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Abstract: With the development of smart agriculture, deep learning is playing an increasingly
important role in crop disease recognition. The existing crop disease recognition models are mainly
based on convolutional neural networks (CNN). Although traditional CNN models have excellent
performance in modeling local relationships, it is difficult to extract global features. This study
combines the advantages of CNN in extracting local disease information and vision transformer in
obtaining global receptive fields to design a hybrid model called MSCVT. The model incorporates
the multiscale self-attention module, which combines multiscale convolution and self-attention
mechanisms and enables the fusion of local and global features at both the shallow and deep levels of
the model. In addition, the model uses the inverted residual block to replace normal convolution
to maintain a low number of parameters. To verify the validity and adaptability of MSCVT in the
crop disease dataset, experiments were conducted in the PlantVillage dataset and the Apple Leaf
Pathology dataset, and obtained results with recognition accuracies of 99.86% and 97.50%, respectively.
In comparison with other CNN models, the proposed model achieved advanced performance in
both cases. The experimental results show that MSCVT can obtain high recognition accuracy in crop
disease recognition and shows excellent adaptability in multidisease recognition and small-scale
disease recognition.

Keywords: convolutional neural network; vision transformer; self-attention mechanism; image
classification; crop disease recognition

1. Introduction

Diseases have always been an important disadvantage in agricultural production.
Early detection and removal of diseases are effective means to improve the quality of crop
growth. In traditional agricultural production, the identification of crop diseases is mainly
performed through manual analysis combined with professional knowledge. The manual
identification of diseases is inefficient, is error-prone, requires high expertise, and is costly
in terms of human resources [1]. Therefore, it is the goal of many agricultural researchers
to minimize human intervention and to achieve an intelligent diagnosis of diseases. In the
early days of agricultural production, many researchers used machine learning to solve
problems in the field. Multivariate adaptive regression splines (MARS) is a nonparametric
machine learning method, which has the advantage of being able to deal with large amounts
of data and high-dimensional data, fast calculation, and an accurate model. Akin and
Eyduran et al. used MARS to incorporate nominal variables as predictor variables into
the inherent properties of the model to determine the major nutritional requirements of
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optimal major salts for good branch quality, reproduction, and greener foliage of strawberry
varieties [2]. Random forest is an ensemble learning method based on bagging, which can
deal with classification and regression problems and high-dimensional data well, and is not
easy to overfit. Jun and Fang et al. extracted features in the segmented disease area as the
input of the random forest algorithm, and then made the comprehensive accuracy of four
common sunflower diseases’ recognition reach 95.0%. There is also the KNN (k-nearest
neighbor) algorithm, which can be used for classification and regression problems on small
datasets [3]. Gaikwad et al. reviewed various classification techniques used to identify
leaf diseases and concluded that KNN is the simplest in predicting a class of test examples
and is easy to implement and understand [4]. In general, although the method of machine
learning has good performance in agriculture, there are still shortcomings; for example,
the accuracy and rate of classification, detection, and recognition are not high enough,
and there is no good robustness and versatility. For example, the quality of the MARS
model depends on whether the preset maximum number of basis functions is reasonable,
the random forest will be affected in low-dimensional small datasets and datasets with
different values of attributes, and the high time complexity of prediction and sensitivity to
noise and outliers are the shortcomings of KNN.

In recent years, with the development of deep learning [5], deep learning models
based on a convolutional neural network (CNN) [6] have achieved excellent performance
in the field of image recognition [7]. In the 2012 ILSVRC competition, AlexNet, designed
by Hinton and his student Alex Krizhevsky, achieved the best recognition accuracy on
the ImageNet dataset [8]. In 2014, GoogleNet, proposed by Google’s team, also achieved
the best result in the ImageNet competition [9]. Since CNN has shown excellent perfor-
mance in image recognition, it has been widely used in various fields, such as medical
image recognition [10], face recognition [11], animal classification [12], and vegetation
monitoring [13].

Some researchers have also applied CNN models to agricultural disease recognition
with good results. Mohanty et al. adapted the pretrained models AlexNet and GoogleNet,
using transfer learning, based on the PlantVillage dataset containing 14 crops and 26 dis-
eases. Both models achieved more than 99% accuracy on the testing set, demonstrating
the effectiveness of deep learning models in intelligently diagnosing crop diseases [14].
Zhang et al. achieved 98.9% accuracy of the improved GoogLeNet by optimizing the
parameters of GoogLeNet, adding dropout, and adjusting the number of classifiers for the
identification of eight maize leaf diseases [15]. Suryawati et al. used CNN models with
different structures for tomato disease identification. The experimental results showed that
the VGG model with a deeper structure achieved the best testing accuracy [16]. Mukti
and Biswas compared the pretrained models ResNet50, VGG16, VGG19, and AlexNet on a
large plant leaf dataset containing 70,295 training images and 175,772 validation images.
The results showed that the fine-tuned ResNet50 model achieved the best performance
of 99.80% accuracy [17]. Qiu et al. applied the pretrained network VGG16 to rice disease
identification [18] based on a dataset containing 10 rice diseases and improved the model
using parameter fine-tuning and a linear discriminant classifier. Both the training accuracy
and prediction accuracy reached over 96%, providing a good prediction model for rice
disease identification [19]. These researchers have improved on the traditional CNN model
and achieved good results on a variety of crop datasets.

To solve the problem that heavyweight models are difficult to be applied to agricultural
production, some researchers have improved some existing lightweight models or designed
their model structures with simple structures and a small number of parameters according
to the characteristics of crop disease datasets and obtained good recognition performance.
Kamal et al. proposed a lightweight model, Reduced MobileNet, with a deep separable
convolutional structure for leaf disease recognition [20]. They trained the model on a large
dataset of 82,161 leaves containing 55 different classes of plants. Experimental results
show that Reduced MobileNet achieves 98.34% classification accuracy, achieving disease
recognition ability comparable to the original MobileNet. As a result, Reduced MobileNet
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can meet the real-time crop recognition of mobile devices with its smaller model size while
maintaining higher accuracy. In another study on optimizers for MobileNetV2, Zaki et al.
extracted 4671 tomato disease images from the PlantVillage dataset as an experimental
dataset and trained the MobileNetV2 model using five optimizers [21]. The results showed
that MobileNetV2 obtained the best classification performance when the optimizer Adagrad
was used. Additionally, in a recent study, Sutaji and Yıldız proposed LEMOXINET, a high-
precision crop disease identification model fusing MobileNetV2 and Xception, which
effectively merges the leaf features extracted by MobileNetV2 and Xception [22]. It is
shown that LEMOXINET achieves 99.10% accuracy on the PlantVillage dataset and 99.52%
accuracy on a self-collected dataset containing multiple crop diseases. In 2022, Shifeng Dong
et al. proposed a YOLOv4-based crop pest detection framework, YOLO-pest, which uses
MobilenetV3 instead of the YOLOv4 backbone network to significantly reduce the number
of parameters, in response to the significant decrease in pest detection accuracy of YOLO
when dealing with pest datasets with large-scale variations and multiple classes [23]. In the
same year, Wei Zhang et al. proposed a lightweight pest detection model, AgriPest-YOLO,
for achieving a good balance between efficiency, accuracy, and model size for pest detection.
The model proposes a coordination and local attention (CLA) mechanism to obtain richer
and smoother pest features with less interference from noise [24]. Their proposed approach
further improves the identification of lightweight models on crop disease datasets.

CNN-based deep learning models have achieved excellent results in a crop disease
identification work, thanks in large part to their ability to extract local information efficiently.
In many cases, however, obtaining larger sensory fields can often only be achieved by
using large convolutional kernels or stacking multiple small convolutional kernels in
succession [25]. This characteristic determines that CNN has an inherent disadvantage
in modeling global information. CNN, while effectively learning local features, is unable
to model the relationship between the different regions in an image. In the problem of
global information extraction, the vision transformer (ViT) [26] proposed in recent years
provides a feasible solution. Transformer [27] was originally proposed in the field of
NLP, and its core module is the self-attention mechanism. The proposed mechanism can
capture the long-range relative relationships of word vectors in text information processing
and thus resolve global features of the whole text data. Inspired by Transformer, some
researchers tried to apply Transformer to the field of vision and proposed ViT. However, it
does not have the translational invariance of CNN, which makes it require a huge amount
of data to have a performance beyond that of CNN. More recently, some researchers have
proposed combining the benefits of CNN and Transformer to propose a few hybrid ViT
models, which capture long-range dependencies by embedding a layer of self-attention
in the CNN structure. For example, BoTNet [28] adds multihead self-attention to the last
three bottleneck blocks of ResNet to form a new network structure, Bottleneck Transformer.
The experimental results show that BoTNet achieves a top 1 accuracy of 84.7% on the
ImageNet-1K dataset, which is higher than the ViT model using the Transformer structure
alone. Another study by MobileViT [29] used MobileNetV2’s inverted residual block as
part of its structure for local feature extraction of images and used Transformer to replace
local modeling in the convolution with global modeling. On the ImageNet-1K dataset,
MobileViT achieves a top 1 accuracy of 78.4% with about 6 million parameters, which is
3.2% and 1.0% more accurate than ResNet101 and MobileNetV3.

All of these models achieved performance beyond that of traditional CNN models on
publicly available large image datasets. However, there is still a lack of relevant studies
combining a self-attention mechanism to design models with high recognition accuracy
on smaller-scale agricultural disease datasets. The self-attention mechanism brings new
possibilities for a deep learning model design in agriculture. Based on the current research
status of CNN models in the field of agricultural disease identification and the advanta-
geous performance of ViT models in constructing long-range feature relationships, we
summarize the limitations of previous studies and the main contributions of our work from
the following points:
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1. Previous disease identification models are still dominated by CNNs, which have limi-
tations in the expansion of the receptive field and the perception of global information.
Our work integrates the features of CNN and Transformer and designs a multiscale
self-attention (MSSA) module for the information fusion of local and global features
of disease images.

2. For crop disease identification, the self-attention mechanism lacks practical appli-
cations to verify its effectiveness. It is still difficult to design lightweight and high-
performance hybrid ViT models with real-world application datasets. We propose a
hybrid model fusing multiscale convolution and vision transformer (MSCVT) for crop
disease identification based on the ResNet five-stage architecture and insert MSSA
modules in each stage. In addition, we validated the effectiveness of the proposed
model on two disease datasets with different scales.

3. To ensure that the proposed model is lightweight, we introduce the inverted residual
block to replace the ordinary convolution of 3 × 3. In the end, MSCVT has only
4.20 M parameters and achieved 99.86% and 97.50% recognition accuracies on the
PlantVillage test dataset and the Apple Leaf Pathology test dataset, respectively.

2. Material and Methods
2.1. Model Design

As shown in Figure 1, our model is designed with reference to the five-stage archi-
tecture of ResNet. The original images are uniformly adjusted to 224× 224× 3 and input
to the model. In stage 1, the images are first passed through 7× 7 convolution and a
maxpooling layer for two consecutive downsampling operations. The reason is that the
combination of 7× 7 convolution and the maxpooling layer can reduce the feature map
size while maintaining a large receptive field. In addition, the reduced size of the feature
map can keep the number of parameters small in the later stage. The downsampled feature
maps go through four stages for local and global information extraction and fusion. A stage
consists of a downsampling layer and an MSSA module. The extraction of local information
is mainly performed by the inverted residual block and the multiscale convolution layer
in the MSSA module. The downsampling layer is also composed of an inverted residual
block with the stride of 2, which completes the feature map size reduction and channel
expansion in each stage. In order to avoid losing a large amount of shallow information
due to multiple downsampling, no downsampling is performed in stage 2, and the stride
of the corresponding 3× 3 convolution is set to 1. In the process of feature extraction from
shallow to deep layers, each stage obtains a different resolution of the feature map due to
the presence of the downsampling layer. Therefore, the self-attention mechanism in ViT
is added to the MSSA module in each stage to learn the information of different global
receptive fields.

Our model uses the average pooling layer instead of the fully connected layer. In earlier
networks, such as AlexNet, VGG, etc., the fully connected layer takes up nearly 80% of
the total number of parameters in the network, which makes the model itself very bulky.
An average pooling layer accomplishes the role of dimensionality reduction by averaging
each feature map, and also significantly reduces the number of parameters [30]. Finally,
the Fc layer is used to map the output of the previous layer into a one-dimensional vector
of length of the number of classifications. The parameters of each stage of the model are
shown in Table 1.
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Figure 1. Model structure. The stride of the convolution operation is denoted as s.

Table 1. Input shapes and output shapes (height× width × channel) of each stage. k is denoted the
number of disease categories.

Input Shapes Output Shapes Strides

Stage 1 224 × 224×3 56×56 × 24 2
Stage 2 56 × 56 × 24 56 × 56 × 32 1
Stage 3 56 × 56 × 32 28 × 28 × 48 2
Stage 4 28 × 28 × 48 14 × 14 × 88 2
Stage 5 14 × 14 × 88 7 × 7 × 168 2
IR 7 × 7 × 168 7 × 7 × 320 1
Average pooling 7 × 7 × 320 1 × 1 × 320 -
Fc 1 × 1 × 320 k × 1 -

2.2. Inverted Residual Block

The inverted residual (IR) block is a lightweight network structure proposed by
MobileNetV2, which is based on MobileNetV1’s deep separable convolution (DSC) im-
provement.The advantage of DSC is the ability to obtain good information aggregation
while maintaining a low number of parameters and computational effort [31]. DSC divides
an ordinary convolution process into two steps, depthwise convolution (DC) and pointwise
convolution (PC). One convolution kernel of DC is responsible for one channel of the input
feature map, and each channel of the feature map is computed independently of the other
in this process. Therefore, DC only computes in the spatial dimension, and the number of
output feature maps is the same as the number of channels in the input layer, and there is
no information interaction between channels, while PC accomplishes the task of combining
the DC-generated feature maps in the depth direction to complete the feature fusion in
the channel dimension. Assuming that the number of input channels is A and the number
of input channels is B, the number of parameters of S × S DSC is the sum of the number
of parameters of DC and the number of parameters of PC, which can be calculated as
Equation (1):

ParamDSC = A ∗ S ∗ S + A ∗ 1 ∗ 1 ∗ B (1)

The number of parameters of the ordinary convolution is A × S × S × B. It can be
obtained that DSC converts some of the multiplication operations in ordinary convolution
into addition operations, thus greatly reducing the computational complexity. In addition,
the outputs of both DC and PC are input to the batch normalization and ReLu activation
functions to improve the convergence speed during training and enhance the nonlinear
representation of the model. The structure of DSC is shown in Figure 2.
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Figure 2. Structure of DSC.

The residual block has been proven in ResNet to help improve the accuracy to build
deeper networks, so MobileNetV2 also introduces a similar block. The classical process
of the residual block is to downscale by 1× 1 convolution, then to extract features by
3× 3 convolution, and finally to upscale by 1× 1. However, the depthwise convolution
layer extracts features limited to the input feature dimension. If the residual block is used,
the input feature map is first compressed by the 1× 1 pointwise convolution operation,
and then the features extracted by the depthwise convolution will be less. Therefore,
MobileNetV2 first expands the channels of the feature map by 1× 1 pointwise convolution
operation to enrich the number of features and improve the accuracy. This process just
reverses the order of the residual block; i.e., it first ascends through 1× 1 convolution,
then performs feature extraction through 3× 3 convolution, and finally descends through
1× 1. According to the parameter configuration of MobileNetV2, the multiplier for channel
expansion is set to 6. The inverted residual block is shown in the Figure 3.

Figure 3. Structure of an inverted residual block. Expansion*6 denotes a channel expansion operation
with the multiplier set to 6. Projection denotes the channel compression operation. Residual concate-
nation is only required when stride is 1. There is no residual concatenation for the downsampling
layers in each stage.

2.3. Self-Attention Module

The self-attention mechanism first appeared in Transformer, proposed by Ashish
Vaswani et al. It is based on the idea of obtaining long-distance feature relationships by
computing the similarity between words in a sentence, and has been widely used in text
classification [32] and sentiment analysis [33]. Unlike serialized vectors, the information
of an image is stored in the form of a matrix [34]. This means that it is not possible to
apply Transformer directly to the field of vision. In order to allow images to also acquire
long-distance information on images like serial vectors, Alexey Dosovitskiy et al. proposed
ViT. Their approach is to slice the image into fixed-size patches, and then obtain the patch
embedding by a linear transformation. As shown in Figure 4, to divide the image into P × P
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patches, the image is first cut into HW
P2 patches by reshaping. Then each patch is stretched

into a one-dimensional vector of the length P2× C. Finally, the patches are converted into
patch embedding of the specified length by a linear transformation, which is similar to
word embedding in NLP. Each patch embedding is equivalent to a word embedding in
a sentence, and the whole image is equivalent to a sentence. After obtaining the patch
embedding, we also need to embed the position information of each patch by position
embedding. In NLP, position embedding is used to add position information to words [35].
Similarly, it is possible to embed position information to the patch embedding in ViT.
A straightforward way is to generate a learnable parameter with the same dimension
as the patch embedding as the positional embedding randomly, and then add the patch
embedding and the positional embedding directly. The input of the final self-attention
mechanism calculation is shown in Equation (2).

InputPatch = Patch Embedding(x) + Position Embedding (2)

Figure 4. Patch Embedding. H, W, and C denote height, width, and the number of channels,
respectively. * denotes multiplication between numbers.

As shown in Figure 5, the input image is first converted into patch embedding and
embedded in position embedding, and then the self-attention mechanism can be computed.
Each Input_Patch will be multiplied with three transformation matrices, WQ, WK, and WV,
to obtain three vectors, Query (Q), Key (K), and Value (V) [36]. Then, the similarity between
each patch and other patches in the image is calculated by dot product operation on Q and
K. This similarity value is calculated by the softmax function to obtain a set of weights.
The attention feature matrix is obtained by summing the product of these weights and the
corresponding V, which represents the image information represented by each patch and
the dependencies between the image regions represented by different patches. The core of
the whole calculation process can be expressed as Equation (3):

Attention(Q, K, V) = (softmax(
QKT
√

dk
))V (3)

In order to obtain complete and detailed global information, the size of the sliced
patch is set to 1× 1, and the length of each Input_Patch is equal to the number of channels.
This means that each pixel of the image will calculate the dependency factor with the pixels
in other regions, and the computational complexity of the SA module is proportional to the
square of the image resolution. Therefore, we refer to the ResNet structure and perform two
downsampling operations in the first stage and add downsampling layers in the following
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stages. After the image size is reduced several times, the number of parameters generated
by the SA module is largely reduced.

Figure 5. Self-attention module.

2.4. MSSA Module

An MSSA module consists of a multiscale feature fusion layer and self-attention
module (SA module), and the overall architecture is shown in Figure 6. After the feature
map with the dimension H ×W × C (where H, W, and C denote height, width, and the
number of channels, respectively) enters the MSSA module, a larger receptive field and
more detailed information are first obtained from the spatial dimension by a 3-layer inverted
residual block. Then the feature map is sliced into 3 subfeature maps from the channel
dimension, and the dimensions of the subfeature maps are all H ×W ×( 1

3C ). We input
these subfeature maps into 3 × 3, 5 × 5, and 7 × 7 ordinary convolution layers to obtain
subfeature maps with different receptive fields. Finally, these subfeature maps are fused
by concatenation to obtain a feature map with multiscale information in the channel
dimension. The local features obtained from spatial and channelwise acquisition of the
image complement each other, which can effectively enhance the disease information and
suppress irrelevant information [37]. The above process can be expressed as Equation (4):

Outputmultiscale(z1, z2, z3) = Concatenate(Conv3×3(z1), Conv5×5(z2), Conv7×7(z3)) (4)

where Outputmultiscale denotes the output from which multiscale information is obtained.
z1, z2, and z3 denote the subfeature maps generated by splitting the initial input along the
channel direction after 2-layer 3× 3 convolution, respectively.
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Figure 6. MSSA module.

The self-attention mechanism is introduced to work on the extraction of global infor-
mation. The traditional CNN model obtains a wider receptive field by stacking convolution
blocks, and the obtained receptive field is also limited. In addition, in previous crop dis-
ease recognition studies, most of them revolve around how to obtain more detailed local
information and often ignore the correlation between different locations of the images.
Therefore, we input the feature map output from the multiscale convolution layers to the
SA module to complement the global receptive field of the model. Due to the ability of
the self-attention mechanism to capture long-range dependency, local feature blocks at
different locations are correlated. Even the edge information of the image will be identified.

As the network deepens gradually, the shape of the feature map becomes progressively
smaller due to multiple downsampling. Additionally, the input feature map of each
stage is the result of mapping the image several times, and inputting feature maps with
different resolutions in different stages will cause the region information represented by
the generated patches to change. Therefore, the position information parameter position
embedding and the dependencies between patches need to be relearned in each stage.

In order to make the model more expressive, we repeatedly stack the MSSA modules
at each stage to form a double-loop structure. The feature map output from the MSSA
module is re-entered into the MSSA module, and it is worth noting that the positional
embedding in the SA module is removed when re-entered. This is because the location
information of patch is already embedded in the computed result of the first MSSA module,
and the calculation process of the second MSSA module is able to receive the long-range
dependence information obtained from the previous calculation. This improves the reuse
rate of information and reduces the number of unnecessary parameters and computations.
In addition, residual connections are added to the outermost part of the entire MSSA
module to prevent the occurrence of model overfitting.

2.5. Experimental Datasets

Experimental data were obtained from PlantVillage, a public dataset produced by
the Pennsylvania State University, and the Apple Leaf Pathology dataset produced by
Northwestern Agricultural and Forestry University. The PlantVillage dataset contains
12 healthy leaves and 26 diseased leaves with a total of 54,306 images. It is the most widely
used public dataset for the identification of crop diseases. Table 2 shows the number of
images for each crop in the PlantVillage dataset, the number of disease categories, and the
number of health categories included in that crop. The Apple Leaf Pathology dataset
contains 5 different apple leaf diseases, which were mostly acquired under good lighting
conditions on sunny days, with a few images being acquired on rainy days. This dataset was
initially composed of 1591 images, which was expanded to 26,376 images after various data
augmentation methods, such as mirroring, rotation, brightness adjustment, and contrast
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adjustment. As shown in Table 3, the numbers of each category were 5342 images of
Alternaria_Boltch, 5655 images of Brown_Spot, 4810 images of Gray_Spot, 4875 images
of Mosaic, and 5694 images of Rust. Samples of the PlantVillage dataset and the Apple
Leaf Pathology dataset are shown in Figures 7 and 8, respectively. Some of the augmented
images in the Apple Leaf Pathology dataset are shown in Figure 9.

Table 2. Distribution of the PlantVillage dataset.

Crop Category Number of Disease Types Number of Health Categories Number of Images

Tomato 9 1 18,160
Orange 1 0 5507
Soybean 0 1 5090
Grape 3 1 4063
Corn 3 1 3852
Apple 3 1 3171
Peach 1 1 2657
Pepper 1 1 2475
Potato 2 1 2152
Cherry 1 1 1906
Squash 1 0 1835
Strawberry 1 1 1565
Blueberry 0 1 1502
Raspberry 0 1 371
Total 26 12 54,306

Table 3. Distribution of the Apple Leaf Pathology dataset.

Crop Category Number of Images

Rust 5694
Brown_Spot 5655
Alternaria_Boltch 5342
Mosaic 4875
Gray_Spot 4810
Total 26,376

(a) (b) (c)

(d) (e) (f)

Figure 7. Examples of diseases in the PlantVillage dataset: (a) Apple_Cedar_apple_rust,
(b) Grape_Black_rot, (c) Peach_Bacterial_spot, (d) Potato_Early_blight, (e) Strawberry_Leaf_scorch,
(f) Tomato_Bacterial_spot.
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(a) (b) (c)

(d) (e)

Figure 8. Some samples of Apple Leaf Pathology dataset: (a) Alternaria_Boltch, (b) Brown_Spot,
(c) Grey_Spot, (d) Mosaic, (e) Rust.

(a) (b) (c)

(d) (e)

Figure 9. Some of the augmented images: (a) origin image, (b) turn down brightness, (c) enhance
brightness, (d) rotation 90◦, (e) horizontal flip.

Among all the crop disease datasets, the PlantVillage dataset has been selected by most
research works to assess the multiclassification recognition capability of the model because
of its large data size and multiple classifications. In the experiments, our proposed model
was compared with other research works on the PlantVillage dataset. In addition, the ability
to generalize on small datasets is an important basis for the robustness of the model.
The Apple Leaf Pathology dataset with an original size of 1591 images was expanded more
than 10 times after data augmentation, which is prone to model overfitting; i.e., the model
achieves high accuracy on the training set but low accuracy on the testing set. Therefore,
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we choose the Apple Leaf Pathology dataset to demonstrate that the proposed model can
also exhibit the high-accuracy generalization performance of small disease datasets.

3. Results and Analysis
3.1. Experiments on the PlantVillage Dataset

The models are trained on one NVIDIA RTX 3090 GPU with 24 GB RAM based on a
64-bit Ubuntu 20.04 operating system and PyTorch framework, with Python version 3.8.0,
PyTorch version 1.10.0, and CUDA API version 11.3. The experimental parameters are set
as follows: stochastic gradient descent (SGD) is used as the model optimizer, the initial
learning rate is set to 0.01, the momentum is 0.9, the batch size of the model is set to 64,
the number of iterations (epochs) is set to 200, and the loss function is CrossEntropy.

Several evaluation metrics are used to evaluate the model, including accuracy, recall,
precision, sensitivity, specificity, and F1-score. Accuracy is the proportion of correctly
classified samples to the total number of samples, precision is the proportion of samples
with positive predictions that are actually positive, and recall is the proportion of samples
with positive predictions that are actually positive. Sensitivity (Sens) is the ratio of all
positive cases to all positive cases identified, and specificity (Spec) is the ratio of negative
cases to all negative cases identified. F1-score takes recall and precision into account
and is a weighted average of the two. The calculation formula for each metric is as
Equations (5)–(10):

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

FP + TN
(9)

F1−score =
2TP

2TP + FP + FN
(10)

where TP is the number of true-positive samples, FP is the number of false-positive samples,
FN is the number of false-negative samples, and TN is the number of true-negative samples.
In order to examine the lightness of the model, params and FLOPs are used as metrics in
the experiments. Params denote the number of model parameters. FLOPs denote floating
point operations number, understood as the amount of computation. FLOPs are currently
used in most studies to measure the computational speed of an algorithm/model. When
the FLOPs are smaller, it means that the model has a smaller computation, and therefore,
the model has a higher computing speed.

We compared the performance of our method with the ResNet family of the ResNet18,
ResNet34, ResNet50, and ResNet101 networks on the PlantVillage dataset. As shown in
Figure 10, MSCVT shows a faster convergence rate than the ResNet network at the begin-
ning of training, and the loss is kept lower during the training process, which indicates that
the model has a stronger data fitting ability. Figure 11 shows the accuracy variation curves
of each model over 100 epochs on the testing dataset. As can be seen, MSCVT’s testing
accuracy increased most rapidly at the beginning of the training process and outperformed
the ResNet network in less than 10 epochs. After 20 epochs, the model’s testing accuracy
plateaued and was slightly ahead of the rest of the models. These results show that MSCVT
has a better convergence speed than the ResNet network family. Table 4 shows the metrics
of MSCVT on the training and testing sets, and it can be seen that the performance of the
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model on the training set is lower than that on the testing set. This indicates that the pro-
posed model does not suffer from overfitting and exhibits excellent generalization ability.
As can be seen in Tables 5 and 6, after 200 epochs of training, the proposed MSCVT model
achieved better performance than the ResNet family of networks with a minimum number
of parameter values. The accuracy of the ResNet models differed for different depths,
with ResNet101 having the highest accuracy of 99.79%. ResNet18, ResNet34, and ResNet50
are followed by accuracies of 99.71%, 99.75%, and 99.70%, respectively. On the one hand,
the accuracy of MSCVT is found to be 0.15%, 0.11%, 0.16%, and 0.07% higher than the
accuracy of ResNet18, ResNet34 ResNet50, and ResNet101, respectively. On the other hand,
Table 6 shows that the number of parameters of MSCVT is roughly 1

3 , 1
5 , 1

6 , and 1
10 of those

of ResNet18, ResNet34, ResNet50, and ResNet101, respectively. In terms of speed, MSCVT
also obtained lower FLOPs than the ResNet model, indicating that the model has less
computational effort as well as higher running speed. In addition, the proposed model
achieves the best performance in other evaluation metrics, such as sensitivity, specificity,
recall, and F1-score. Thus, MSCVT obtains high accuracy performance without causing an
excessive number of parameters.

Figure 10. Loss variation curves of ResNet models on the PlantVillage training dataset.

Figure 11. Accuracy variation curves of ResNet models on the PlantVillage testing dataset.
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Table 4. Comparison of testing performance and training performance of the MSCVT on PlantVillage
dataset.

Dataset Accuracy (%) Recall (%) Precision (%) F1-Score (%) Sens (%) Spec (%)

Train 99.59 99.35 99.43 99.46 99.43 99.98
Test 99.86 99.82 99.72 99.77 99.82 99.99

Table 5. The performance of ResNet models on the PlantVillage testing dataset.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) Sens (%) Spec (%)

MSCVT 99.86 99.82 99.72 99.77 99.82 99.99
ResNet18 99.71 99.66 99.52 99.55 99.66 99.98
ResNet34 99.75 99.72 99.62 99.63 99.72 99.98
ResNet50 99.70 99.58 99.58 99.58 99.58 99.98
ResNet101 99.79 99.65 99.74 99.69 99.65 99.99

Table 6. The lightweight indicators of ResNet models on the PlantVillage testing dataset.

Model Param (M) FLOPs (M)

MSCVT 4.20 1035.78
ResNet18 11.20 1823.52
ResNet34 21.30 3678.22
ResNet50 23.59 4131.69
ResNet101 42.57 7864.39

Next, MSCVT was compared with the traditional heavyweight models VGG16
and VGG19 and the lightweight models MobileNetV1 and MobileNetV2. As shown in
Figures 12 and 13, our model shows a comparable convergence speed with the other models
during the training of the first 100 epochs. Table 7 shows the final evaluation metrics for
all models, and the proposed model reaches the most optimal. While the accuracies of
VGG16 and VGG19 are similar to that of our model, their parameters and FLOPs are by far
several tens of times higher. As shown in Table 8, MSCVT achieves a larger performance
improvement at the cost of a small increase in parameters and FLOPs compared with the
lightweight MobileNetV1 and MobileNetV2 networks. In addition, MSCVT has the best
recall, sensitivity, specificity, and F1-score, indicating that it is more powerful in identifying
positive samples and more difficult to misclassify, which reflects that the proposed model
is more powerful in terms of comprehensive performance.

Table 7. The performance of other CNN models on the PlantVillage testing dataset.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) Sens (%) Spec (%)

MSCVT 99.86 99.82 99.72 99.77 99.82 99.99
VGG16 99.83 99.78 99.76 99.77 99.78 99.99
VGG19 99.84 99.75 99.77 99.76 99.75 99.99
MobileNetV1 99.71 99.60 99.61 99.60 99.60 99.98
MobileNetV2 99.82 99.79 99.66 99.72 99.79 99.99

Table 8. The lightweight indicators of other CNN models on the PlantVillage testing dataset.

Model Param (M) FLOPs (M)

MSCVT 4.20 1035.78
VGG16 134.41 15,466.18
VGG19 139.72 19,627.97
MobileNetV1 3.26 587.93
MobileNetV2 2.44 542.18
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Figure 12. Loss variation curves of other CNN models on the PlantVillage training dataset.

Figure 13. Accuracy variation curves of other CNN models on the PlantVillage testing dataset.

We also performed a detailed comparison of MSCVT with models used by other
researchers. Among the models used for comparison are classical CNN models, such as
VGG and GoogleNet, the lightweight MobileNetV1 and MobileNetV2 models, and some
improved versions. For fairness, models used for comparison need to be trained and
tested on PlantVillage’s dataset. As shown in Table 9, our proposed method provides the
best accuracy in comparison with different types of CNN models. Therefore, the high
performance of MSCVT is convincing. In addition, to demonstrate the capability of MSCVT
to identify multiple crop diseases, we extracted nine types of diseased leaves and six types of
healthy leaves from the testing dataset to draw the confusion matrix. The confusion matrix
can represent the number of correct identifications and the number of misclassifications
of the model in each category. Figure 14 shows that our proposed model achieves high
accuracy performance on all classifications, showing the robustness of MSCVT on the task
of classification of multiple diseases.
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Table 9. The performance of different studies on the PlantVillage dataset.

Study Year Model (%) Accuracy (%)

Mohanty et al. [14] 2016 GoogleNet 99.34
Ferentinos [38] 2018 VGG 99.53
Kamal et al. [20] 2019 MobileNet 98.65
Kamal et al. [20] 2019 Reduced MobileNet 98.34
Gao et al. [39] 2021 DECA_ResNet18 99.74
Sanida et al. [40] 2021 MobileNetV2 98.08
Sutaji and Yıldız [22] 2022 LEMOXINET 99.10
This study 2023 MSCVT 99.86

Figure 14. Confusion matrix on the PlantVillage dataset.

3.2. Experiments on the Apple Leaf Pathology Dataset

In the same way, on the smaller Apple Leaf Pathology dataset, we still compared
the ResNet family of networks with the proposed MSCVT experimentally. As shown in
Figures 15 and 16, all models converge within 100 epochs. In the early stage of training, our
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model accuracy rose significantly faster than the other models and maintained the highest
accuracy rate. Table 10 shows that the proposed model also does not show overfitting on
smaller-sized datasets, showing a strong generalization ability. The various evaluation met-
rics are summarized in Table 11. The results show that MSCVT performs best with 97.50%
accuracy and achieves the best performance on recall, precision, sensitivity, specificity, and
F1-score with 97.52%, 97.51%, 97.52%, 99.36%, and 97.51%, respectively. This indicates that
our model still maintains higher positive sample recognition and a lower false-positive rate
on a smaller-sized dataset. Among the ResNet family of networks, ResNet18 and ResNet34
both achieved 97.19% accuracy, outperforming ResNet50 and ResNet101 with deeper struc-
tures. Compared with ResNet18, ResNet34, ResNet50, and ResNet101, the accuracy of
MSCVT is improved by 0.31%, 0.31%, 0.65%, and 0.48%.

Table 10. Comparison of testing performance and training performance of MSCVT on the Apple Leaf
Pathology dataset.

Dataset Accuracy (%) Recall (%) Precision (%) F1-Score (%) Sens (%) Spec (%)

Train 96.74 96.74 96.74 96.86 96.74 99.18
Test 97.50 97.52 97.51 97.51 97.52 99.36

Table 11. The performance of ResNet models on the Apple Leaf Pathology testing dataset.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) Sens (%) Spec (%)

MSCVT 97.50 97.52 97.51 97.51 97.52 99.36
ResNet18 97.19 97.19 97.19 97.19 97.19 99.26
ResNet34 97.19 97.25 97.19 97.21 97.25 99.28
ResNet50 96.85 96.89 96.84 96.86 96.89 99.21
ResNet101 97.02 97.06 97.01 97.04 97.01 99.25

Figure 15. Loss variation curves of ResNet models on the Apple Leaf Pathology training dataset.
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Figure 16. Accuracy variation curves of ResNet models on the Apple Leaf Pathology testing dataset.

As shown in Figures 17 and 18, our model achieves a comparable convergence rate
to other CNN models, including the light and heavy models on the Apple Leaf Pathology
dataset. Table 12 also demonstrates that the proposed model achieves advanced recognition
performance in all evaluation metrics. However, MSCVT obtains a recognition performance
close to that of VGG19 with a number of parameters tens of times lower. In comparison
with the heavyweight model VGG16, the accuracy of MSCVT is improved by 0.25%.
On the other hand, MSCVT improves accuracy by 1.90% and 0.23% compared with the
lightweight models MobileNetV1 and MobileNetV2, respectively. In recall, precision,
sensitivity, specificity, and F1-score evaluation metrics, our model obtains a performance
second only to VGG19. In terms of the model size and speed, according to Tables 13 and 14,
the proposed model is second only to MobileNetV1 and MobileNetV2 .

Table 12. The performance of other CNN models on the Apple Leaf Pathology testing dataset.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) Sens (%) Spec (%)

MSCVT 97.50 97.52 97.51 97.51 97.52 99.36
VGG16 97.25 97.26 97.27 97.26 97.26 99.21
VGG19 97.63 97.62 97.66 97.64 97.62 99.38
MobileNetV1 95.60 95.56 95.53 95.53 95.26 99.02
MobileNetV2 97.27 97.32 97.28 97.30 97.32 99.27

Table 13. The lightweight indicators of ResNet models on the Apple Leaf Pathology testing dataset.

Model Param (M) FLOPs (M)

MSCVT 4.18 1035.76
ResNet18 11.18 1823.52
ResNet34 21.29 3678.22
ResNet50 23.52 4131.69
ResNet101 42.51 7864.38
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Table 14. The lightweight indicators of other CNN models on the Apple Leaf Pathology testing
dataset.

Model Param (M) FLOPs (M)

MSCVT 4.20 1035.76
VGG16 134.28 15,466.17
VGG19 139.59 19,627.97
MobileNetV1 3.22 587.89
MobileNetV2 2.40 542.13

Figure 17. Loss variation curves of other CNN models on the Apple Leaf Pathology training dataset.

Figure 18. Accuracy variation curves of other CNN models on the Apple Leaf Pathology test-
ing dataset.
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In addition, we plotted the confusion matrix based on the whole testing dataset.
Figure 19 shows that MSCVT kept the number of false positives within 50 for all 5 classifi-
cations on the Apple Leaf Pathology dataset. After the statistical operation, the recognition
rates of Alternaria_Boltch, Brown_Spot, Grey_Spot, Mosaic, and Rust on the five apple
leaf diseases were 96.79%, 98.76%, 96.43%, 100%, and 96.38%, respectively. These results
show that the model maintains high accuracy in the identification of each apple disease
without severe recognition bias. In summary, one can conclude that MSCVT can still
achieve state-of-the-art recognition performance on small-scale pathological datasets.

Figure 19. Confusion matrix on the Apple Leaf Pathology testing dataset.

3.3. Ablation Experiments for SA Module

Class activation mapping (CAM) is a technique for visualizing the image features
extracted by a model, which can show how much attention the model pays to each region of
the image [41]. A darker red region means that the model is more interested in that region
and considers it more likely to be a target for recognition. Conversely, if a region is darker
in blue, it means that the region tends to be neglected. We selected MSCVT, ResNet101,
VGG19, and MobileNetV2 for visualization and comparison. Figures 20 and 21 show the
visualization results of different models on diseased leaves. The proposed model can be
found to capture the most complete diseased regions of the leaf, whereas other models
are more likely to ignore disease characteristics. In addition, our model is able to focus
well on the key disease information and filter out the nonfocused information. In this way,
the initial signal can be obtained that the SA module in MSCVT broadens the receptive
field of the model and allows the model to focus on more disease features. Next, the SA
module is used for the ablation experiments.
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(a) (b) (c)

(d) (e)

Figure 20. Visualization. Darker red means the model pays more attention to the region, and darker
blue means the model ignores the region more. results on Peach_Bacterial_spot: (a) origin image,
(b) MSCVT, (c) VGG19, (d) ResNet101, (e) MobileNetV2.

(a) (b) (c)

(d) (e)

Figure 21. Visualization. Darker red means the model pays more attention to the region, and darker
blue means the model ignores the region more. results on Strawberry_Leaf_scorch, (a) origin image,
(b) MSCVT, (c) VGG19, (d) ResNet101, (e) MobileNetV2.

To highlight the ability of the SA module in capturing global information, we use
CAM to visualize the effects produced by the SA module. After removing the SA module
from MSCVT, the differences of the feature maps are analyzed. Figure 22 shows that the
original model pays more attention to the edge areas of the image than the model with the
SA module removed. When the onset part of the leaf is located at the edge of the image,
the SA module can significantly improve the sensitivity of the model to capture disease
information. This phenomenon is explained by the fact that the self-attention mechanism
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provides a global receptive field, which allows the model to acquire feature information at
a distance in the image.

(a) (b) (c)

(d) (e) (f)

Figure 22. Visualization. Darker red means the model pays more attention to the region, and
darker blue means the model ignores the region more. results of SA module: (a) sample1
(Tomato_Early_blight), (b) MSCVT for sample1, (c) MSCVT without SA module for sample1, (d) sam-
ple2 (Tomato_Septoria_leaf_spot), (e) MSCVT for sample2, (f) MSCVT without SA module for
sample2.

Previous CAM visualization experiments have demonstrated the effectiveness of the
self-attention mechanism in the process of crop disease identification by the model. To verify
the effect of the SA module on the model performance, we compared the recognition
accuracy for this module. The experiments were conducted on the PlantVillage dataset
and the Apple Leaf Pathology dataset, respectively. The performance of both the original
model and the model with the SA module removed on the two different datasets is shown
in Table 15. When the SA module was added, the accuracy of MSCVT improved by 0.06%
and 0.08% on the PlantVillage dataset and the Apple Leaf Pathology dataset, respectively.
This result shows that with the stacking of multiscale CNN layers, our model already has
a good recognition capability for most of the disease images. Even without adding the
self-attention mechanism, the model still achieves comparable performance with other
CNN models. However, there are a small proportion of images with insignificant edge
features that are difficult to discriminate. The SA module can expand the receptive range of
the model while maintaining the efficient inductive bias capability of the CNN layer, thus
recognizing more disease features located at the edges of the images.

Table 15. Ablation experiment results for SA module.

Model Plant Village Dataset (%) Apple Leaf Pathology Dataset (%)

MSCVT 99.86 97.50
MSCVT without SA module 99.80 97.42

4. Conclusions

In this paper, by combining the benefits of CNN and ViT, we propose a new network
MSCVT based on the ResNet architecture, which has a low number of parameters and
advanced recognition accuracy for effective crop disease identification. The network is
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based on the five-layer stage structure of the ResNet network with SGD as the optimizer,
a learning rate of 0.01, and a batch size of 64. After 200 epochs of training, the network
achieves high recognition accuracy with fewer parameters on two crop datasets. On
the work of model compression, the lightweight module of MobileNetV2, an inverted
residual block, has been incorporated into our model, which can significantly reduce
the cost of parameters required in convolutional operations. For recognition accuracy
improvement, we propose the MSSA module, which uses multiscale convolution layers to
identify localized disease features and the SA module to enhance the ability of the model
to capture disease information at edge locations. Experimental results show that MSCVT
exhibits significant recognition effects on the PlantVillage dataset and can achieve accurate
recognition of multiple crop diseases. It achieves state-of-the-art performance compared
with different types of CNN models. In addition, the proposed model achieved advanced
recognition accuracy on the small-scale Apple Leaf Pathology dataset. The proposed model
meets the demand for high-precision agricultural disease identification, can accurately
identify a variety of crop diseases, makes up for the shortcomings of modern deep learning
models for plant disease analysis and processing, effectively reduces human identification
errors, and saves the time cost of technicians and experts arriving for identification because
agricultural areas are far from cities. Additionally, its lightweight feature also meets the
demand for mobile intelligent recognition in actual agricultural production, can quickly
identify leaf disease images, and significantly improves the efficiency of pest and disease
identification. Future research will attempt to deploy the model on mobile devices for
real-time crop disease identification. Additionally, we hope to apply the model to other
crop identification tasks.

Author Contributions: Conceptualization, J.T. and D.Z.; methodology, J.T.; software, J.T.; validation,
J.T., D.Z. and C.W.; formal analysis, J.T.; investigation, J.T.; resources, C.W.; data curation, C.W.;
writing—original draft preparation, J.T.; writing—review and editing, J.T.; visualization, K.Y.; su-
pervision, A.W.H.I.; project administration, D.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by a special project of “Research on teaching reform and practice
based on first-class curriculum construction” of the China Society of Higher Education (2020JXD01),
a special project in the key field of “artificial intelligence” in colleges and universities in Guangdong
Province (2019KZDZX1027), provincial key platforms and major scientific research projects of Guang-
dong universities (major scientific research projects—characteristic innovation) (2017KTSCX048),
Guangdong Provincial Industry College Construction Project (Artificial Intelligence Robot Education
Industry College), Research on Basic and Applied Basic Research Project of Guangzhou Municipal
Bureau of Science and Technology (202102080277), and Guangdong Provincial Education Depart-
ment Innovation and Strengthening School Project (2020KTSCX027), scientific research project of
Guangdong Bureau of Traditional Chinese Medicine (20191411).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muthukrishnan, V.; Ramasamy, S.; Damodaran, N. Disease recognition in philodendron leaf using image processing technique.

Environ. Sci. Pollut. Res. 2021, 28, 67321–67330. [CrossRef]
2. Akin, M.; Eyduran, S.P.; Eyduran, E.; Reed, B.M. Analysis of macro nutrient related growth responses using multivariate adaptive

regression splines. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 140, 661–670. [CrossRef]
3. Liu, J.; Lv, F.; Di, P. Identification of sunflower leaf diseases based on random forest algorithm. In Proceedings of the 2019

International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 6–8 December 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 459–463.

4. Gaikwad, V.P.; Musande, V. Wheat disease detection using image processing. In Proceedings of the 2017 1st International
Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 110–112.

5. Lauzon, F.Q. An introduction to deep learning. In Proceedings of the 2012 11th International Conference on Information
Science, Signal Processing and Their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 1438–1439.

6. Li, Y.; Hao, Z.; Lei, H. Survey of convolutional neural network. J. Comput. Appl. 2016, 36, 2508.

http://doi.org/10.1007/s11356-021-15336-w
http://dx.doi.org/10.1007/s11240-019-01763-8


Sensors 2023, 23, 6015 24 of 25

7. Druzhkov, P.; Kustikova, V. A survey of deep learning methods and software tools for image classification and object detection.
Pattern Recognit. Image Anal. 2016, 26, 9–15. [CrossRef]

8. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

9. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015; pp. 1–9.

10. Fourcade, A.; Khonsari, R.H. Deep learning in medical image analysis: A third eye for doctors. J. Stomatol. Oral Maxillofac. Surg.
2019, 120, 279–288. [CrossRef]

11. Said, Y.; Barr, M.; Ahmed, H.E. Design of a face recognition system based on convolutional neural network (CNN). Eng. Technol.
Appl. Sci. Res. 2020, 10, 5608–5612. [CrossRef]

12. Xu, W.; Zhang, X.; Yao, L.; Xue, W.; Wei, B. A multi-view CNN-based acoustic classification system for automatic animal species
identification. Ad Hoc Netw. 2020, 102, 102115. [CrossRef]

13. Henrichs, D.W.; Anglès, S.; Gaonkar, C.C.; Campbell, L. Application of a convolutional neural network to improve automated
early warning of harmful algal blooms. Environ. Sci. Pollut. Res. 2021, 28, 28544–28555. [CrossRef]

14. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016,
7, 1419. [CrossRef]

15. Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep convolutional neural
networks. IEEE Access 2018, 6, 30370–30377. [CrossRef]

16. Suryawati, E.; Sustika, R.; Yuwana, R.S.; Subekti, A.; Pardede, H.F. Deep structured convolutional neural network for tomato
diseases detection. In Proceedings of the 2018 International Conference on Advanced Computer Science and Information Systems
(ICACSIS), Yogyakarta, Indonesia, 27–28 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 385–390.

17. Mukti, I.Z.; Biswas, D. Transfer learning based plant diseases detection using ResNet50. In Proceedings of the 2019 4th
International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 20–22 December
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

18. Kodama, T.; Hata, Y. Development of classification system of rice disease using artificial intelligence. In Proceedings of the 2018
IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 3699–3702.

19. Qiu, J.; Lu, X.; Wang, X.; Hu, X. Research on rice disease identification model based on migration learning in VGG network. IOP
Conf. Ser. Earth Environ. Sci. 2021, 680, 012087. [CrossRef]

20. Kamal, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput.
Electron. Agric. 2019, 165, 104948.

21. Zaki, S.Z.M.; Zulkifley, M.A.; Stofa, M.M.; Kamari, N.A.M.; Mohamed, N.A. Classification of tomato leaf diseases using MobileNet
v2. IAES Int. J. Artif. Intell. 2020, 9, 290. [CrossRef]

22. Sutaji, D.; Yıldız, O. LEMOXINET: Lite ensemble MobileNetV2 and Xception models to predict plant disease. Ecol. Inform. 2022,
70, 101698. [CrossRef]

23. Dong, S.; Zhang, J.; Wang, F.; Wang, X. YOLO-pest: A real-time multi-class crop pest detection model. In Proceedings of the
International Conference on Computer Application and Information Security (ICCAIS 2021), Wuhan, China, 18–19 December
2022; SPIE: Bellingham, WA, USA, 2022; Volume 12260, pp. 12–18.

24. Zhang, W.; Huang, H.; Sun, Y.; Wu, X. AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep
learning. Front. Plant Sci. 2022, 13, 1079384. [CrossRef]

25. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [CrossRef]

26. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.

28. Srinivas, A.; Lin, T.Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck transformers for visual recognition. In Proceedings
of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 25 June 2021;
pp. 16519–16529.

29. Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021,
arXiv:2110.02178.

30. Li, X.; Wan, S.; Liu, S.; Zhang, Y.; Hong, J.; Wang, D. Bearing fault diagnosis method based on attention mechanism and multilayer
fusion network. ISA Trans. 2022, 128, 550–564. [CrossRef]

31. Tseng, F.H.; Yeh, K.H.; Kao, F.Y.; Chen, C.Y. MiniNet: Dense squeeze with depthwise separable convolutions for image
classification in resource-constrained autonomous systems. ISA Trans. 2023, 132, 120–130. [CrossRef]

32. Chun, H.; Leem, B.H.; Suh, H. Using text analytics to measure an effect of topics and sentiments on social-media engagement:
Focusing on Facebook fan page of Toyota. Int. J. Eng. Bus. Manag. 2021, 13, 18479790211016268. [CrossRef]

http://dx.doi.org/10.1134/S1054661816010065
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.jormas.2019.06.002
http://dx.doi.org/10.48084/etasr.3490
http://dx.doi.org/10.1016/j.adhoc.2020.102115
http://dx.doi.org/10.1007/s11356-021-12471-2
http://dx.doi.org/10.3389/fpls.2016.01419
http://dx.doi.org/10.1109/ACCESS.2018.2844405
http://dx.doi.org/10.1088/1755-1315/680/1/012087
http://dx.doi.org/10.11591/ijai.v9.i2.pp290-296
http://dx.doi.org/10.1016/j.ecoinf.2022.101698
http://dx.doi.org/10.3389/fpls.2022.1079384
http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://dx.doi.org/10.1016/j.isatra.2021.11.020
http://dx.doi.org/10.1016/j.isatra.2022.07.030
http://dx.doi.org/10.1177/18479790211016268


Sensors 2023, 23, 6015 25 of 25

33. Asgari, T.; Daneshvar, A.; Chobar, A.P.; Ebrahimi, M.; Abrahamyan, S. Identifying key success factors for startups With sentiment
analysis using text data mining. Int. J. Eng. Bus. Manag. 2022, 14, 18479790221131612. [CrossRef]

34. Han, Z.; Li, Z.; Liu, K.; Yan, L. Named data networking with neural networks for intelligent image processing information
systems. Enterp. Inf. Syst. 2022, 16, 1527–1542. [CrossRef]

35. Niu, W.; Zhou, J.; He, J.; Gan, J. An Optimization Algorithm for the Uncertainties of Classroom Expression Recognition Based on
SCN. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 2022, 14, 1–13. [CrossRef]

36. Bouarara, H.A. N-Gram-Codon and Recurrent Neural Network (RNN) to Update Pfizer-BioNTech mRNA Vaccine. Int. J. Softw.
Sci. Comput. Intell. (IJSSCI) 2022, 14, 1–24. [CrossRef]

37. Zhang, S.; Liu, Z.; Chen, Y.; Jin, Y.; Bai, G. Selective kernel convolution deep residual network based on channel-spatial attention
mechanism and feature fusion for mechanical fault diagnosis. ISA Trans. 2022, 133, 369–383. [CrossRef]

38. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318.
[CrossRef]

39. Gao, R.; Wang, R.; Feng, L.; Li, Q.; Wu, H. Dual-branch, efficient, channel attention-based crop disease identification. Comput.
Electron. Agric. 2021, 190, 106410. [CrossRef]

40. Sanida, T.; Tsiktsiris, D.; Sideris, A.; Dasygenis, M. A Heterogeneous Lightweight Network for Plant Disease Classification. In
Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki,
Greece, 5–7 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4.

41. Chang, H.; Qu, D.; Wang, K.; Zhang, H.; Si, N.; Yan, G.; Li, H. Attribute-guided attention and dependency learning for improving
person re-identification based on data analysis technology. Enterp. Inf. Syst. 2021, 17, 1941274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/18479790221131612
http://dx.doi.org/10.1080/17517575.2020.1856424
http://dx.doi.org/10.4018/IJSSCI.315653
http://dx.doi.org/10.4018/IJSSCI.305838
http://dx.doi.org/10.1016/j.isatra.2022.06.035
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.1016/j.compag.2021.106410
http://dx.doi.org/10.1080/17517575.2021.1941274

	Introduction
	Material and Methods
	Model Design
	Inverted Residual Block
	Self-Attention Module
	MSSA Module
	Experimental Datasets

	Results and Analysis
	Experiments on the PlantVillage Dataset
	Experiments on the Apple Leaf Pathology Dataset
	Ablation Experiments for SA Module

	Conclusions
	References

