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Abstract: With the increase in urban rail transit construction, instances of tunnel disease are on the
rise, and cracks have become the focus of tunnel maintenance and management. Therefore, it is
essential to carry out crack detection in a timely and efficient manner to not only prolong the service
life of the tunnel but also reduce the incidence of accidents. In this paper, the design and structure of a
tunnel crack detection system are analyzed. On this basis, this paper proposes a new method for crack
identification and feature detection using image processing technology. This method fully considers
the characteristics of tunnel images and the combination of these characteristics with deep learning,
while a deep convolutional network (Single-Shot MultiBox Detector (SSD)) is proposed based on
deep learning for object detection in complex images. The experimental results show that the test
set accuracy and training set accuracy of the support vector machine (SVM) in the classification
comparison test are up to 88% and 87.8%, respectively; while the test accuracy of Alexnet’s deep
convolutional neural network-based classification and identification is up to 96.7%, and the training
set accuracy is up to 97.5%. It can be seen that this deep convolutional network recognition algorithm
based on deep learning and image processing is better and more suitable for the detection of cracks
in subway tunnels.

Keywords: subway tunnel; crack detection; image processing; Alexnet algorithm

1. Introduction

With the continuous development of urban subway construction and the continued
existence of tunnels constructed even earlier, various types of diseases have appeared in
subway tunnels [1,2]. Due to the low tensile strength of concrete, small cracks are generally
generated on the surface of the concrete. Such small cracks do not affect the mechanical
properties of the tunnel and are, therefore, classed as harmless cracks [3]. However, under
the action of temperature change, foundation settlement, steel corrosion, and other factors,
the development and interconnection of microcracks can eventually lead to a deterioration
in performance, and, thus, it is necessary to strengthen our detection of these cracks [4]. It
is difficult to identify the initial characteristics of early tunnel cracks. If we can find such
cracks early and take reasonable and effective preventive measures, this would greatly
reduce the difficulty in later maintenance work and reduce maintenance costs. Therefore, it
is necessary to intensify the work regarding the operation, maintenance, and inspection of
tunnels to improve their overall safety level [5].

The widespread use of image processing technology in various detection fields is the
result of the continuous advancement of computer technology, which can solve some of
the past shortcomings of traditional detection [6,7]. The ability to use image processing
technology for long-distance, noncontact crack identification not only protects the safety
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of workers but also prevents damage to the tunnel itself. Therefore, it is crucial to study
and develop a crack detection system combined with this image processing technology by
utilizing the characteristics of tunnel images. This article proposes a subway tunnel crack
recognition system based on methods such as grayscale erosion, block contrast, stretching,
and binarization to improve image contrast and quality. Due to the high grayscale values
of the background area and the low grayscale values of the crack area, the difference in
grayscale values between two regions is used to classify image pixels. By maximizing the
variance between classes, the system automatically calculates the threshold and updates it
based on the segmentation effect. The modified threshold can effectively identify cracks in
the image background, maximize the protection of crack information, and correct the noise
sensitivity defects of edge detection operators. It also maintains the enhanced characteristics
of cracks to better detect them.

2. Related Work

Cracks in subway tunnels are ubiquitous and one of the causes of tunnel diseases.
Cracks in subway tunnels not only affect their appearance but also lead to dangers in terms
of their carrying capacity and durability, and can even bring about large economic losses
and societal safety hazards in severe cases. Yuan W indicated that the detection and investi-
gation of tunnel cracks in subway tunnels are special inspection items [8]. Xue F’s research
found that the components in different positions of the tunnel are repeatedly loaded and
unloaded during the operation [9]. Huang H pointed out that various researchers have
developed tunnel detection equipment [10]. Bao X studied the seismic performance of
large subway tunnel structures in liquefied soil layers and analyzed the effect of mitigation
methods for different steel bar thicknesses on reducing cracks [11]. Lee H indicated that
during the construction of subway tunnels, the construction process of side rails should
be considered, and a stability assessment should be conducted [12]. However, the early
detection of tunnel cracks is difficult to achieve during the actual detection process using
theoretical knowledge alone. In addition, due to the harsh environment of the tunnel and
insufficient lighting, crack detection becomes more difficult.

Due to the gradual maturing of image processing technology, scholars have increas-
ingly been studying the technology and applying it in different industries. At present,
the detection of cracks in subway tunnels using this technology has also attracted much
attention. Wang R showed that in the image processing of crack detection systems, false
information and breakpoint problems required more efficient threshold segmentation and
breakpoint connection algorithms [13]. Dai Z said that the detection of tunnel cracks has be-
come the main method in this field to overcome the shortcomings of missed detection [14].
Based on crack detection using a single image, Chen F C found a new fusion method to
integrate the extracted information to enhance the overall performance and robustness of
the system [15]. Guo C showed that fractures with different degrees of fracture create great
difficulties for the extraction of subsequent fracture identification and image processing
information [16]. Image processing controls the detection accuracy within a certain range
and can quickly obtain crack data. It prevents interference by technicians due to the use of
factors beyond their personal control and facilitates an objective assessment of the structural
safety of the tunnel. Based on the above analysis, it is clear that developing an advanced
tunnel crack detection system is urgently needed.

3. Related Algorithms Based on Image Processing
3.1. Subway Crack Detection Method and System Design

(1) Analysis of traditional manual detection and automated detection methods

The technology for the early detection of subway tunnel cracks is not yet fully mature,
and manual detection is the main method used. In recent years, many experts and scholars
have been exploring and researching new technologies, and they have gradually created
many new methods. According to the degree of complexity and mechanization, tunnel
crack detection is divided into traditional manual detection and automatic detection [17].
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Traditional manual inspection mainly relies on the detection of cracks by staff; however,
there are subjective factors, and it is difficult to ensure the accuracy of the inspection
results. Therefore, the traditional manual detection method requires a large amount of
manpower, and, even then, the efficiency is not high. The application of the traditional
manual detection method in a tunnel is shown in Figure 1.
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Figure 2. A crack map created by scanning with an automated detection method. 

Figure 1. Manual inspection of a subway tunnel.

As can be seen from Figure 1, manual detection is suitable for detecting structures
with relatively small volumes and sizes, but not for large-scale structure detection [18,19].
In the traditional tunnel crack detection process, the tunnel must be manually inspected
after shutdown. For subway systems in busy cities, such detection can only be carried
out at night. However, there are many problems and hidden dangers in this intermittent
manual detection at night: there is insufficient light in the subway tunnel, which affects
the accuracy of visual detection. In addition, manual exploration relies on the subjective
judgment of the staff and is, therefore, prone to exploration omissions and judgment
errors. Similarly, the speed of manual exploration is slow, the exploration process is
still dangerous for personnel, and the labor cost is high. With the rapid development of
computer technology, an automatic crack detection system based on image processing
technology has a certain application prospect. The automatic detection method uses image
processing technology to identify and classify crack information. This method overcomes
the shortcomings of traditional manual detection such as low efficiency and poor accuracy,
and can automatically provide detection results. An example of a crack map created by
scanning with the automated detection method is shown in Figure 2.
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The automatic detection method comprehensively collects various images of the tunnel
and then analyzes the collected images to obtain the relevant parameters of the crack. In
the example shown in Figure 2, the section was scanned using laser technology, resulting
in a complete image [20].

(2) Overall design scheme of the detection system

The subway tunnel crack detection system needs to not only detect cracks but also
perform real-time detection of temperature, humidity, wind speed, wind direction, etc.,
as well as detect the three-dimensional direction of the tunnel through lidar and inertial
navigation sensors [21]. The composition of the subway tunnel crack detection system is
shown in Figure 3.
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Figure 3. The composition of the subway tunnel crack detection system.

After processing the collected cracks, the detected cracks are marked and the features
are extracted, and finally, they are input into the database, which is also convenient for
data management [22]. Data management is in the form of a management information
system based on the browser/server (B/S) mode. The staff can access the server through
the subway intranet to log in to the management platform, where they have corresponding
permissions and can process data according to these permissions [23,24]. The client is uni-
fied with the B/S mode and the core part of the system function realization is concentrated
on the server, which simplifies the development, maintenance, and use of the system. The
schematic diagram of the B/S mode is shown in Figure 4.
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As shown in Figure 4, the model can display, add, delete, modify, and check data,
among other things, and compare them with previous data to predict trends [25].

3.2. Tunnel Crack Image Detection Algorithm

(1) Image preprocessing algorithm

The acquired image is a three-channel image, and the three primary color (RGB)
graphics are composed of three color channels. The RGB color mode is the color standard
in the industry. It obtains various colors by changing the red (R), green (G), and blue (B)
color channels and superimposing them onto each other. RGB represents the red, green,
and blue channels. This standard includes almost all colors that human vision can perceive,
and it is one of the most widely used color systems. The three-channel information is used
when the pixels are processed and turned into grayscale images [26,27]. The process of
converting a three-channel image into a grayscale image is shown in Formula (1):

Y(m, n) = R(m, n)× 0.31 + G(m, n)× 0.59 + B(m, n)× 0.12 (1)

where Y(m, n) is the pixel value of the converted grayscale image point (m, n), and R(m, n),
G(m, n), and B(m, n) are the values of the three color channels of, R, G, and B, respectively,
at the midpoint of the three-channel image.

An open operation and a close operation are constructed via an erosion expansion
combination to eliminate isolated noise points and overlap small images, respectively.
Macroscopically, the erosion operation can melt the edge of the object and make the crack
target texture in the image thinner. Therefore, the algorithm first performs grayscale
transformation and the erosion operation on the fracture image to filter the scattered
noise and the burr on the fracture edge. Let the structuring element of a grayscale image
Y(m, n) be t f . The process of t f eroding Y(m, n) is recorded as Y(m, n)Θt f , and the specific
definition is shown in Formula (2):

q(m, n) = Y(m, n)Θt f = {W/(t f )w ⊆ Y(m, n)} (2)

where q(m, n) is the image showing grayscale erosion. The entire image Y(m, n) must be
traversed by the structural component t f . The image q(m, n), after the erosion process, is
a collection of pixel points composed of W points with the same properties. If the origin
is moved to the W point, the origin of the structural component t f can be completely
contained in the image Y(m, n).

There are two types of grayscale transformations: linear stretching and nonlinear
stretching. Linear stretching changes the pixel value of the image by adjusting the slope
and intercept of the linear transformation function, thereby transforming the grayscale
value range of the original image to another limited range. The linear stretching process is
shown in Formula (3):

h′(a, b) = x× h(a, b) + y (3)

where h(a, b) stands for the original image, h′(a, b) is the linear stretched image, and x and
y are the slope and intercept, respectively. The contrasting images before and after contrast
stretching are shown in Figure 5.

As shown in Figure 5, the brightness of the image area is uneven, and this results in
the cracks in the region having high and low contrast, which is not conducive to subsequent
crack feature extraction. In order to expand the grayscale distribution of the image, a
nonlinear transformation is required. Nonlinear transformation refers to the use of non-
linear functions such as logarithmic transformation, power transformation, exponential
transformation, and piecewise function transformation to stretch the captured image. This
causes the image grayscale value distribution to be more in line with human observation
habits. The process is shown in Formula (4).

p(a, b) = 1/1 +
{

n/[h(a, b) + eps]∧V
}

(4)
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where p(a, b) is the pixel value at point (a, b) after contrast stretching, and n is the average
value of the original image pixels.
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(2) Image multilevel feature analysis algorithm

Rectangularity is a characteristic measure that can be used as a cohesion test [28]
because it refers to the number of adjacent rectangles that an image fills in a relevant area.
In order to further filter the noise components, the algorithm designs a hierarchical feature
analysis model of the connected domain of the subway tunnel image based on the ideas
of being multilevel and multiscale. The original tunnel image is divided into different
connected regions by using the image segmentation idea, and the connected regions are
analyzed with targeted stratum-level features. This filters out noise interference from,
for example, non-cracks as much as possible, retains and strengthens crack features, and
lays a foundation for subsequent crack image feature training and recognition detection.
Speckle noise in subway tunnel images has a wide area and a high distribution density.
Meanwhile, cracks are long and narrow, which makes it possible to distinguish them using
the rectangularity of the connected region. The rectangularity of the connected region is
calculated with Formula (5):

Bq =
∑ a∑ b[1−Y(a, b)]

Tq
=

Mq

Tq
(5)

where Mq is the zero-order rectangle of the connected area, and the filter assumes that the
image Lx(a, b) has been filtered by the zero-order moment texture feature of the first-layer
connected area Yq(a, b). As with the previous layer of filtering, the noise component is then
extracted from the image. Assuming that the number of retrieved connected regions is MB
and the rectangularity threshold is Sb, the calculation to obtain the speckle noise ly(a, b) is
as follows:

ly(a, b) =
{

Yq(a, b)
∣∣Bq > Sb, q = 1, 2, . . . , MB

}
(6)

Most of the noise elements in the image have been removed after filtering. Filtering
based on the rectangularity of the connected area can filter out most of the speckle noise
in the subway tunnel image and retain the elongated crack area. At this time, most of the
noise areas in the image have been filtered out, but some large block noise areas connected
to the fracture skeleton or with low cohesion have not been filtered out, and thus further
operations are needed. The algorithm carries out shape extremum filtering based on the
connected region by combining the maximum width vmax, the maximum length umax, and
the rectangle Bq of the connected region. After two stages of filtering, the crack image
ly(a, b) is kept alone, and the relevant regions are extracted again to avoid repeating the
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calculation process. Let the total number be Mv and the extracted correlation region be
Dq(a, b), then, Formula (7) represents the extended extraction process of the large-area
block noise ld(a, b).

ld(a, b) =
{

Dq(a, b)
∣∣vmax > Sv, umax > Su, Bq > SB, q = 1, 2, . . . , Mv

}
(7)

Connected regions that all exceed the threshold are called extended large-area block
noise regions. These include a connection area width threshold Sv, a height threshold Su,
and a rectangle threshold SB. However, it should be noted that there are still large-area areas
of lumpy noise with low cohesion caused partly by uneven tunnel lining and thickness.
Both the zero-order moment and the squareness of this type of noise are large, making it
indistinguishable from a fracture region with a short length.

(3) Circumscribed rectangle image extraction of feature texture connected area

In order to retain all crack regions, non-crack-based types of noise such as wall
scratches and water stains in tunnel images are filtered out as much as possible through
image preprocessing and layered feature analysis. To this end, before the extraction of
the original image corresponding to the connected area, the length–width ratio can be set
artificially according to the original image proportions, experimental experience, and crack
texture characteristics, and the minimum circumscribed rectangle can be appropriately
expanded to ensure that the size proportions of the extracted image are the same or close to
the original image and reduce the subsequent image recognition error. The smallest bound-
ing rectangle of the connected area package Cq(a, b) of the reserved part of the image and
its coordinates (amin, bmin), (amin, bmax), (amax, bmin), and (amax, bmax) can be determined.
The formula for calculating the aspect ratio D : P of the minimum circumscribed rectangle
of the connected region is shown in Formula (8).

D : P =
column

row
=

amax − amin

bmax − bmin
(8)

The principle of expanding the size of the rectangle circumscribed by the longitudinal
crack is shown in Formulas (9) and (10):

bmin = max{1, bmin − 0.6× [0.74× (amax − amin)− (bmax − bmin)]} (9)

bmax = min{1, bmax + 0.6× [0.74× (amax − amin)− (bmax − bmin)], 375} (10)

Therefore, when the circumscribed rectangle corresponds to the original image extrac-
tion, the minimum circumscribed rectangle is appropriately expanded. While filling the
crack area with images, this process ensures that the aspect ratio of the image is as close as
possible to the original image and avoids the error caused by the large size difference in the
subsequent image classification.

3.3. Algorithm Design of Tunnel Crack Identification and Feature Detection

(1) Tunnel complex image target detection algorithm

Considering the advantages and disadvantages of image recognition and feature
detection algorithms for subway tunnels, an SSD algorithm is developed to detect objects
in complex images. The main network structure used by the SSD method is VGG16. The
estimated bounding box size ratio tq for each feature map is calculated with Formula (11):

tq = tmin +
tmax − tmin

n− 1
(q− 1), q ∈ [1, n] (11)

The expected bounding box output of each feature map is convolved with two con-
volution kernels, and the program compares it to the actual label value box. When the
intersection-over-union ratio (IOU) exceeds a predetermined threshold, matching target
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detection occurs. Unlike classification and recognition, target detection needs to judge
the position and category of the target in the image at the same time. Therefore, there are
great differences in the evaluation methods. The evaluation target is not the whole image,
but the prediction boundary box generated in the process of network training and that
participates in the loss function calculation and forward and backward propagation. The
target detection IOU calculation is shown in Figure 6.
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For each type of target, if there is a target sample for this category in the prediction
boundary box and the IOU is greater than the set threshold, it is a positive sample. Con-
versely, if the target category of the sample in the prediction boundary box is wrong or
the IOU of the target sample for this category is less than the set threshold, it is a negative
sample. Figure 6 illustrates how the multiobject detection stage uses the set IOU threshold
to evaluate the location of the algorithm’s expected bounding box, calculated as:

IOU =
P1 ∩ P2

P1 ∪ P2
(12)

where P1 is the area of the bounding box predicted by the algorithm, and P2 is the area of
the ground-truth label value box. According to the actual situation with the subway tunnel
image, the target category to be recognized is selected, and the real label database is created
after marking the target category and position in the image.

(2) Image classification and recognition algorithm for tunnel cracks

Local response normalization (LRN) completes the data normalization operation in
standard deep convolutional networks, as it is used to improve the generalization ability
and training speed of convolutional neural networks. Batch normalization (BN) is used
instead of LRN in the upgraded Alexnet deep convolutional network to perform standard
data normalization operations. In this Alexnet deep convolution network, a self-learning
process is completed through forward propagation and backward propagation. Through
forward propagation from the bottom to the top, the output value from the calculation
results of the network model is obtained through a layer-by-layer calculation. This speeds
up the learning rate of the network and prevents the intermediate layers from changing
during training on the image data. This makes it suitable for extracting image features
from subway tunnels. For the feature extraction, classification, and identification of cracks
in subway tunnel photos, this method uses a lightweight open-source deep learning
framework (Caffe) to build an upgraded Alexnet deep convolutional network.

mi = t(vi) (13)
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vi = ωimi−1 + di (14)

where the activation functions t and mi are the output of the i layer, mi−1 is the output
of the i − 1 layer, ωi is the weight value of the i layer, and di is the bias. Therefore, the
calculated gradient of backpropagation is:

ςy =
∂Wy

∂vy
(15)

Wy = fy − ny (16)

∂Wy

∂di
=

∂Wy

∂vy

∂vy

∂di
= ςy (17)

∂Wy

∂ωi
=

∂Wy

∂vy

∂vy

∂ωi
= ςymi−1 (18)

where ςy represents the rate of change of the error Wy relative to the output vy, and the
sample error Wy is the difference between the label value fy of the sample and the network
output value ny. The rate of change of the sample error relative to the deviation di and
weight value ωi can be calculated. The following formula represents the weight value
update rules:

ωl+1 = ωl + ul+1 (19)

where l is the number of iterations and u is the momentum value.
The SVM achieves the goal of data classification by maximizing the distance between

positive and negative data values based on the concept of structured risk minimization. The
SVM uses the hinge loss function to calculate the empirical risk and adds the regularization
term to the solution system to optimize the structural risk. It is a sparse and robust classifier.
The SVM can be used for nonlinear classification via the kernel method, which is one
of the common kernel learning methods. A three-level cascaded SVM classifier can be
constructed, where the first two cascaded SVM classifiers are used to gradually predict and
score, and then the third-level SVM classifier is used for target confirmation to improve
data accuracy [29,30]. When combined with real images of subway tunnels, feature data
for the aspect ratio of the largest connected area can be derived. The ratio between the
maximum values pmax and emax of the length and width of the connecting region is called
the aspect ratio k of the largest connecting region, as shown in Formula (20).

k =
pmax

emax
(20)

3.4. Selection of Model Building Environment and Hardware Equipment

(1) Selection of model building environment

The crack detection system is designed for subway tunnel detection, with the aim of
identifying cracks arising due to different types of tunnel defects. In order to ensure the
efficient performance of the crack detection system in terms of safety, the entire system
needs to be installed on a rail vehicle that can provide structural stability for the equipment.
Due to the negative impact of the low light intensity in the tunnel on obtaining high-
quality images, it is necessary and important to equip the camera with sufficient lighting
equipment. The system can only enter the subway tunnel within the maintenance window,
and the operating time is only about 2 h. Therefore, the system needs to obtain a large
number of tunnel images in a limited time and accommodate a large amount of image data
obtained through a single inspection. Considering the actual situation of the tunnel and the
cost-effectiveness of hardware equipment, the selection of the system’s main components
is discussed in this section.
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(2) Selection of hardware equipment

For the choice of hardware, CMOS cameras have attracted great interest in high-speed
image processing due to their low power consumption and fast image reading speed.
Line-scanning cameras capture images through linear scanning, but due to insufficient
lighting, the captured images are prone to being of low quality. Common lighting devices
such as flashlights are not suitable for line-scanning cameras. Laser light sources have a
high illumination intensity, which can ensure the uniformity of image brightness. Therefore,
the high-speed industrial line-scanning CMOS camera Basler racer ral6144 was chosen for
image acquisition, and a customized laser light source was selected for illumination. The
captured images were transmitted to the computer via an image capture card.

To ensure that the captured image contains information about half of the tunnel surface,
three cameras and two laser light sources were evenly spaced on the frame, with a spacing
of 30◦ between each device. The image processing system can control the image acquisition
system to obtain images of the tunnel surface, store a large number of captured images,
and perform image data analysis. An industrial computer equipped with image acquisition
control software and image analysis software was used for real-time image acquisition and
offline image processing. A small and powerful portable i7 processing industrial computer
was used for this.

4. Crack Detection Experiment Based on Image Processing
4.1. Image Grayscale Transformation Experiment

Because nonlinear stretching can only expand or compress the regions with low or
high grayscale values, it is not generally suitable for the grayscale transformation of crack
images. Therefore, this paper mainly compares linear stretching and histogram equalization.
The comparison between the original image and the linear stretching effect is shown
in Figure 7.
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It can be seen from Figure 7 that the grayscale values of the original image are not
clear and it is difficult to capture fine cracks, but after histogram equalization, the con-
trast between the crack image and the background image is significantly enhanced. The
corresponding histogram is shown in Figure 8.

It can be seen from Figure 8a that the grayscale values of the original crack image
are mainly concentrated in the grayscale value range of 90–150, the fluctuation is large,
and other grayscale areas are not widely covered. As can be seen from Figure 8b, due to
the linear stretching, the grayscale values of the image evenly cover the entire grayscale
range of 20–260. After the comparison based on grayscale experiments, the projection
characteristics of the cracks are then compared. In this paper, the fracture projection was
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drawn in the coordinate system, and the projection curve was obtained. Projection results
for transverse cracks, longitudinal cracks, and oblique cracks in the horizontal and vertical
directions are shown in Figure 9.
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It can be seen from Figure 9a that the transverse cracks have an obvious peak value in
the horizontal direction, and the fluctuation range of the value is large. As Figure 9b shows,
the projected distribution of transverse cracks in the vertical direction is uniform and gentle.
From Figure 9c, it can be seen that the longitudinal cracks are directional and the projection
distribution is relatively uniform. Figure 9d shows that the longitudinal cracks are opposite
to the transverse cracks and have obvious peaks. While Figure 9e shows that the oblique
cracks do not have large fluctuations in the horizontal direction. Finally, it can be seen
from Figure 9f that the projection of the oblique cracks in the vertical direction is relatively
gentle, and the projection in the horizontal direction is broadly similar.

4.2. Image Target Detection Experiment

Using deep learning, this paper constructs an SSD deep convolutional neural network
and verifies and analyzes it, as shown in Table 1.

Table 1. The number of targets included in the sample library.

Number of Images Number of Cracks Total

Training Set 7130 9730 16,860
Validation Set 1020 1350 2370

Test Set 1021 1296 2317
Total 9171 12,376 21,547
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Figure 9. Projections of transverse cracks, longitudinal cracks, and oblique cracks in the horizon-
tal and vertical directions. (a) The horizontal projection of the transverse cracks. (b) The verti-
cal projection of the transverse cracks. (c) The horizontal projection of the longitudinal cracks.
(d) The vertical projection of the longitudinal cracks. (e) Horizontal projection of the oblique fissures.
(f) Vertical projection of the oblique fissures.

As shown in Table 1, on the basis of the sample library test, 9171 actual images of
subway tunnels and 21,547 target real-label value boxes are obtained by adopting the
balanced improvement method. The training set contains 7130 images, the validation set
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contains 1020 images, and the test set contains 1021 images. After the training, the model
generated by the training set is used to detect the tunnel image directly obtained by the
detection system. Different confidence thresholds can be set, and prediction boundaries
that meet different score requirements can be obtained. In the actual regular inspection
of subway tunnels, the focus is on whether cracks can be found to determine the areas of
concern. That is, it tries to ensure that all objects are detected. The detection rates of cracks
under different confidence threshold ranges are shown in Table 2.

Table 2. Fracture detection rates under different confidence threshold ranges.

0.1 0.2 0.3 0.4 0.5

Confidence Threshold 1240 1126 997 956 878
Crack Detection Rate 92.96% 83.65% 68.13% 66.25% 64.38%

Under the confidence level of 0.1, a total of 1240 cracks were detected, with a detection
rate of 92.96%. At the confidence level of 0.5, 878 cracks were detected, and the detec-
tion rate was 64.38%. Therefore, in the detection results, especially for small cracks, the
repeated box selection of multiple prediction boxes is prone to occur, but this does not
affect the overall detection effect. This method needs to be perfected in future research,
and the recognition accuracy for complex images in subway tunnels can be improved by
further fusion.

4.3. Experimental Results of Image Classification and Recognition

Due to the difficulty in identifying crack images in subway tunnels, the function
was continuously adjusted according to the experimental results during the experiment
to improve efficiency and accuracy. In this experiment, a total of 3000 data images were
selected, the data images were extracted with features, the output data were normalized,
and then the output data were read and trained. Because the initial weights were random,
the error in the result was also random, and the training result taken was the best training
result selected from multiple experiments. The experimental result can be obtained as long
as some output(s) approaches 1 and other outputs approach 0, as then the fracture type can
be determined. The experimental classification results are shown in Figure 10.

The experimental results show that the detection accuracy with transverse cracks
reached 92.3%; the detection accuracy with longitudinal cracks reached 94.0%; and the
detection accuracy with oblique cracks reached 90.8%. The output results of the analysis
can be obtained for transverse cracks and longitudinal cracks with regular shapes, because,
even if they have a certain angle in the horizontal or vertical direction, this would not affect
the results of the system judgment, and at the same time, a high classification accuracy can
be achieved. This verifies the rationality of feature selection. However, considering that
not all cracks are regularly shaped, some misclassified crack images were found during
the experiment. Because of the distortion and ductility of the cracks in these images, it is
difficult to define their type manually, and the analysis of the misclassified images shows
that it is this type of crack image that interferes with the judgment results. At the same
time, it can be seen that the set of eigenvectors selected in the experiment can classify and
identify cracks well, and the average accuracy rate of the system for the identification of
the three types of cracks reached 92.4%.

Using the original image sample library for classification and recognition, the training
accuracy was 74.7% and 69.2%, respectively. By combining the feature texture after pixel
processing with the improved bounding rectangle correspondence, a better sample library
was obtained. The training accuracy reached 87.8%, and the test accuracy reached 88%. At
the same time, a comparison experiment between subway tunnel image classification and
recognition was carried out with the improved Alexnet deep convolutional network, and
the experimental results are shown in Table 3.
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Table 3. Classification and recognition accuracy of sample library based on Alexnet deep convolu-
tional network.

Raw Image Sample
Library

Binary Image Sample
Library

Feature Texture
Bounding Rectangle

Improved Bounding
Rectangle

Alexnet Training Accuracy 87% 79.6% 94.3% 97.5%
Alexnet Test Accuracy 88.2% 79.3% 93% 96.7%

As can be seen from Table 3, the model was classified and identified based on the
Alexnet deep convolutional neural network. The results show that the training accuracy
and test accuracy of the method were 87% and 88.2%, respectively. Compared with the
original image, the training accuracy of the binarized image sample library was 79.6%. This
approach uses the method corresponding to the minimum circumscribed rectangle of the
feature texture connection area after pixel processing to establish a new sample library. The
sample library has the characteristics of completeness, large proportions, and extractability.
The method has a training accuracy of 94.3% and a test accuracy of 93%. The main reason
for this is that, after batch preprocessing and hierarchical feature analysis, the tunnel
image was converted from a three-channel image to a grayscale binary image, the content
information was reduced, and the features that can be extracted during classification and
recognition were reduced. It is difficult to distinguish cracks from pseudo-cracks or small
cracks from noise by using the pixel information contained in the grayscale binary image.
On this basis, the extracted original image was matched with the improved circumscribed
rectangle to make its size broadly the same. This reduces the impact of network feature
extraction and classification prediction, achieving a 97.5% training accuracy and 96.7%
testing accuracy. This classification and identification algorithm is fast and accurate and
cannot be affected by human subjective factors. It can be directly used for real image
detection in subway tunnels.
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5. Conclusions

(1) With the aim of identifying complex crack images in subway tunnels, a deep-learning-
based SSD deep convolutional neural network method was proposed.

(2) In the experiment, original images and linear-stretched effect maps, as well as the
horizontal and vertical projection results, of transverse cracks, longitudinal cracks,
and oblique cracks, were compared. In order to verify the application of this method in
subway tunnels, an SVM-based classification and identification method was adopted.

(3) Experiments show that the method combining image processing and deep learning
has better performance than the SVM-based classification and recognition method.

(4) There are still several issues that need to be resolved because of the complicated
internal environment of subway tunnels, the numerous interference elements, and
the constrained number of image samples. Therefore, the algorithm still needs to be
optimized and improved, and the scientific basis and rigor of the experiment should
be strengthened in future work.
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