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Abstract: We propose a new paradigm for modelling and calibrating laser scanners with rotation
symmetry, as is the case for lidars or for galvanometric laser systems with one or two rotating mirrors.
Instead of bothering about the intrinsic parameters of a physical model, we use the geometric
properties of the device to model it as a specific configuration of lines, which can be recovered by
a line-data-driven procedure. Compared to universal data-driven methods that train general line
models, our algebraic-geometric approach only requires a few measurements. We elaborate the
case of a galvanometric laser scanner with two mirrors, that we model as a grid of hyperboloids
represented by a grid of 3× 3 lines. This provides a new type of look-up table, containing not more
than nine elements, lines rather than points, where we replace the approximating interpolation with
exact affine combinations of lines. The proposed method is validated in a realistic virtual setting. As
a collateral contribution, we present a robust algorithm for fitting ruled surfaces of revolution on
noisy line measurements.

Keywords: line geometry; galvanometric laser scanners; line variety sensor models; data-driven
calibration; hyperboloid fitting; Plücker coordinates

1. Introduction

The intrinsic calibration of a sensor is typically completed by determining a number
of parameters in some proposed sensor model that aims to represent the physical reality of
the involved hardware [1,2]. Often, this strategy implies non-flexible models with unstable
parameter values ([3,4], Chapter 3 in [5]). In spite of its rich tradition and literature,
calibration remains a tedious and time consuming task, to be repeated when conditions
change, not always obtaining the required accuracy. The shortcomings of the calibration by
matching a rigid physical device model have recently been admitted by leading scientists in
the field [6]. The inaccuracies and instabilities inherent to the current calibration procedures
are troublesome in applications where intrinsic localization, registration, and sensor fusion
are involved [7]. Furthermore, last but not least, intrinsic calibration procedures based
on a physical model cope with the determination of physical parameters that can rarely
be measured directly, and are moreover rather virtual than physical, due to the idealised
abstract nature of the model.

An alternative strategy is the so-called universal-model-based method, which consid-
ers a sensor as a black box that connects its control variables (camera pixel coordinates,
mirror angles for laser reflection, . . . ) to the observed world. The calibration of this mapping
is established by a data-driven procedure, requiring the availability of sufficiently large
datasets that enable interpolation [6,8], or look-up tables [9], or the training of neural net-
works or Gaussian processes [10–14]. An important issue of this approach is that it requires
world point clouds with reliable coordinates, which significantly cover the work space.

In this article, we make use of geometric sensor models, assigning a world line for
each sensor query [15–18]. Lines naturally present the way how many sensors observe
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the world. Our approach still assumes a specific model, given by a line variety, in the
algebraic geometric sense. However, it bypasses the intrinsic physics of the device. The
lines that belong to this line model, can be obtained by direct measurements, as opposed
to the parameters of a physical model-based calibration. A practical drawback of line
measurements might be that they require the determination of the position of several
collinear points. However, this extra work is awarded with the possibility to reduce noise
and outliers for point measurements by means of robust line fitting [19]. Furthermore, a line
model provides stable transformations to other reference frames [20–22]. The calibration
algorithms as presented in [17,23,24] are line-model-based, but they still use non-obvious
parameter models and appear to be too complicated for practical purposes. Alternatively,
some authors avoid restrictions on the involved line variety, calibrating a universal line
model through a data-driven learning process [18,25,26]. These universal approaches have
the advantage that they are not based on geometric assumptions, except for the straight line
assumption, but they need the availability of a large set of line measurements and suffer from
a lack of theoretical accuracy guarantees. This paper demonstrates the profit of proposing a
specific type of line variety as sensor model, supported by natural geometric assumptions. In
this way, we compromise between model-line-based and data-line-based approaches.

In many applications we use a sensor that corresponds to a two-dimensional line
variety. For example, a camera with two pixel coordinates, a laser scanner with two control
parameters, . . . , which is called a line congruence [17,24,27].

In this article, we elaborate line-model sensors with rotational symmetry, as it is the
case for scanners with rotating lasers (lidar) or for a galvanometric laser scanning system
where a fixed laser beam is reflected by one or two rotating mirrors. We prove that the
corresponding line varieties are covered by ruled quadratic surfaces of revolution. As
an important application, we present a novel, fast, and efficient line-based calibration
procedure for a two-mirror galvanometric laser scanner (2M-GLS), see Figure 2. These
laser scanners appear in several applications [28–32] due to their “good characteristics of
high deflection speed, high positioning repeatability and concise structure” [25]. For the
majority of the publications, the authors restrict their analysis to situations where a 2M-GLS
measures a plane or a two-dimensional surface [33]. In such situations, there is no need to
go beyond point-based calibrations. However, for a complete 3D range, sensor calibration
must provide the 3D line in some reference frame for each selected pair of rotation angles of
the two mirrors that reflect a fixed incoming laser beam. Model-based methods for the 3D
calibration of a 2M-GLS are given by [34,35]. However, these methods have to determine
many parameters for a model of the device geometry. They cope with the disadvantages
that are listed at the beginning of the introduction (unstable and tedious to implement),
giving rise to non-convex optimization problems that suffer from local minima. In [25,26],
the authors propose to calibrate a 2M-GLS using a dataset of line measurements, which is
more related to our approach. However, their method completely differs from the proposed
procedure, because they calibrate a universal line model through a statistical learning process,
without bothering about the algebraic and geometric structure of the involved line congruence.

In order to present the mathematical tools for this article in a self-contained manner,
we provide the complete description of the hyperboloids or cones of revolution that are
obtained by the laser reflections in the case of one rotating mirror (Section 2). This leads to
the specific Plücker coordinates of these laser reflections, as presented in Section 3. As a
collateral application, we present a robust algorithm in the Appendix A for recovering a
ruled surface of revolution from noisy line data. An important contribution and innovation
in this article appears in Section 5, where we derive a representation of the lines of one
hyperboloid of revolution as a stable one-parameter combination of three generating lines,
directly related to the angular variable that controls the mirror rotation. This result was
accomplished thanks to the rational parameterization of affine combinations on the circle as
presented in Section 4. In Section 6, we show how this result yields an algorithm to predict
laser reflections, first for one rotating mirror, and then extended to the concept of a three
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by three hyperboloid grid for modelling and calibrating a two-mirror galvanometric laser
scanner (2M-GLS) in Section 7.

We believe that this article offers a novel and fundamental contribution to the field
of sensor modelling and calibration, especially useful for laser scanners with rotational
components. We show how certain sensors can be represented by line congruences that on
their turn can be represented by a limited base set of lines. For example, a galvanometric
laser scanner with one mirror can be represented by three lines, and and one with two
mirrors by nine lines. We discovered how to generate the whole line congruence from these
bases by a linear line calculus that is directly related to the angular control parameters.

We elaborate the important case of a 2M-GLS. The correctness of our hyperboloid grid
method is validated by mathematical proofs, the accuracy and stability by the synthetic
experiments in Section 8. The synthetic experiments are executed by means of a virtual
2M-GLS that simulates real world hardware. We observe a very accurate and precise
performance, as well as a favourable comparison with the data-based calibration of [14].
The method of the latter article is based on the training of a Gaussian process (GP). It is known
to outperform physical parameter models and to match other statistical learning models. Each
progression in the simplicity or accuracy of the calibration of galvanometric laser scanners
and lidars has an impact in the increasing number of application fields, such as vibrometry,
oncology, obstacle detection by autonomous vehicles or laser-based 3D printing.

The success of the proposed method might be explained by the stability of the calculus
on hyperboloid grids introduced in Section 5, and validated in Section 8. In addition, our
simulations in a virtual environment seem to indicate that the line-based algorithm for
fitting ruled quadrics of revolution (Appendix A) improves the robustness of the proposed
calibration method.

We see three vulnerabilities of our strategy to model and calibrate a 2M-GLS by the
lines of a hyperboloid grid.

1. In spite of the conceptual simplicity of our method, based on the knowledge of the
laser lines corresponding to 3× 3 angle pairs of the rotating mirrors and passing
by all the intrinsics and extrinsics of the sensor, we have to measure these 3D laser
lines somehow. More precisely, we need a reliable range sensor to determine the 3D
coordinates of several laser dots corresponding to some laser line.

2. Furthermore, even if we have the means to accomplish the measurement requirement
in the previous item, the robustness of the proposed method is only guaranteed
up to a certain noise threshold, as quantified in Section 8. Once this threshold is
exceeded, the described algorithm in the Appendix A for fitting hyperboloids of
revolution to noisy lines might result into an over-idealized model. In these cases, the
method of [14] is preferred. This is due to the fact that a Gaussian process can be seen
as a universal smoother, filtering out noise.

3. Our model presents lasers as perfect lines and the mirrors as mathematical planes,
containing the axis of rotation, and enabling perfect reflections. If the deficiencies
of the generated laser or the reflecting mirrors imply a significant deviation from
the mathematical assumptions, the method of [14] appears to perform better than
the proposed method, since the trained Gaussian processes take the sensor defects
into account.

2. Line Reflections by Rotating Mirrors

This section describes the well-known geometry of the reflections of a fixed incoming
laser beam with a mirror that rotates about a fixed axis, offering the opportunity to introduce
our terminology. We assume that this rotation axis A, the laser beam L, and its reflections
can be modelled by (straight) spatial lines, and the mirror by a plane that contains the axis
A. Typically, only one side of this rotating performs mirror reflection, such that it makes no
sense to enable a rotation angle range that exceeds 180◦. For most physical devices, this
range is even more restricted.
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A particular position of the rotating mirrorM(n) is determined by its unit normal n,
which is supposed to point in the sense of mirror reflection. So, if the laser L is directed by
the unit vector rL, compatible with the incoming orientation, then the reflected line R(n)
has direction vector rn, oriented according to the reflection sense:

rn = rL − 2(rL · n)n. (1)

Further, let us agree that the normalised direction of the mirror rotation axis A is
denoted by rA, and the plane through the origin and perpendicular to A by D0 (Figure 1).
Notice that D0 differs from the plane containing rL and rn, unless the incoming laser
happens to be orthogonal to A. For this reason, we decompose line directions r in a
component along A and a component perpendicular to A (in D0):

r = (r · rA)rA + r⊥ = r‖ + r⊥. (2)

Figure 1. Both the incoming as the reflected laser are rulers of the same hyperboloid of revolution.

We will always assume that the incident laser hits the mirror, so r⊥ is not the zero
vector. Let R(n1) and R(n2) be reflections of the same incident laser L for different mirror
positionsM(n1) andM(n2) during the rotation about axis A. Let r1 and r2 abbreviate
r(n1) and r(n2), respectively, (Figure 1).

Proposition 1.

1. r‖1 = r‖2 .
2. R(n1), R(n2) and L cross A at equal distance, sharing a common closest point p on A. So, if

Dp denotes the plane through p and perpendicular to A, then p is the center of a circle Cp in
Dp, intersecting L, R(n1) and R(n2) in q, q1, and q2, respectively. Furthermore:

〈q1 − p, q2 − p〉 =
〈

r⊥1 , r⊥2
〉
= 2〈n1, n2〉. (3)

Proposition 1 implies that all line reflections of a fixed laser by a continuously rotating
mirror within some angle range can be equally well obtained by the continuous rotation
of the first reflected line within the double range. It is a well known geometric fact that
the rotation of a line around a given fixed axis A sweeps a one-sheeted hyperboloid of
revolutionH [36]. H can be considered as a union of lines but equally well as the union of
circles (perpendicular to A). The smallest of these circles, Cp in Proposition 1, is called the
gorge circle of this surface of revolution. We conclude in the following theorem, where we
take care for the singular situations:
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Theorem 1. If the incoming laser beam L is not perpendicular to the mirror rotation axis A, and
if L ∩ A = ∅ then the reflected lines belong to one system of rulers of a one-sheeted hyperboloid
of revolution,H(L, A), completely determined by L and A. Indeed, the gorge circle ofH(L, A) is
given by Cp, and its pitch ρ by:

ρ = rn · rA = −rL · rA. (4)

The incoming laser L belongs to the second system of rulers on H(L, A). If L intersects A, then
H(L, A) degenerates into a cone, or even into a flat pencil if L happens to intersect A perpendicularly.
Finally, if L ⊥ A and L ∩ A = ∅, thenH(L, A) degenerates into the set of tangents to Cp in Dp.

The next step is to consider a 2M-GLS, a sensor consisting of a single fixed laser L that
is internally reflected by two sequential mirrors, each rotating about an individual axis,
denoted by A and B in order of reflection. The control of the individual rotating mirrors is
typically galvano-driven, allowing two independent user parameters, denoted by α and β,
respectively, (Figure 2).
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Figure 2. The setup of a two-mirror galvanometric laser scanner (2M-GLS).

Note that we only observe the outgoing lasers of the galvanometer after the second
reflection by the mirrorM(B, β) that rotates about the axis B. An arbitrary value of the
parameter α that controls the position of the first mirrorM(A, α), generates a reflection
L(α) of the initial laser L, which is on its turn the incident laser for the rotating mirror
M(B, β). Because the laser line that is generated by a 2M-GLS is determined by a pair of
angle settings (α, β), it can be denoted by R(α, β). Theorem 1 translates into:

Theorem 2. The outgoing lasers R(α, β) of a 2M-GLS lie on a family of (possibly degenerate)
co-axial hyperboloids of revolutionH(L(α), B), each of which is generated by an individual laser
L(α) that is reflected by rotating the second mirrorM(B, β).

Varieties of lines with two degrees of freedom, such as the line reflections produced
by two rotating mirrors, are called line congruences [27]. In our case we coin the name
two-mirror congruence.

Warning: The centres of the different hyperboloids H(L(α), B), being the points p(α)
on B with minimal distance to L(α), are not equal (except in degenerate cases). There-
fore, the congruence of laser lines emitted by a 2M-GLS does not constitute a linear line
congruence [17,27,37,38].

If we consider the intermediate state of the sensor, after the first rotating mirror
M(A, α), then the reflected beams of the incoming laser L also lie on a hyperboloid,
H(L, A). If we fix the second mirror at position β1, M(B, β1), while rotating the first
mirror, then we observe the sensor emitting a mirror reflection of H(L, A) byM(B, β1).
Of course, this mirror image is also a one-sheeted hyperboloid of revolution, denoted
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by H(L, A, B, β1), containing the doubly reflected laser beams R(α, β1) (with varying α).
Consequently, we can be more specific about the description of the two-mirror congruence
as given by Theorem 2.

Corollary 1. The outgoing lasers R(α, β) of a 2M-GLS belong to a congruence that can be consid-
ered as the disjoint union of either of the following two systems of hyperboloids of revolution:

1. A system of co-axial hyperboloids, each of them determined by lines R(α1, β) with constant α1.
2. A system of hyperboloids with each of them determined by lines R(α, β1) with constant β1.

Observe that the axes of the second system of hyperboloids in Corollary 1 sweep an
additional hyperboloid of revolution, not participating in the two-mirror congruence, but
sharing its axis with the hyperboloids of the first system.

3. Plücker Coordinates of Reflections of a Single Laser by a Rotating Mirror

We refer to [37] for an introduction to line coordinates and line geometry in a projective
geometric setting, or to [36] for a Euclidean definition of line coordinates. In our context, it
is natural to work over the real numbers R as a base field. A line R in Euclidean 3-space
is determined by its direction vector r and a point q. In order to remove the randomness
in selecting q on R, we replace q by the moment m = q× r, which is independent of the
choice of q on R, and only depends on the scale of r. Observe that q× kr = k(q× r), so
the sixtuple (r, m) gives well-defined homogeneous coordinates for R, Plücker coordinates,
mapping this line in 3-space to a point π(R) in P5. Furthermore, since r ·m = 0, this point
belongs to the so-called Klein quadric K in P5:

K = {(x1 : x2 : x3 : x4 : x5 : x6) ∈ P5 | x1x4 + x2x5 + x3x6 = 0}. (5)

It can be proven that every point of K either represents the Plücker coordinates of a
Euclidean line, or it represents a “line at infinity” (where x1 = x2 = x3 = 0).
Finally, for a Euclidean line R, we can tie down the random homogeneous factor by
normalizing its direction vector, ||r|| = 1. To avoid the final ambiguity, we will always
assume that each line R has a given orientation.

A major objective of this paper is to control the Plücker coordinates of the laser reflec-
tions by means of the rotation angle of the mirror. In order to present the algebraic calculus
of laser reflections more easily, we will assume for the moment that the origin coincides
with the point p ∈ A that has minimal distance to the incoming laser L, implying that
D0 = Dp (Section 2). Later, we will see that this choice does not affect the derived formulae.

Recall form Proposition 1 that the laser reflections R(n) corresponding to different
positionsM(n) of the rotating mirror share an identical pitch ρ = rn · rA, where we assume
that the direction vectors rn (of R(n)) and rA are normalised and oriented, such that ρ > 0.
Consequently, the projections r⊥ on D0 of the reflected directions r all have identical norm
||r⊥|| =

√
1− ρ2. Furthermore, Proposition 1 implies that each r⊥ is perpendicular to

qn − p = qn = R(n) ∩ D0 (= closest point of R(n) to the axis A). If L does not intersect
A, all these points qn belong to the gorge circle C0 of the hyperboloidH(L, A) with radius
σ0 = ||q|| (Figure 1). Finally, recall that the relative (oriented) angles of rotation between
the reflected lines R(n) are determined by the mirror rotationM(n):〈

r⊥1 , r⊥2
〉
= 〈q1, q2〉 = 2〈n1, n2〉. (6)

Our next observation is that the moments mn = qn × rn of the reflected lines R(n) appear
to behave in a similar way as the directions. Except for the special case where L intersects
A (in p = qn = the origin), implying that mn is the zero vector.
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Proposition 2. Assume the previous notations and assumptions, in particular the origin is located
at p ∈ A, and assume that L does not intersect A. Then the laser reflections R(n) corresponding to
different positionsM(n) of the rotating mirror share an identical moment pitch

µ = mn · rA. (7)

Furthermore, if m⊥n = mn − µrA denotes the moment projection on D0, then m⊥n is parallel to r⊥n
with ||m⊥n || = σ0 · ρ, where σ0 = ||qn|| = ||q|| is the radius of C0.

Proof. Due to our choice of the origin, q belongs to D0, where it is orthogonal to r⊥n . Recall
that R(n) is oriented by rn conform to the sense of the reflection, and that the mirror axis
A is orientated by rA, such that ρ = rn · rA = −rL · rA > 0. Notice that in case the skew
oriented lines A and R(n) cross “positively”, which means that the undercrossing line
passes the overcrossing from left to right, r⊥n is obtained by a clockwise quarter turn from
in qn in D0 as viewed from rA. Furthermore, note that for each mirror position M(n)
the crossing sign of R(n) relative to A is the same, namely the opposite of the crossing
sign of L and A.

So, due to the right-hand-rule for the orientation of the cross product mn = qn × rn,
and because rn · rA > 0, we see that µ = mn · rA < 0 if, and only if, R(n) crosses A
positively. Because both rn ⊥ qn and mn ⊥ qn the projections m⊥n and r⊥n are aligned in D0.
So, m⊥n = kr⊥n , where k > 0 if, and only if, µ < 0. We conclude that the sign of the moment
pitch is the same for every laser reflection R(n).

Let us now compute the size of the moment pitch

µ = (qn × rn) · rA

= (qn × (r⊥n + ρrA)) · rA

= (qn × r⊥n ) · rA

= ±||qn × r⊥n ||

where we used that (qn × rA) ⊥ rA and (qn × r⊥n ) ‖ rA. However, qn ⊥ r⊥n , so

|µ| = ||qn|| · ||r⊥n || = ||qn||
√

1− ρ2, (8)

which finishes the proof that µ is independent from the mirror position.
In addition, ||m|| = ||qn|| · ||rn|| = ||qn|| = ||q||, whence

||m⊥n ||2 = ||m2
n||2 − |µ|2 = ||q||2ρ2. (9)

Proposition 2 immediately implies (the left of Figure 3):

Corollary 2. If the origin is chosen to be the point on the mirror axis A that is closest to the
skewly incoming laser beam L, and if we denote the Plücker coordinates of two laser reflections by
π(R(n1)) = (r1, m1) and π(R(n2)) = (r2, m2) then

r1 · rA = r2 · rA(= ρ), (10)

m1 · rA = m2 · rA(= µ), (11)〈
m⊥1 , m⊥2

〉
=

〈
r⊥1 , r⊥2

〉
, (12)

as oriented angles (viewed from rA).
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Figure 3. (Left): The relative angles of the shown points are the same for each of the three cir-
cles. They represent the laser reflections R(ni) = (ri, mi) by their projected directions r⊥i (norm√

1− ρ2), by their throat points qi (throat radius σ0), and by their projected moments m⊥i (norm σ0ρ).
(Right): Four points with the same relative angles as in the left diagram, prepared for Theorem 3. If
M = tB + (1− t)C then t parametrizes the affine combination of (A, B, C) that yields D.

4. Affine Combination of Cocircular Points

Using the assumptions and notations of Section 3, we have shown that for different
mirror positionsM(n1),M(n2),M(n3), . . . we can consider three circles in the plane D0,
centred at the origin (the left of Figure 3):

• Containing the points q1, q2, q3, . . .
• Containing the direction projections r⊥1 , r⊥2 , r⊥3 , . . .
• Containing the moment projections m⊥1 , m⊥2 , m⊥3 , . . .

Furthermore, on each circle we observe identical oriented angles between points that
correspond to the same laser reflections R(ni) and R(nj), which is determined by the
(rotation) angle between ni and nj (by factor 2). As we will see, this implies that we can use
the same affine combinations for all these circles. In the next section, we will prove that these
affine combinations on the circle can moreover be copy pasted to the Plücker coordinates
of the reflected lines.

Let A, B, C be three non-collinear points in some plane, then we can uniquely express
each point D in the (this) plane as an affine combination of A, B, C:

D = xA + yB + zC, with x + y + z = 1. (13)

Because z = 1− x− y we count 2 dof for these combinations, which meets the number
of dimensions of the plane. Notice that A, B, C determine a circumscribing circle C. Now
we will restrict ourselves in generating only points D on this circle C, leaving us with
only 1 dof for the coefficients (x, y, z). In this section, we will express these coefficients as
rational functions in a parameter that is explicitly determined by the relative angles between
A, B, C, and D.

The fundamental idea leading to our formulae is to parametrize the affine coefficients
by the location of the point of intersection M of the lines AD and BC (the right of Figure 3).

Theorem 3. Let a = |BC|, b = |AC| and c = |AB| denote the edges of the triangle ABC, and let
D = xA + yB + zC be a point on the circumscribing circle C of this triangle, with x + y + z = 1.
If M = AD ∩ BC = tB + (1− t)C then

(x y z) =
(1 t t2) · T
(1 t t2) · N , (14)
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where

T =

 0 0 −b2

a2 −b2 2b2 − c2

−a2 b2 − c2 c2 − b2

 and N =

 −b2

a2 + b2 − c2

−a2

. (15)

Proof. It can be proven that the necessary and sufficient condition on the barycentric
coordinates (x, y, z) for D to lie on the circumcircle C is given by (Fact 4 in [39]):

a2yz + b2xz + c2xy = 0. (16)

Because M = AD ∩ BC, this point can be given barycentric coordinates with regard to
{A, D}, as well as {B, C} (Figure 3):

M = tB + (1− t)C = sA + (1− s)D. (17)

Eliminating M and solving for D we obtain:

D =
−s

1− s
A +

t
1− s

B +
1− t
1− s

C. (18)

Since the sum of these coefficients equals 1, they must be equal to the barycentric coordi-
nates (x, y, z), expressed in function of t and s. Substituting the barycentric coordinates of
D as given by Equation (18) in the circle condition of Equation (16), we can solve for s:

s =
a2(t2 − t)

(b2 − c2)t− b2 . (19)

Finally, substituting this expression for s in Equation (18) yields the aimed at claimed
formula in Equation (16).

Observe that we do not lose generality by assuming that C equals the unit circle.
Indeed, the affine coefficients remain invariant under scaling and translations:

D = xA + yB + zC ⇒ wD + Z = x(wA + Z) + y(wB + Z) + z(wC + Z). (20)

Furthermore, it can be easily seen that this affine combination is also not affected by
rotations, such that we can choose A = (1, 0). Consequently, the computation of the
coefficients (x, y, z) in Equation (14) only depends on the relative angles between the points.

5. Affine Combination of Reflected Lines of a Single Laser by a Rotating Mirror

Consider four laser reflections R(ni) by four mirror positionsM(ni) (i = 1, . . . , 4).
From Theorem 1, in Section 2, we know that the lines R(ni) belong to a ruled surface of
revolution, a one-sheeted hyperboloid in general, or one of its degenerations in singular
cases. If π(R(ni)) = (ri, mi) denote the Plücker coordinates, and if r⊥i denote the projections
of ri on D0, then the relative angle of revolution between R(ni) and R(nj) can be written as:

θij =
〈

r⊥i , r⊥j
〉
= 2

〈
ni, nj

〉
. (21)

Theorem 4. Let us represent the rotation angles of four laser reflections by points P1, . . . , P4
on a (unit) circle, that is, the arc between Pi and Pj equals θij. Then, the affine combination
P4 = x1P1 + x2P2 + x3P3 (with x1 + x2 + x3 = 1) also applies to the Plücker coordinates of the
reflected lines:

π(R(n4)) = x1π(R(n1)) + x2π(R(n2)) + x3π(R(n3)). (22)

Proof. Let us first assume the origin at the centre p of theH(L, A), which is a hyperboloid
in general, or a cone in case L intersects A. For now, we exclude the degenerate case where
L intersects A perpendicularly, implying that all reflections belong to the same plane. In
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Corollary 2, it is stated that the relative angles of the projected moments of the reflected
lines R(ni)) are identical to the relative angles of revolution (Section 3):〈

m⊥i , m⊥j
〉
= θij =

〈
r⊥i , r⊥j

〉
. (23)

So,
r⊥4 = xr⊥1 + yr⊥2 + zr⊥3 (24)

m⊥4 = xm⊥1 + ym⊥2 + zm⊥3 (25)

Furthermore,

π(R(ni)) = (r⊥i + ρrA, m⊥i + µrA). (26)

Using x + y + z = 1, we obtain:

xπ(R(n1)) + y(π(R(n2)) + zπ(R(n3)) =

(xr⊥1 + yr⊥2 + zr⊥3 + (x + y + z)ρrA, xm⊥1 + ym⊥2 + zm⊥3 + (x + y + z)µrA) =

(r⊥4 + ρrA, m⊥4 + µrA) =

π(R(n4))

In case L intersects A perpendicularly, things become more simple. Then, the reflected
lines belong to a flat pencil, all assumed to intersect in the origin. In this case, π(R(ni))
= (r⊥i + ρrA, 0, 0, 0), and hence the previous argument still holds, restricted to the first
three Plücker coordinates.

Next, we drop the assumption about the location of the origin in 3-space. The general
situation can be transformed to the special situation as described above by a translation,
which is a linear transformation T4 of P3, represented by a 4× 4 matrix. One can prove
that this induces a linear transformation T6 for the line coordinates π(L), represented by a
6× 6 matrix [37]. The proof now is finished by the fact that linear transformations preserve
affine combinations.

6. Data-Driven Calibration of Rotating Laser Reflections

The previous explanation enables to predict a laser reflection by a rotating mirror
M(n)), once three line reflections are known for three mirror positions. Notice that we
bypass the geometry of the incoming laser beam L relative to the mirror axis A, neither do
we need the spatial position of the mirror plane that corresponds to the initial angle. Notice
that the described procedure equally well applies to devices with rotating lasers instead of
rotating mirrors.

input: relative angles
〈
ni, nj

〉
for three mirror positionsM(n1),M(n2),M(n3), and the

coordinates of the corresponding laser reflections: π(R(n1)), π(R(n2)), π(R(n3)).
query: n4, or rather 〈ni, n4〉 for some i = 1, 2, 3.
output: π(R(n4)).

The algorithm:

1. Transform the mirror positions to rotation angles of the reflected lines:

θij =
〈

r⊥i , r⊥j
〉
= 2

〈
ni, nj

〉
. (27)

2. Compute T and N as stated in Theorem 3 (Equation (15)). This can be completed by
representing the three base angles and the fourth query angle on a (unit) circle, or
directly in terms of cos(θij) and sin(θij)).

3. Compute parameter t. Combine t, T and N to obtain the affine coefficients x, y, z
(Equation (14)).
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4. Return π(R(n4)) = xπ(R(n1)) + yπ(R(n2)) + zπ(R(n3)).

Algorithmic details:

• When this algorithm is applied in a real world situation, we assume only small
deviations from the mathematical conditions, the laser beam is always kept fixed, the
rotation axis for the mirror is always kept fixed, the mirror shape is close to a plane,
the mirror reflection is close to perfect, not damaged by scratches and holes.

• The first step of the algorithm may be more involved in certain practical situations.
Indeed, the control of the rotating mirror is performed by user parameters ωi that are
not necessarily equal to the geometric angles between the ni. For instance, the mirror
rotation might be galvanic driven, requiring input control in volts. The transformation
from voltages to geometric angles might or might not be linear. Even if the user
is allowed to use angular values for the input parameters, they are not necessarily
identical to the geometric angles due to system noise. In this case, we obtain the
angles directly from the measured reflection lines, θij =

〈
r⊥i , r⊥j

〉
. The transformation

ωij = ωi −ωj 7→ θij can be obtained by analytic or probabilistic interpolation.
• For the computation of the parameter t it is recommended to permute {A, B, C} in

Theorem 3 if needed, such that the chords AD and BC intersect inside the circle,
M = AD ∩ BC = tB + (1− t)C. This guarantees that t ∈ [0, 1] and significantly
improves the stability.

7. The 3 by 3 Line Grid Calibration of a 2M-GLS

This section is motivated by a galvanometer, a sensor consisting of a single fixed laser L
that is internally reflected by two sequential mirrors, each rotating about an individual axis,
denoted by A and B in order of reflection. The control of the individual rotating mirrors is
typically galvano-driven, enabling two independent user parameters, denoted by α and
β, respectively, (Figure 2). As explained in Section 6, we may assume that we can express
mirror angles in radians.

Assume, for the moment, that we fix the second mirror at angle β1. By means of the
algorithm of Section 6, we can predict an outgoing line R(α, β1) by means of three observed
lines R(α1, β1), R(α2, β1) and R(α3, β1) corresponding to three positions of the first rotating
mirrorM(A, α)

π(R(α, β1)) = xαπ(R(α1, β1)) + yαπ(R(α2, β1)) + zαπ(R(α3, β1)), (28)

where the affine coefficients (xα, yα, zα) are computed by Formula (14). Note that these
coefficients do not depend on the specific choice β1 for the position of the second mir-
ror. Indeed, the relative angle θij between (R(αi, β1) and (R(αj, β1) is the opposite of the
corresponding relative angle onH(L, A). More precisely:

|θij| = 2|αj − αi|. (29)

Theorem 5. A two-mirror galvanometric laser scanner is intrinsically calibrated by the knowledge
of 3× 3 emitted lasers R(αi, β j) corresponding to a grid of 3× 3 combinations of mirror pairs
(αi, β j) (i = 1, 2, 3 and j = 1, 2, 3).

Proof. We show that for each given query pair (α, β), we can predict the corresponding
double reflected laser R(α, β) by means of the given laser grid. To this end, we first compute
the affine coefficients (xα, yα, zα) for a fixed β j. In principle, the resulting coefficients are
identical for each choice of β j (j = 1, 2, 3). Consequently, we obtain:

π(R(α, β1)) = xαπ(R(α1, β1)) + yαπ(R(α2, β1)) + zαπ(R(α3, β1)). (30)

π(R(α, β2)) = xαπ(R(α1, β2)) + yαπ(R(α2, β2)) + zαπ(R(α3, β2)). (31)

π(R(α, β3)) = xαπ(R(α1, β3)) + yαπ(R(α2, β3)) + zαπ(R(α3, β3)). (32)
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These three laser lines belong to a system of rulers of the hyperboloidH(L(α), B), defined
by the mirror axis B and the incoming laser beam L(α), which is the reflection of L by
the α-position of the first mirror. Applying the algorithm van Section 6 once more, we
conclude that:

π(R(α, β)) = xβπ(R(α, β1)) + yβπ(R(α, β2)) + zβπ(R(α, β3)). (33)

8. Experiments

In order to validate our hyperboloid grid model, we apply the method of Section 7
to synthetically generated data. The aim is to predict the set of Plücker coordinates for a
given pair of mirror rotations. The benefit of working with synthetic data is that an exact
underlying ground truth can be established. To this end, we built a setup in a virtual
environment in the game engine Unity (version 2020.2.5f1). We placed two rotating mirrors
and a laser in a configuration that can also be found in for instance a Polytec PSV-400 laser
Doppler vibrometer (Figure 4). A real time demonstration of the setup in which the mirrors
rotate to reflect an incoming laser beam can be seen in https://youtu.be/GNTjmJvdTpw,
(accessed on 14 May 2023). We generated laser beams for 12 rotation angles for the first
mirror and 16 for the second mirror, resulting in a 12× 16 grid of 192 lines.

Figure 4. The virtual setup. A laser beam is reflected by two rotating mirrors. The reflected laser
beams hit a detection plane. The 3D coordinates of the points (the pink dots) are recorded.

To measure the Plücker coordinates of those (reflected) laser beams, we placed a
detection plane in front of the setup and recorded where the laser beams intersect that
plane. All reflections and the detection of intersections are handled by the built-in Unity
physics engine. An overview of the virtual setup can be found in Figure 4. The reflected
laser beams for a set of co-axial hyperboloids are visualised in detail in Figure 5. The
detection plane is then moved and rotated in eight positions. The simulation scale is chosen
such that the distances of the detection planes vary from approximately 1000 to 2600 mm.

https://youtu.be/GNTjmJvdTpw
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Figure 5. Lines rotated around a central axis form a hyperboloid. In a galvanometric setup, the first
mirror rotation defines which hyperboloid, while the second mirror rotation determines the line on
that hyperboloid.

Consequently, for each pair of mirror rotation angles (which uniquely generate a single
laser beam), we obtain eight points. Strictly speaking, we only need to put the detection
plane in two positions. However, to simulate real world conditions, we added Gaussian
noise to the 3D coordinates of the detected points. We performed our simulations at seven
noise levels with standard deviations equal to 0, 1, 2, 4, 6, 8, or 10 millimetres. For each of
the noise levels, we generated 50 sets of lines. We average our findings over those 50 sets
to eliminate statistical artefacts in the noise of the data. We perform a best fit method as
described in [40] to calculate the Plücker coordinates for the straight line generated by the
mirror rotation pairs.

For each noise level, we select a basegrid, being a subgrid of lines from the 12× 16
dataset. We consider the following basegrid sizes, 3× 3, 4× 4, 6× 6, 8× 8, and 8× 11. This
enable us to investigate the influence of the number of training lines on the accuracy of the
calibration. To avoid unnecessary numerical problems, the angles in these subgrids are
(uniformly) spread out in the range of the rotation angles of the sensor mirrors. The angle
pairs of the datasets that do not participate in the basegrid provide a test set, for which we
use the Unity-generated lasers with zero noise as ground truth. The aim now is to predict
the lines in the test sets when only the two mirror rotation angles are given. The proposed
method uses the base grid to recover the two-mirror congruence as a double system of
hyperboloids of revolution (Corollary 1). This line congruence is compactly represented as
a 3× 3 grid that enables laser predictions by means of affine grid combinations (Theorem 5).

A procedure for a robust fitting of a hyperboloid grid to a basegrid of noisy line mea-
surements is described in Appendix A. Because the quality of this fitting has a significant
share in the accuracy of our method, we present it here as an intermediate validation in
the framework of the previously described synthetic experiment. The results are shown in
Figure 6. The gain (noise reduction) is most apparent for grids ranging 6× 6 and up.
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Figure 6. The means of the line segment errors with respect to the ground truth, for the measured
lines, as well as for the corrected lines (by hyperboloid grid fitting). The boxplots are grouped by
five grid sizes and within each group ordered by three noise levels during the measurement of the 8
points (at a distance of at most 3 m) that are used for the line measurements: standard deviations of 1,
6 and 10 mm.

We compare our method to the semi-data driven method described in [14], where
the authors validate the performance and feasibility of semi-data driven approaches by
means of Gaussian processes (GP). The method of [14] outperforms current state-of-the-art
physical-based calibrations, and performs at least equally well as other existing statistical
or machine learning methods, which makes it an appropriate reference to compare our
method with.

Following the procedure in Section D of [14], a Gaussian process is trained for each of
the six components of the Plücker coordinates [41]. In the implementation of the Gaussian
processes, we used a periodic kernel with automatic relevance determination as suggested by [14]:

kPER(x, x′) = σ2
f exp

(
− 2

l2
α

sin2
(
|α− α′|

2

))
· exp

(
− 2

l2
β

sin2
(
|β− β′|

2

))
.

(34)

In order to evaluate the prediction quality of any method, we need a measure for
the difference between two spatial lines. In our experiments we worked with several
distance measures, but they appeared to agree with respect to the final conclusions. In
the presentation of our results, we use the line distance measure as suggested by [37]. For
the computation of this measure, we need to define two fixed parallel planes, with the
certitude to limit our region of interest. As a matter of fact, we chose them perpendicular to
the Z-axis (more or less the direction of the outgoing beams), one through the origin, the
other at a distance of 10 m. Two lines intersect these two planes at four points g1, g2, h1
and h2 (same indices for the same line, some letters for the same plane). We calculate the
so called line segment distance d as follows:

d2 = ||g1 − g2||2 + ||h1 − h2||2 + (g1 − g2) · (h1 − h2). (35)
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The line segment distance is computed to evaluate the error of each predicted line with
respect to its ground truth. We took the average for all the lines per test set. This results
in 50 averages per combination of grid size and noise level. This is completed for the
proposed method as well as for the GP-method. An overview of the results can be found in
Figure 7 and in Figure 8. Note that the line segments that we used in our error measure
have a length of at least 10 m, which should be taken into account in the interpretation of
the prediction error on the vertical axis of the figures (expressed in metre). For example, an
lsd-error of 0.1 m for a predicted line is a line segment deviation of at most 1 cm per metre.
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means line segment distances between predictions and ground truth our method

Figure 7. The means of the line segment distances between the predicted test lines (by the proposed
method) and the ground truth. The boxplots are grouped by five grid sizes and within each group
ordered by seven noise levels during the measurement of the 8 points (at a distance of at most 3 m)
that are used for line fitting: standard deviations of 0, 1, 2, 4, 6, 8, and 10 mm.

The runs with zero noise confirm that the proposed hyperboloid grid calibration is an
exact method, even when using a minimal 3× 3 grid. We also notice that for a measurement
noise expressed by a standard deviation of σ mm (within a work space of 2 to 3 m), the
line prediction error appears to be lower than 2σ mm (per metre) assuming a basegrid
size of at least 4× 4, and even bounded by σ mm (per metre) if we use basegrids of size
6× 6 or larger. From our experiments there seems to be no convincing motivation to use
basegrid sizes larger than 8× 8. On the other hand, we observe that boxes are stretched out
(between first and third quartiles) in cases where point measurements suffer from large
noise levels (σ > 7 mm within the workspace region). This is explained by the fact that the
basegrid data are corrected and fixed by a hyperboloid grid fit, such that the prediction
errors for every test line are determined by the quality of this fit (Appendix A), which can
be an unlucky estimate if the data noise happens to be unfortunate.

If we investigate the results of the Gaussian process (GP) method for the same Unity-
data (Figure 8), then we observe that 3× 3 grids are too small to teach a useful Gaussian
process. Its performance takes over the proposed method from the moment the GP is
trained by basegrids larger than 8× 8. In case of larger measurement noise, the variance of
the GP results appears to be smaller than for the proposed method. This is due to the fact
that a Gaussian process keeps on balancing the measurement noise during the prediction
of the test lines.
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Figure 8. The means of the line segment distances between the predicted test lines (using a GP) and
the ground truth. The boxplots are grouped by five grid sizes and within each group ordered by the
seven noise levels. For the minimal training set (3× 3), the GP-model predicts values so far from the
ground truth that they are no longer of any significance. The data have become too sparse to work with.

The datasets generated and analysed during the current study are publicly available
in the github repository https://github.com/IvanDeBoi/Line-Calculus-on-Hyperboloids
(accessed on 14 May 2023).

9. Conclusions

This paper describes a completely new method for the modeling and 3D calibration
of a galvanometric laser scanner with two mirrors. As a matter of fact, the proposed
calibration paradigm applies to any laser scanner with rotational symmetry, such as other
galvanometric systems or a lidar, sensors with a rapidly growing number of applications.
Our study illustrates the benefit of representing sensors like laser scanners as a specific line
variety, and that it pays off to discover the type of this variety by a mathematical analysis.
The proposed line model is more specific than previously published general line models,
but the calibration merely consists of measured line data, and does not need to recover
intrinsic parameters of a physical model.

As a main contribution, we model a two-mirror-GLS as a hyperboloid grid congruence
that can be represented in a compressed way by a 3× 3 basegrid of data lines. This is a
significant simplification compared to the use of look-up tables commonly used in the 2D
or 3D calibration of a GLS. We derived a formula that translates angular control parameters
into simple affine combinations of these 3× 3 grid lines, enabling our calibration model to
make fast predictions.

In a follow-up article, we describe how this formula enables us to find an analytic
solution for the reverse engineering problem, how to determine the pair of mirror angles
that generate the laser reflection that hits a given 3D target point.

The hyperboloid grid model for a two-mirror galvanometric laser scanner and the
affine combination formula for the 3× 3 grid is an interesting theoretical result, but in order
to validate its practical performance, and in order to compare it to a statistical training
model (GP-method), we chose to fit a hyperboloid grid on larger training grids. To this end,
we designed a new algorithm for the robust fitting of a hyperboloid of revolution on given

https://github.com/IvanDeBoi/Line-Calculus-on-Hyperboloids
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rulers. As it is the case for every regression model, this choice implies the advantage of
noise reduction, but the disadvantage of neglecting noise. Fitting on training grids of size
at least 6× 6 causes line prediction errors that are comparable or smaller than the point
measure errors.

The results of the Gaussian process (GP) method are inferior to the proposed methods
for small grid sizes and for limited point measure noise levels. If the noise level is rep-
resented by a standard deviation of 8 mm or more (in the work space region up to 3 m),
and if a basegrid is used of size at least 8× 8, the GP-method performs more accurately
and more precisely. This is due to the fact that a Gaussian process can be seen as a uni-
versal smoother, excellent at filtering out noise. On the other hand, the GP-method trains
six separate line coordinates, and most often they do not satisfy the Grassmann–Plücker
relation. Consequently, it fails to deliver an effective line. This can be taken care of by
post-corrections, or by using a Gaussian process with manifold constraints, but it is an
additional complication. In [14], it is shown that the violation of the Grassmann–Plücker
relation becomes less apparent when using larger training sets.

Furthermore, if the mirror quality of a real galvanometric laser scanner significantly
deviates from our ideal mathematical assumptions, the GP-predictions will be more ac-
curate than the idealised hyperboloid grid predictions. On the other hand, discrepancies
between the ideal predictions of our method and an observed laser from the real world
sensor can detect defects or flaws in the device. This suggests that our line model can also
be applied as a tool for quality control.
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Appendix A. Fitting a One-Sheeted Hyperboloid of Revolution to Given Noisy Rulers

Examples of approximation methods for ruled surfaces are presented in [42–44]. How-
ever, in these approaches, the ruled surfaces are fitted to given point data, rather than to
measured lines, as is the case in our situation.

Let L = {L1, L2, . . . , Ln} be the noisy data lines that are supposed to be rotated
images of some (unknown) line around some (unknown) axis A. We assume that the li are
presented by their normalised Plücker coordinates: Li = (ri, mi).

Step 1:
Considered as points, the correct normalised directions ri belong to a circle centred at

a point x ∈ A, in a plane Dx perpendicular to A. So, the direction vector rA of A can be
recovered as the normal of a fitting plane. This plane Dx can be approximated by a robust
technique, such as RANSAC or MLESAC [19,45]. Observe that at this stage we only need
to recover the normal rA of Dx.

In Section 7, we have measurements of rulers of several hyperboloidsH(L(α), B) at
our disposal, all sharing the same axis A of revolution, enabling us to increase the accuracy

https://youtu.be/GNTjmJvdTpw
https://github.com/IvanDeBoi/Line-Calculus-on-Hyperboloids
https://github.com/IvanDeBoi/Line-Calculus-on-Hyperboloids
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of the direction of this axis by computing the median or a trimmed mean of the computed
rA of the individual hyperboloids (||rA|| = 1).
It is an option to neglect from now on data lines Li of which the directions ri have been
considered as outliers in the previous step.

Step 2:
Once we have found a reliable rA, we can recover the pitch ρ of the hyperboloid as the

mean of the dot products ri · rA. We ensure that the directions are oriented such that all
these dot products have positive signs. In this way, we can reduce the noise on the axial
component r‖i = (ri · rA)rA of the line directions ri:

r‖i 7→ ρrA. (A1)

Step 3:
We can also “correct” the rotational components r⊥i = ri − r‖i , provided that we know

the relative angles θij between each pair, what we normally do in case of a reliable control
of the involved galvanometric device. We proceed as follows. Based on the measured
data, and the previously recovered axis direction rA, we can consider the noisy projections
r⊥i = ri − (ri · rA)rA. The norms ||r⊥i || will be all corrected as

√
1− ρ2, so we can focus on

their directions di = r⊥i /||r⊥i ||, points on the unit circle in the plane Do perpendicular to rA.
We can represent them by a radian parameter pri. The direction noise of the projections r⊥i
is reduced by solving a constrained optimization problem in n unknowns cpri, representing
the corrected radian parameters pri. More precisely, we minimise the sum of squared
distances between cpri and the noisy pri, constrained by the given relative angles θij.
Actually, a closed form solution for the cpri is obtained by means of Lagrange multipliers.
Finally, we map the cpri back to unit vectors cdi in the plane perpendicular to rA, The
correction of the noisy directions ri of the data lines is performed as follows:

ri 7→
√

1− ρ2cdi + ρrA. (A2)

Step 4:
Having a reliable direction rA at our disposal also facilitates the recovery of the

complete axis A = (rA, mA). To this end, we lean on the property that the exact normalised
rulers EL = (er, em) of the same regulus of a ruled surface of revolution have a constant
bilinear product with the exact normalized axis EA = (erA, emA), given by [37]

Ω(EL, EA) = er · emA + em · erA. (A3)

This motivates us to find the corrected mA as a Least-Squared Approximation
for the equations

0 = Ω(Li, A)−Ω(Lj, A) = (mi −mj) · rA + (ri − rj) ·mA, (A4)

augmented with the Grassmann–Plücker relation for the line A: rA ·mA = 0, which might
be multiplied by a weight factor if one needs to increase the importance to deliver a real line
A. All these equations are linear, because we assume that rA is known. In composing this
overdetermined system of equations, we use the noisy data (ri, mi) of the measured inliers
Li, and the recovered direction rA. Notice that we really need to obtain rA in a previous
step, because the equations Ω(Li, A)−Ω(Lj, A) = 0 are not sufficient to determine A. For
example, rulers R in the second regulus of the same hyperboloid satisfy Ω(EL, R) = 0 for
each ruler EL of the first regulus.

Because a set of three rulers {L1, L2, L3} can serve for a minimal solver that recovers
the moment mA of A, we encounter here another opportunity to integrate a robust con-
sensus procedure by random sampling, now eliminating rulers Li with moment ouliers.
Furthermore, to avoid numerical instabilities, we recommend selecting the pairs {Li, Lj}
for the equations Ω(Li, A)−Ω(Lj, A) = 0, such that we maximize ||ri − rj||.
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Step 5:
Next, for each of the data lines Li, we can compute its (perpendicular) distance σi to the

recovered axis A, and its closest point pi on A. Without noise, all these points pi coincide
with the centre p of the gorge circle of the hyperboloid, and all these distances σi are equal
to its radius σ. So, we recover p and σ as the means of the pi and the σi, respectively.

In Section 7, we have measurements of rulers of several hyperboloidsH(L(α), B) at
our disposal, all sharing the same axis, enabling us to apply the previous steps for each of
them, yielding a gorge centre on the recovered axes of these hyperboloids. The mean of
these gorge centres provides a stable point ps on the common axis, that gives rise to a more
accurate computation for the moment as mA = ps × rA.

In any case, we use the reconstructed axis A to approximate the centre p and the
radius σ of the gorge circle Cp, enabling us to recover the gorge points of the exact rulers
ELi: qi = Cp ∩ ELi. Indeed, the directions pqi are exactly the quarter turns of the corrected
projected directions cdi (Proposition 1), which together with the condition ||pqi|| = σ
determines the location of qi.

Step 6:
Finally, we correct the moments mi of Li by qi × ri, where we use the corrected ri.
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