acoustic emission (AE) and
vibration signals during the micro-milling processes was investigated. Their AE sensor and
an accelerometer were installed on a fixture attached to the spindle housing. An acoustic
emission (AE) sensor attached to the device for the diagnosis of the tool wear can be used.
However, it is not easy to explain the phenomena of the deformed metal lattices signals
when the spindle’s cutting speed is changed. So, in this study, we adopted a practical
approach for industry application. An accelerator was directly attached to the device. This
will be a new solution for embedding a MEMS accelerator or an add-on accelerator for a
smart device of CNC machine tools. As such, in this study, GMM is combined with feature
engineering, PCA, and KLD to establish an unsupervised learning approach. A diagnostic
model for detecting the spindle speed change during surface milling was implemented.

2. Research Methods
2.1. Experimental Machine

The CNC tooling machine used in this study was the DMARK-180P (Figure 1, Dmark
Co., Taichung, Taiwan), which was equipped with a Delta NC31A-MS-A CNC (Figure 2,
Delta Electronics, Taipei, Taiwan) and AC 220-V 400-W servo drive from the ASDA-A2 se-
ries (Figure 3, Delta Electronics). The specifications of the machine are presented in Table 1.

2.2. DAQ-204 Vibration-Capture Module and Triaxial Accelerometer

The BALTech DAQ-204 vibration module (Figure 4, Bal Tech Co., Hsinchu, Taiwan)
was primarily used to detect vibrations and record raw vibration data. Its product specifi-
cations are listed in Table 2. The accelerometer used in this study was the BT-1513 triaxial
accelerometer (Figure 5). Its sampling frequency was set to 12,800 Hz, and gravitational
acceleration (g) was the sampling unit. Its specifications are listed in Table 3.

2.3. Gaussian Mixture Model

GMM is a mixture model that is widely used in unsupervised data grouping and has
been successfully applied to voice and speech recognition. GMM uses multiple Gaussian
distributions to represent the distribution of eigenvectors. Due to GMM’s ability to record
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the categories and positions demonstrated in the data and also to describe the size and
shape of these categories in space, it is suitable for producing color visualizations of the
eigenvector distribution in space.
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Table 1. DMARK-180P specifications.

Spindle

Speed 24,000 rpm (max), 2.2 kW

Motor Built-in

Cooling Cold air

Servo motor

x-axis 400 W

y-axis 400 W

z-axis 400 W

Servo drive A2, 400 W, single-phase/three-phase connections

Travel

x-axis 160 mm

y-axis 180 mm

z-axis 150 mm

Feed
Rapid movement (G0) Maximum x-,y-, and z-axis

speeds: 6/6/6 m/min

Control precision (controller) 0.001 mm

Machine body

Length 750 mm

Width 500 mm

Height 1400 mm

Control
Control format Standard G code, standard M

code

Connection modes ETHERNET/USB
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Table 3. Triaxial accelerometer specifications.

Model BT-1513

Acceleration range ±50 g

Bandwidth 0.5–15 kHz

Triaxial sensitivity

X: 108.85 mV/g

Y: 100.48 mV/g

Z: 103.64 mV/g

A GMM has three parameters: the mixture weight, the mean vector, and the covariance
matrix. These parameters were gathered and given new symbols, as follows:

(ai, µi, Σi), i = 1, 2, ..., V (1)

where ai is the mixture weight, µi is the mean vector, Σi is the covariance matrix, and V
is the number of Gaussian distributions. If a set of points in d-dimensional space can be
described as xn, n = 1 . . . N, the Gaussian frequency function g(xn; µi, Σi) can be used to
describe the probability density function of the points [26]:

g(xn; µi, Σi) =
1√

(2π)d|Σi|
exp
[
−1

2
(xn − µi)

TΣi
−1(xn − µi)

]
(2)

For this Gaussian density function, if xi, i = 1 . . . N are assumed to be mutually
exclusive events, then the probability density of the classification clustering that can satisfy
the sum N of Equation (2) is

p(xn; µi, Σi) =
n

∏
i=1

g(xn; µi, Σi) (3)

where g(xn; µi, Σi) is the probability density.
An iterative expectation maximization (EM) algorithm is typically used to solve for

the GMM parameters. The first step is to calculate the expectation values; this is called the
E step. The second step is the maximization step or M step. The maximum likelihood value
obtained in the E step is used to calculate the parameter value, and the parameter estimates
in the M step are used for the calculations of the E step in the subsequent iteration. In
GMM, the EM algorithm can be expressed as follows:

(1) Expectation Step

ω
(t)
i =

a(t)i g
(

xn

∣∣∣µ(t)
i , Σ(t)

i

)
∑N

j=1 a(t)j g
(

xn

∣∣∣µ(t)
j , Σ(t)

j

) , ∀n, i (4)

where ω
(t)
i is the posterior probability function of the ith distribution and a(t)i is equal to

the weight of each Gaussian distribution between 0 and 1.

(2) Expectation Step

h(t)i = ∑N
j=1 ω

(t)
j (xn) (5)

a(t+1)
i =

h(t)i
N

(6)

u(t+1)
i =

1

h(t)i
∑N

j=1 ω
(t)
i xj (7)
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Σ(t+1)
i =

1

h(t)i

ΣN
j=1ΣV

i=1ω
(t)
j

(
xj − µ

(t+1)
i

)(
xj − u(t+1)

i

)T
(8)

where a(t+1)
i is the updated mixture weight, u(t+1)

i is the updated mean vector, and Σ(t+1)
i

is the updated covariance matrix.

2.4. Feature Engineering

Raw data typically require preprocessing to extract features before being input to a
machine learning model. This process is called feature engineering and aims to extract
useful features, remove redundant features, and convert the data into a form that can
be used by machine learning algorithms. Feature engineering techniques that can yield
effective feature data include feature selection, feature extraction, and outlier reduction.

2.4.1. Feature Extraction

Feature extraction is the expansion of one-dimensional data into numerous dimensions
by calculating various statistical indicators, such as by calculating the RMS, skewness, kurto-
sis, crest factor, variance, and mean of time-domain data or determining the power spectral
density of frequency-domain data. After magnifying one-dimensional data into multidi-
mensional data, feature selection can be performed to identify useful feature patterns.

2.4.2. Outlier Reduction

Outliers in the feature extraction results must be removed to prevent their interference
with the training model. A common practice is using the Z score. Each value is scored by
its distance from the mean in terms of the standard deviation, and variables with scores
outside of a given range are considered outliers and are removed. In this study, the Z score
threshold was 4; that is, values greater than 4 standard deviations from the mean were
considered outliers. The Z score of a value is calculated as follows:

Z Score =
xi − µ

σ
. (9)

where xi is any datum among the n data, µ is the mean of these n data, and σ is the
standard deviation.

2.4.3. Feature Selection

In 1933, Harold Hotelling [27] developed PCA, a commonly used approach for reduc-
ing the dimensionality of a dataset. It converts high-dimensional data into low-dimensional
data through linear transformations while maximizing the retained information. The basis
of this conversion is identifying a set of principal components that are mutually orthogonal
and maximizing the variance of the data. Selecting the principal components before build-
ing a GMM can remove noise, reduce the complexity of the model, and accelerate training.

The concrete steps of feature extraction in PCA are as follows:

(1) Standardize the raw data: Assuming that the raw data are represented by xn, n = 1
. . . N, the Z score can be described as zi(xn; µi, σi).

zi(xn; µi, σi) =
xn − µi

σi
, i = 1, 2, . . . , V (10)

where µi is the mean of xn and σi is the standard deviation.

(2) Calculate the covariance matrix: If cov(x, y) is calculated using the feature training
dataset zi, i = 1, 2, . . . , V, the covariance matrix equation is then

cov(x, y) =
1

n− 1

N

∑
j=1

(
xj − µx

)(
yj − µy

)
, n = N (11)
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(3) Calculate the eigenvalues and eigenvectors of the covariance matrix: in order of
greatest to smallest, the eigenvalues of the covariance matrix are λi, i = 1 . . . n, and
the corresponding eigenvectors are ai, i = 1 . . . n.

(4) Calculate the variance cumulative contribution ratio (α) of the first k principal compo-
nents greater than 0.97:

∑k
i=1 λi

∑46
j=1 λj

≥ 0.97 (12)

(5) Generate the new principal components matrix with dimensionality k:

X∗ = [a1, a2, . . . , ak]
TXT (13)

2.5. Kullback–Leibler Divergence

Kullback–Leibler divergence (KLD) is also referred to as relative entropy and can be
used to analyze the differences between data with different probability density functions
(PDFs). KLD is extremely sensitive to small deviations and is therefore effective for early
failure diagnosis [26]. In this paper, normal conditions (spindle speed 6000 RPM) and
test conditions (spindle speed 5500 RPM) were modeled using GMM to determine the
corresponding Gaussian distributions. The baseline distribution was expressed as pA(x)
and the test distribution was pB(x). The difference between the two Gaussian distributions
was analyzed with the KLD.

KL(pA(x)‖pB(x)) = [log
| ∑B |

∑A
] + Tr(∑−1

B ∑A)+(µA − µB)
T∑−1

B (µA − µB)−N (14)

where x is a vector and µA and µB are two mean values for the distributions pA(x) and
pB(x), respectively. Tr(∑−1

B ∑A) is the trace of matrix ∑−1
B ∑A . N is the dimensionality of

vector x.

2.6. F-Sscore

As in statistical analysis of binary classification, F-score is a measure of a test’s accuracy.
This is suitable to apply in this study. It is calculated from the precision and recall of the test.
Precision is the number of true positive results divided by the number of all positive results,
including those not identified correctly. Recall is the number of true positive results divided
by the number of all samples that should have been identified as positive. Precision is also
known as the positive predictive value, as shown in Equation (15). Recall is also known as
the sensitivity in diagnostic binary classification, as shown in Equation (16). The highest
possible value of F-score is 1.0, indicating perfect precision and recall. And the lowest
possible value is 0 if either precision or recall is zero. In this study, the F1 score, as shown
in Equation (17), was adopted for the harmonic mean of precision and recall. Therefore,
it represented both precision and recall in one metric for diagnosing the state of spindle
speed when it was changed to another unwanted rpm. The range of F1 is in between 0 and
1. The 1 represents the best diagnosed performance.

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

F1 = 2× precision× recall
precision + recall

(17)
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3. Experiments

The machined workpiece performance indices for CNC manufacturing depend on the
requirement of less machining time, less surface roughness, and less geometric tolerances.
In manufacturing, senior engineers set appropriate cutting parameters (such as restrictions
on the feed axis acceleration and jerk, the feed rate, and the cutting depth) in accordance
with the tooling requirements and the condition of each CNC machine. The experimental
schema for process identification of spindle speed under abnormal input cutting parameters
is presented in Figure 6. In each experiment, the test workpiece was machined along a
single path (Figure 7) and a corner turn was followed by another straight line by a cutting
depth of 1 mm eight times. The initial half cut was made with a spindle speed of 6000 RPM.
In the rest of the half cut of the following path, the spindle speed was reduced to 5500 RPM
by mimicking a tooling parameter abnormality. An accelerometer was affixed to the vice to
collect data during the tooling process. A picture of the accelerometer position attached to
the workpiece is shown in Figure 8, with the coordinates demonstrated in the bottom-right
corner. GMM with real-time monitoring was then used to analyze the differences between
the normal and abnormal cutting parameters during milling. In practice, the differences
beyond a threshold will prompt an alert in the man–machine interface for the user.
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The experimental flowchart is shown in Figure 9. A three-axis accelerator attached
to the workpiece and a current sensor clamped with an inverter module of the spindle
were all sampled with 12.8 kHz. There were about 4 min and a few seconds for the
acquisitioned time when machining an aluminum workpiece. A total of 30 workpieces
were experimentally machined. There were two datasets for each machined workpiece. The
first dataset was collected for the initial cutting based on a spindle speed of 6000 rpm. These
data corresponded to consecutive sensing signals, which were divided starting from the
first data number section up to the 65th data number section during machining. The second
dataset was collected but with a change in the spindle speed to 5500 rpm. This dataset
corresponded to the sensing signals divided from the 66th data number section to the 129th
data number sections. Since every section was with 2 s, a total of 129 data numbers would
be analyzed by the feature engineering first, followed by PCA for dimensional reduction
and then unsupervised learning via the GMM. All the features’ dimensions were reduced
based on the PCA with a cumulative contribution ratio, α, more than 97%. Finally, the
GMM was applied as the diagnostic method with the measure of the Kullback–Leibler
divergence (KLD). Then, a threshold design value can be assigned by diagnosing the
spindle speed change of a CNC machine tool during milling.



Sensors 2023, 23, 6174 12 of 22
Sensors 2023, 23, x FOR PEER REVIEW 13 of 23 
 

 

Training process

PCA process

START

CNC machining

Processing with 
preset processing 

parameters

KL divergence 
analysis

GMM

Parameter change 
result

END

Adjusting 
processing 
parameters

for machining

Data 
Standardization

covariance matrix

Number of 
dimensionality 

reduction

Training Dataset Test Dataset

Data 
Standardization

α > 97%

EigenVector EigenValue

EigenVector 
matrix

Principal 
component matrix 

covariance matrix

EigenVector

EigenVector 
matrix

Principal 
component matrix 

GMM

Feature 
Engineering

Feature 
Engineering

 
Figure 9. Experimental flowchart for GMM diagnosis. 

Figure 9. Experimental flowchart for GMM diagnosis.



Sensors 2023, 23, 6174 13 of 22

4. Results and Discussion
4.1. Feature Engineering, PCA, and F-Score

The core concept of feature engineering (FE) is to identify the most discriminative
features from raw data by using a systematic operation. The fusing of different sensor
signal features is discussed prominently in recent research. Those signals are obtained from
different sensors when it is unclear which one is the key sensing signal for the characteristics
of the object requiring diagnosis. In this study, data segmentation was conducted first. The
raw data were divided into 129 sections (within 4 min and few seconds) with a constant of
2 s to acquire the signals of the part by filtering the data value with six standard deviations.
Secondly, feature extraction was implemented. Six statistical features, namely, root mean
square (RMS), kurtosis, skewness, crest factor, variance, and standard deviation, were
extracted in each section of the time domain. Four statistical features, namely, mean,
standard deviation, skewness, and kurtosis, were extracted in each section of Power
Spectrum Density (PSD)-Amp and PSD-Shape. Therefore, eight PSD features were made.
For the purpose of more feature argumentation, the vibrational and current sensing data
were also transformed to the Fast Fourier Transform with a Nyquist frequency of 6.4 kHz.
The average amplitude of each frequency sector was calculated every 400 Hz. In Table 4,
46 (6 + 8 + 32) features acquired from vibrational and current features with 25,600 data
(2 s) in one segment were made. Each segment was divided into 128 sections. Therefore,
200 identities with each 46 features were constituted for dimensional reduction via PCA.
Reduced feature dimensions of PCA were calculated with a cumulative contribution ratio
more than 97%. In Table 5, the dimensionality was reduced from 46 features to 23.

Table 4. All 46 features for every data segment.

Total Data of 25,600 (Vibration Value) + 25,600 (Current Value) in One Data Segment

Order Feature Sensing Data

1 RMS

vibration value

2 Kurtosis

3 Variance

4 Crest Factor

5 Standard deviation

6 Skewness

7–22
Average amplitude of frequency sectors

[1 + 400 × (i − 1)] Hz~(400 × i) Hz,
i = 1,2,3, . . . ,16

23–38
Average amplitude of frequency sectors

[1 + 400 × (i − 1)] Hz~(400 × i) Hz,
i = 1,2,3, . . . ,16

current value

39 PSD-Amplitude Mean

vibration value

40 PSD-Amplitude Standard deviation

41 PSD-Amplitude Skewness

42 PSD-Amplitude Kurtosis

43 PSD-Shape Mean

44 PSD-Shape Standard deviation

45 PSD-Shape Skewness

46 PSD-Shape Kurtosis
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Table 5. PCA dimensionality before and after reduction.

Before After

x-axis 200 × 46 200 × 23

y-axis 200 × 46 200 × 23

z-axis 200 × 46 200 × 23

4.2. GMM Modeling and Visualization

In this study, both online and offline spindle speed variable monitoring procedures
were used. The offline monitoring was performed using a program written in MATLAB.
The online monitoring program for the GMM and PCA was achieved using a C# program.
The processed raw data by feature engineering were fed through MATLAB and treated as
dynamic-linked libraries. Then, these features were included in the real-time C# program-
ming. The synergized FE-PCA-GMM/KLD was constructed thereof. A man-and-machine
interface (MMI) can be built for industrial practice.

Based on the flowchart in Figure 9, Figure 10 demonstrates the visualized plot of
spindle speed of 6000 rpm, by using the top two features of the x-axis acceleration for
the FE-PCA-GMM method. The red circles are the training data set while the blue ones
are the test dataset. Without adjusting the spindle speed (the top right block diagram in
Figure 9), we can see that the blue circles were pretty close to the red circles. Based on the
same flowchart in Figure 9, Feature 11 demonstrates the plot with the test spindle speed
changed to 5500 rpm. The red circles are the same training dataset, while the blue ones
are the test dataset. We can see that the distribution of blue circles was not as the same as
that of the red circles. Such visualized plotted depictions deformed with larger elliptical
shape. This coincides with the change in µi and Σi by the characteristics of GMM. Under
the same experimental results of Figures 10 and 11, Figures 12 and 13 show the results for
the y-axis and Figures 14 and 15 show the results for the z-axis. These plots showed the
same distribution of blue circles, which was the same as the red ones when the spindle’s
speed was the same. The blue contour deviated from the red contour when the spindle’s
speed was changed. These visualized diagnosed plots demonstrate that the developed
FE-PCA-GMM can perform speed change diagnosis with workpiece machining.
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4.3. KLD and KLD’s Five-Point Moving Average

As mentioned, the 1–65th data section was for the spindle speed of 6000 rpm, while
the 65th–129th data section was changed to 5500 rpm. These data corresponded to the first
to fourth cutting paths, followed by the 5th to 8th cutting paths, as shown in Figure 7. In
this experiment, the threshold value of KLD was set as 1. The definition for the confusion
matrix based on the value of KLD is shown in Table 6. TP, TN, FP, and FN indicate the true
positive, true negative, false positive, and false negative, respectively. Table 7 shows the
values of the confusion matrix for each axis. The calculated F-Score using Equation (17) for
each axis is demonstrated in Table 7. The F1-scores for X, Y, and Z axes are approximately
0.95, 0.88, and 0.93, respectively. Since the F1-score is one of the common statistics besides
accuracy, the larger the F-score is, the better the comprehensive performance of the model
becomes [28]. The F-measure in x-axis clustering is high when compared with the z-axis
and y-axis. The experimental results indicate that by assigning the threshold of the KLD
appropriately, the FE-PCA-GMM model can predict the spindle change from 6000 rpm to
the lower speed of 5500 rpm successfully.

Table 6. Definition for the confusion matrix based on the value of KLD.

KLD < 1 KLD > 1

KLD < 1 (1–65th data section tests: 6000 rpm) TP FN

KLD > 1 (65th–129th data section tests: 5500 rpm) FP TN

Table 7. The values of the confusion matrix and the F-Score for each axis.

TP FN FP TN F-Score

x-axis 58 6 0 65 0.9508

y-axis 59 5 10 55 0.8872

z-axis 59 5 4 61 0.9291

Figure 16a,b show the plots of the KLD of the rotational speed change along the x-axis.
These two figures indicate the average KLD values for milling the workpiece by a cutting
depth of 1 mm eight times when the cutting process moves to the next milling surface. The
orange dashed line in Figures 16–18 indicates the assigned threshold value. Table 8 details
the average KLD values for each axis with and without data cleaning. The purpose of
performing the data cleaning was because the acquired data of the tool vibration were too
small or even close to zero when the tool was left out of the workpiece and then proceeded
to perform the next milling process. As we can see in the 12th, 29th, and 46th rounds of
Figure 16a, the surge in KLD value was due to the GMM’s calculation, since there were weak
vibrational signals when the spindle cutting tool was not in contact with the workpiece.
Such a scenario enlarged the value of the KLD since the calculated mean and covariance of
the GMM during the uncontacted cutting process deviated significantly. This will cause a
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significant variation in the KLDs and then over the preassigned threshold. This will issue a
warning signal in practice. Nevertheless, as we can see in the 80th, 97th, and 114th rounds
of Figure 16a, the KLD value remained higher than the threshold since the spindle’s speed
was changed and then favored the deviation in the calculated mean and covariance of the
GMM’s thereof. Comparing Figure 17a with 17b in the y-axis and Figure 18a with 18b in
the z-axis, the diagnosis of using GMM/KLD illustrated more robustness by the five-point
moving average when the spindle speed was reduced to 5500 rpm. The result of FN in
Table 7 for each axis should be caused by no data cleaning in the real-time C # program. As
shown in Table 8, the use of data cleaning could relieve the possibility of warning signals
in practice. To conclude here, the use of FE-PCA-GMM/KLD preserved the improved
prognostic method for the spindle’s speed change of the CNC machine tool.
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Table 8. The average KLD values for each axis with and without data cleaning when the cutting
process moves to the next milling surface.

6000 RPM (1–65th
Data Section) without

Data Cleaning

6000 RPM (1–65th
Data Section) with

Data Cleaning

5500 RPM (65th–129th
Data Section) without

Data Cleaning

5500 RPM (65th–129th
Data Section) with

Data Cleaning

x-axis 0.675 0.43 3.953 3.244

y-axis 0.409 0.226 2.448 1.767

z-axis 0.404 0.237 2.562 1.9

Thus, an example was tested by changing the spindle speed from 8000 rpm to 7000 rpm
and then down to 6000 rpm. The consecutive FE-PCA-GMM/KLD program was imple-
mented as shown in Figure 19. The unsupervised learning of the GMM from the initial
8000 rpm to 7000 rpm and finally to 6000 rpm was conducted and the plots of the top two
features are shown in Figures 20–22, respectively. This demonstrated the phenomena of
the more visualized separation when the speed difference was enlarged. As estimated, the
value of KLD increased when the spindle speed decreased from 8000 rpm to 7000 rpm and
then down to 6000 during the machining process in Figure 23. The experimental results
show affirmation toward the proposed method concerning variable speed changes.
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and then down to 6000 during the machining process in Figure 23. The experimental re-
sults show affirmation toward the proposed method concerning variable speed changes. 
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GMM/KLD method can be applied to issue warnings when it predicts a manufacturing 
process parameter change. 
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5. Conclusions

In this research, the effectiveness of the developed method for determining the man-
ufacturing parameter changes of a CNC machine tool is verified by experiments. The
vibrations and spindle current data gathered with an accelerometer attached to a vise
and current sensor clamped with spindle current, respectively, were used to produce a
dataset by increasing their dimensionality with feature engineering and then reducing the
dimensionality with PCA. Then, the GMM with the KLD measure performed the prognostic
diagnosis in real-time. The top two features’ visualized results and an F1 score more than
0.88 revealed that the overlap between any two Gaussian mixed distributions was higher
with CNC machine tooling with a preset spindle speed of 6000 RPM, suggesting greater
similarity (lower when the rotational speed was reduced to 5500 RPM (less similarity)).
In addition, the visualized results of the two features reveal that the clustering behavior
in between the Gaussian mixed distributions was significantly distinct when the CNC
machine tooling with a spindle speed changed from 80,000 RPM to 6000 RPM. Finally,
with the merit of high sensitivity by the KLD, the trend of the KLD changed considerably
when the machine spindle speed was changed. The established unsupervised FE-PCA-
GMM/KLD method can be applied to issue warnings when it predicts a manufacturing
process parameter change.

The present research will continue to be implemented for other machining parameter
changes. The in situ C # program for GMM-KLD will be improved with automatic data
cleaning via the G-code when the spindle tool is left out of the cutting surface. Object
detection will be conducted to capture the GMM’s morphing in a future study. In conclusion,
according to the results of this paper, there is potential to develop a smart device and
deploy an unsupervised FE-PCA-GMM/KLD system. A smart manufacturing method
that automatically performs the prognostic diagnosis for the CNC machine tools can
be achieved.
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