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Abstract: This paper investigates threshold-constrained joint waveform optimization for an inte-
grated sensing and communication (ISAC) system. Unlike existing studies, we employ mutual
information (MI) and sum rate (SR) as sensing and communication metrics, respectively, and op-
timize the waveform under constraints to both metrics simultaneously. This provides significant
flexibility in meeting system performance. We formulate three different optimization problems that
constrain the radar performance only, the communication performance only, and the ISAC perfor-
mance, respectively. New techniques are developed to solve the original problems, which are NP-hard
and cannot be directly solved by conventional semi-definite programming (SDP) techniques. Novel
gradient descent methods are developed to solve the first two problems. For the third non-convex
optimization problem, we transform it into a convex problem and solve it via convex toolboxes. We
also disclose the connections between three optimizations using numerical results. Finally, simulation
results are provided and validate the proposed optimization solutions.

Keywords: integrated sensing and communication (ISAC); radar communications; waveform
optimization; threshold constraint

1. Introduction

Communication and radar are merging into a unified system, known as an integrated
sensing and communications (ISAC) system. Radar and communication share many
common features in terms of hardware modules and signal processing methods [1–3].
Additionally, an integrated system is conducive to improving overall system performance
and spectrum sharing [4].

Joint waveform optimization is an important problem in ISAC. For ISAC waveform
optimization, many works have been conducted by considering various performance
metrics. For radar sensing, a typically considered performance metric is mutual information
(MI) [5,6]. In [5], the authors studied MI for a wideband ISAC system, and maximized
the weighted sum of the MI of radar and the MI of communications. In [6], the authors
developed a combined MI criterion that designs the waveform and power allocation,
and optimized the joint performance metric of both radar and communications. For
communications, the signal-to-noise interference ratio (SINR) that shows a non-convex
feature is commonly used as the optimization goal. The authors in [7] allocated multiple
users to orthogonal subcarriers, thereby avoiding multi-user interference (MUI), and the
SINR becomes a convex metric. F. Liu et al. proposed to use one weighting factor to sum
the independent optimal communication waveform and the independent optimal radar
waveform [8]. This scheme is based on the Euclidean distance between the waveforms,
and the optimality cannot be guaranteed. Note that all these works adopted simplified
expressions of metrics since both MI and SINR have complicated expressions that lead to
challenging ISAC waveform optimization problems.

Recently, some solutions have been proposed to optimize the non-convex metrics in
the multi-user ISAC systems [9–12]. These works use multiple thresholds to constrain
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either radar or communication metrics. In [9], the authors maximized the radar SINR with
a given specific capacity of communication channels. The work in [10] further introduced a
sub-sampling matrix for radar as an objective function of the optimization. In [11], the au-
thors separated the transmit antenna array into two sub-arrays and optimized the radar
performance by adjusting the SINR threshold of communications. Given the thresholds of
either radar or communication, this kind of method maximizes one radar/communication
performance metric subject to the constraints of the other performance metric.

In this paper, we propose three novel optimization methods that solve the ISAC
optimization problems when constraining communication only, constraining radar only,
and constraining ISAC performance metrics, respectively. The radar and communication
optimization metrics are mutual information and the multi-user sum rate (SR), respectively.
The optimality of the proposed optimization method is analyzed via simulations. The
contributions of this paper are summarized below:

• We optimize the SR of communications subject to the constraint of radar MI. We
exploit the geometric property of MI to determine the moving direction of precoder
and use gradient descent optimization methods to optimize the SR.

• We optimize the radar MI subject to the constraint of SR of communications. We
exploit the geometric property of SR to determine the moving direction of precoder
and use gradient descent optimization methods to optimize the MI.

• We optimize the Euclidean distance between the ISAC metrics and the individual
metrics (MI and SR). We adopt a specific form of precoder, such that both MI and SR
can be transformed into convex metrics.

Notations: a denotes a vector, A denotes a matrix, and italic English letters like N
and lower-case Greek letters α are scalar. |A|, AT , AH , A∗, and A† represent determinant
value, transpose, conjugate transpose, conjugate, and pseudo inverse, respectively. We use
diag(a) to denote a diagonal matrix with diagonal entries being the entries of a and Tr(A)
to denote the trace of a square matrix. ‖A‖F represents the Frobenius norm of a matrix.

2. System Models and Performance Metrics

We construct the ISAC architecture, as shown in Figure 1, where a base station commu-
nicates with multiple users and meanwhile detects targets. Multiple data streams are sent
in parallel from the baseband precoder after digital precoding. The processed signal can
realize joint communication and radar functions. At the user receiving end, each user uses a
single antenna to receive the information sent by the BS. The BS is equipped with an NT × 1
ULA and an NR × 1 sensing receiver, where NR ≤ NT and the multi-antenna sensing re-
ceiver is distant from the transmitter to avoid short-range leakage. The data-stream vector
at the baseband is denoted as s that is an NS × 1 digital-domain vector and is processed
by a baseband digital precoder, P, of dimension NT × NS. We constrain the power of P,
such that ‖P‖2

F ≤ Po, with Po the transmit power. After the digital precoding, the signal is
transmitted to the antenna front end and the transmitted signal vector is expressed as

x = Ps. (1)

The transmitted signal impinges on K targets and U users. At the sensing receiver,
the signal received by BS is written as

r = GHPs + n, (2)

where G is the radar channel matrix of dimension NT × NR and n is an additive white
Gaussian noise (AWGN) vector with zero mean and covariance matrix of σ2

r INR . When
estimating G, multiple data streams are formed into a data block. Here, we let the data
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block equal S = [s1, · · · , sL], with each sl the data stream vector of the lth time slot. Then,
the received signal block is given by

R = GHPS + N, (3)

where R has a dimension of NR × L and N is the corresponding noise matrix. We adopt
a geometric channel model for radar, that is, each target denotes one non-line-of-sight
path. The channel model is expressed as GH = ∑K

k=1 gkaR(θk)aH
T (θk), where gk is the path

gain of the kth target, aR(θk) and aT(θk) are the array steering vectors at the receiver and
transmitter, respectively, and θk is the angle between BS and the target.

Transceiver
Sensing 

receiver

MU 1

MU U

Target

Target

BSFigure 1. Illustration of the ISAC architecture.

The MI between the radar channel and the transpose of the received signal, RT , can be
derived as:

MI = I(G; RT |S) = log
∣∣∣∣IL +

1
σ2

r NR
STPTΣGP∗S∗

∣∣∣∣. (4)

See proofs in Appendix A.
At each user’s side, the uth user’s received signal is written as

yu = hH
u Ps + nu, (5)

where hu is the communication channel matrix between BS and the uth user, and nu is
an AWGN with zero mean and covariance of σ2

c . We adopt a Rayleigh Gaussian channel
model for communications, that is, the channel entries between BS and each UE yield a
Gaussian distribution of zero mean and variance of 1.

The SINR of each user is given by

SINRu =
Po
U |(hu)Hpu|2

Po
U ∑

v 6=u
|(hu)Hpv|2 + σ2

c
=

Po
U Tr(QuHu)

Po
U ∑

v 6=u
Tr(QvHu) + σ2

c
, (6)

where pu (pv) is the uth (vth) column of P, Hu = hu(hu)H , Qu = pupH
u , and Qv = pvpH

v .
The SR of each user is expressed as:

SRu = log2(1 + SINRu). (7)

It is noted that both MI and SR can be individually optimized with the maximum
values given by MI? and SR?, respectively. Each user’s optimal SR is denoted as SR?

u.
Clearly, the ISAC waveform cannot achieve both optimal values at the same time. The trade-
off point for P should be close to the optimal coordinate, (MI?, SR?).
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This paper aims to compare one-threshold constrained methods and two-threshold
constrained methods. The one-threshold methods optimize one performance metric (ei-
ther radar MI or communication SR) and constrain the other metric using a threshold.
The two-threshold methods constrain two performance metrics and gradually increase the
thresholds to narrow the feasible set. Compared with one-threshold (either communication-
constrained or radar-constrained) methods, the two-threshold constrained methods have a
smaller feasible set but the feasible set approaches to the optimal coordinate, (MI?, SR?).

3. Proposed Optimization Schemes

In this section, we propose three optimization methods. The first two methods are
one-threshold constrained methods and the third method is a two-threshold constrained
method. The first two methods can obtain better performance for the optimization goal
but the complexity would be higher too. As for the third method, with introducing two
thresholds, the obtained solution becomes sub-optimal but we adopt a specific form of the
precoder, such that both MI and SR can be simplified and convex toolboxes are enabled to
solve the third optimization problem.

3.1. Case 1: Communication SR-Constrained Optimization

In the first case, we formulate the optimization problem by maximizing the radar MI
and constraining the SR of communication. The SR-constrained problem is expressed as

arg max
P

MI

s.t.‖P‖2
F ≤ Po, SRu ≥ βu, (8)

where βu is the performance threshold for each user.
The constraint, SRu ≥ βu, is non-convex but it can be equivalently transformed into

Ju =Tr(QuHH
u )− γu

(
∑

v 6=u
Tr(QvHu) +

σ2
c U
Po

)

=pH
u

(
Hu − γu ∑

v 6=u
Hv

)
pu −

σ2
c U
Po
≥ 0, (9)

where γu = 2βu − 1. The transformed optimization problem is:

arg max
P

MI

s.t.‖P‖2
F ≤ Po, Ju ≥ 0. (10)

Even though Ju is still a non-convex function, it has a much simpler form than SRu and
traditional convex optimization methodology can be used to guarantee that Ju ≥ 0.

Here, we employ the methodology in [13] and propose an iterative algorithm to
optimize the problem above. Before iterations, we need to find a P, such that it satisfies all
the constraints. Our proposed Algorithm 1 has two stages.

In the first stage, in each iteration, each column of P, denoted as ps, s = 1 : NS, moves
in the direction of gs, i.e.,

ps = ps + Cgs (11)

where C is the scaling coefficient, such that the equation of the constraint is met,

gs =
X
∑

x=1
as,xvx, where vx is the xth eigenvector of GHG, as,x is a real value to be de-

termined, and X is the number of non-zero eigenvalues of GHG. The value of as,x can be
determined by maximizing MI without the SR constraint.
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Algorithm 1 Communication constrained ISAC precoder optimization.

1: Input: G and hu.
2: Initialization: i = 0, βu, and p(0)

s that satifies all constraints.
3: Obtain direction vector gs.
4: Stage 1:
5: Obtain p(i)

s according to (11).
6: Stage 2:
7: while MI keeps rising do
8: Obtain p(i)

s± according to (12).

9: Scale p(i+1)
s± , such that the equation of the constraint is met.

10: Select p(i+1)
s from p(i+1)

s± , such that MI keeps rising.
11: end while
12: Output: P.

In the second stage, when the iterative point of ps reaches the equation constraint, ps
begins to move along the equation of the constraint, e.g., Ju = 0 or ‖P‖2

F = Po, which is
realized as follows. We generate two precoding vectors moving in the directions of gs.

p(i)
s− = p(i)

s − εgs, p(i)
s+ = p(i)

s + εgs, (12)

where p(i)
s is the sth column of P in the ith iteration, such that the equation of the constraint

is met, and ε is a small value. As for p(i)
u− and p(i)

u+, they are not on the surface of the

constraint, which means the equation of the constraint is not met. Then, we project p(i)
s−

and p(j)
s+ onto the surface of the constraint, which is simply realized by scaling the modulus

of p(i)
s− and p(i)

s+, such that ‖P‖2
F = Po or Ju = 0. Either the scaled p(i)

u− or p(i)
u+ should make

the objective function, MI, keep rising. We select the one that makes MI increase as the
next iterative point. Update the iteration index i = i + 1 and repeat the same procedure in
Stage 2. We terminate the iteration when MI stops rising.

3.2. Case 2: Radar MI-Constrained Optimization

In the second case, we formulate the optimization problem by maximizing the minimal
SR of all users and constraining the MI of radar. The MI-constrained problem is expressed as

arg max
P

min
u

SRu

s.t.‖P‖2
F ≤ Po, MI ≥ λ, (13)

where λ is the threshold of MI.
It is noted that SR is not a convex function. Hence, compared with the first case, it is

more difficult to optimize the SR. To solve this problem, some relaxing methods, such as
semi-definite relaxing (SDR) or geometric relaxing methods [13], can be used to transform
the SR into a convex function. We propose a novel algorithm for the problem of (13).

We define β = min
u

SRu as the smallest SR that is an auxiliary value. The optimization

problem is recast as:

arg max
P

β

s.t.‖P‖2
F ≤ Po, MI ≥ λ, SRu ≥ β. (14)

It is noted that SINR (SR) is more suitable to be treated as a constraint rather than the
objective function in an optimization problem to avoid a non-convex objective function.
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Without the MI constraint, the problem above can be solved directly using SDP, which
can be referred to [14]. However, when including the MI constraint, we note that:

MI 6= log2

∣∣∣I + σ−2
r N−1

R GHPE{SSH}PHG
∣∣∣. (15)

Only the right-hand side of (15) can be written as the function of Q = PPH , which
enables the SDP to optimize the problem. However, MI cannot be written as the function of
Q, which incurs troubles for SDP to optimize (14). Some alternative algorithms need to be
obtained through alternating optimization.

Here, we propose an iterative algorithm to optimize the problem above. Before itera-
tions, we need to find a P that satisfies all the constraints. Note that SRu ≥ β is equivalent
to Ju ≥ 0, where all γu equal γ in Ju.

Our proposed Algorithm 2 also has two stages. In the first stage, in each iteration,
each column of P, ps, s = 1 : NS, moves in the direction of bs, i.e.,

ps = ps + Cbs (16)

where bs =
U
∑

u=1
bs,ucu, where cu is the positive eigenvector of Hu − γu ∑

v 6=u
Hv, bs,u is a real

value to be determined. The value of bs,u can be determined by maximizing β without the
MI constraint.

Algorithm 2 Radar constrained ISAC precoder optimization.

1: Input: G and hu.
2: Initialization: i = 0, λ, and p(0)

s that satisfies all constraints.
3: Obtain direction vector bs.
4: Stage 1:
5: Obtain p(i)

s according to (16).
6: Stage 2:
7: while β keeps rising do
8: Obtain p(i)

s± according to (17).

9: Scale p(i+1)
s± , such that the equation of the constraint is met.

10: Select p(i+1)
s from p(i+1)

s± , such that β keeps rising.
11: end while
12: Output: P.

In the second stage, when the iterative point of ps reaches one of the equation con-
straints, ps begins to move along the equation of the constraint, e.g., Ju = 0 or ‖P‖2

F = Po
or MI = λ, which is realized as follows. We generate two precoding vectors moving in the
directions of bs.

p(i)
s− = p(i)

s − εbs, p(i)
s+ = p(i)

s + εbs, (17)

where p(i)
s is the sth column of P in the ith iteration, such that the equation of the constraint

is met, and ε is a small value. As for p(i)
u− and p(i)

u+, they are not on the surface of the

constraint, which means the equation of the constraint is not met. Then, we project p(i)
s−

and p(j)
s+ onto the surface of the constraint, which is simply realized by scaling the modulus

of p(i)
s− and p(i)

s+, such that ‖P‖2
F = Po or Ju = 0. Either the scaled p(i)

u− or p(i)
u+ should make

the objective function, β, keep rising. We select the one that makes MI increase as the next
iterative point. Update the iteration index i = i + 1 and repeat the same procedure in
Stage 2. We terminate the iteration when β stops rising.
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3.3. Case 3: ISAC Constrained Optimization

In the third case, we formulate the optimization problem by constraining both the
MI of radar and the SR of communication. The optimization goal would be the Euclidean
distance between the thresholds and the optimal coordinate. The ISAC-constrained problem
is expressed as:

arg min
P

(λ−MI?)2 + (β− SR?)2

s.t.‖P‖2
F ≤ Po, MI ≥ λ, Ju ≥ 0. (18)

We propose a new algorithm to solve the problem. We define

[q1, · · · , qn, · · · , qX+U ] = [h1, · · · , hU , v1, · · · , vX ]
†, (19)

where vx, x = 1 : X, is the eigenvector of GGH with non-zero eigenvalues. If X + U < NT ,
the vectors, qU+X+1, · · · , qNT , form the null-space of [q1, · · · , qX+U ]. Then, we let all
qn, n = 1 : NT , be normalized, i.e., ‖qn‖ = 1.

We let

ps =
NT

∑
n=1

ds,nqn, s ∈ {1, · · · , NS}, (20)

where ds,n is an auxiliary value. Note that qn are NT linearly independent vectors, thus,
ps is an arbitrary vector in the whole space CNT×1. We substitute (20) into the constraints
of (18) and suppose that the precoding vectors are nearly orthogonal with each other.
The first constraint becomes:

NS

∑
s=1

NT

∑
n=1
|ds,n|2 ≤ Po. (21)

The second constraint approximately becomes:

U+X

∑
n=1+U

σ−2
r Po|ds,n|2G2

n + 1 ≥ 2λ̄, (22)

where Gn is the eigenvalue of GGH and λ̄ = λ/X is the average MI for each stream. The
third constraint approximately becomes:

|du,u|2‖hu‖2
F − γ

(
∑

v 6=u
|dv,u|2‖hu‖2

F +
σ2

c U
Po

)
≥ 0, (23)

where γ = 2β − 1. Letting As,n = ‖ds,n‖2 and µ = 2λ̄, we transform the problem of (18)
into a convex problem:

arg min
ds,n

(
µ− 2MI?)2 + (γ− 2SR?

+ 1
)2

s.t.(21), (22), (23), As,n ≥ 0. (24)

The convex problem is only related to the scalars, including As,n, µ, and γ. Hence, it
can be solved using traditional convex toolboxes.

4. Simulation Results

In this section, we provide simulation results to validate the proposed optimization
methods, using numerical experiments on MATLAB. The system parameters are detailed
in Table 1 unless mentioned specifically. The BS adopts a 16× 1 ULA as the transmit
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antenna and transmits a 4× 1 vector, s. Each user only receives one out of four streams.
The remaining two streams carry no information. The angles between BS and each target
are randomly distributed in (−π, π).

Table 1. Setups of system parameters.

Parameter Value Parameter Value

NT 16 NR 8
K 3 U 2

NS 4 Po 2

Figure 2 shows the MI of radar versus SNR for the proposed waveform optimization
methods. The SNR is defined as Po/σ2 with σ = σr = σc. The benchmark is the individually
optimal radar precoder that is obtained by maximizing the MI of radar without communi-
cation constraints. The MI of the benchmark remains the highest, which is as expected. We
see that the MI-constrained method remains lower than the other two proposed methods,
i.e., SR (communication) constrained and ISAC-constrained methods. This is because we
selected a relatively low threshold, that is, 0.8 times the optimal solutions for both λ and
γu. In this case, the MI-constrained method will keep achieving the MI at a relatively low
level and biasedly optimize the communication SR. As for the ISAC-constrained method,
it performs worse than the SR-constrained method, which is as expected since it has one
extra constraint than the SR-constrained optimization.
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0
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Figure 2. MI of radar versus SNR using the proposed three optimization methods, compared with
the individually optimal radar MI precoder.

Figure 3 plots the SR of communication versus SNR for the proposed waveform
optimization methods. From the figure, we can obtain nearly the same conclusions as
Figure 2. For the individually optimal communication precoder, the SR remains the highest
because it is optimized for communication only. We see that the SR-constrained method
achieves lower SR than the other two optimization methods because we selected 0.8 times
the optimal solutions for both λ and γu, which means that the SR-constrained optimization
keeps achieving the SR at the level of 0.8 times the optimal value and biasedly optimizes
the radar MI. Compared with Figure 2, the SR-constrained method obtains higher MI and
the MI-contained method obtains higher SR. As for the ISAC-constrained method, it makes
a trade-off between the MI- and the SR- constrained method. This indicates that the ISAC-
constrained method can guarantee performance when setting an inappropriate threshold.

Figure 4 unfolds the impacts of K on the MI of radar and SR of communications. We
compare our proposed ISAC optimization method with the individually optimal precoders
and weighted-sum solution in [8]. For our scheme, we let NS = max(K, U) in order to
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improve the system performance. The power of the precoders of all methods are normalized
to Po. The number of UEs is fixed as 2. For communication, we see that the individually
optimal SR remains unchanged since the precoder is not influenced by radar targets. Both
our method and the weighted-sum solution achieves lower SR with K increasing, which
is because the radar channel becomes dominant in the ISAC channels. As for radar, we
see that the individually optimal MI keeps rising with K. The MI of our method increases
with K too and can approach to the individually optimal MI. The weighted-sum solution
requires that the optimal radar and communication precoders have the same size. Due to
the mismatch between K and U, we see that the MI of the weighted-sum solution is far lower
than our achieved MI. It should be noted that the MI and SR are nearly symmetric metrics,
and thus, the system performance versus U can be deducted by using the conclusion of
this figure.
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Figure 3. Sum rate of communication versus SNR using the proposed three optimization methods,
compared with the individually optimal communication SR precoder.

3 4 5 6 7 8
Number	of	Targets	K

5

5.5

6

6.5

7

7.5

8

8.5

S
R
	o
f	c

om
m
un

ic
at
io
n	
(b
ps

/H
z)

4

5

6

7

8

9

10

11

12

13

M
I	o

f	s
en

si
ng

	(
bi
t)

proposed	ISAC	constrained	opt.
Individually	optimal	SR	commun.
weighted	sum	solution
proposed	ISAC	constrained	opt.
Individually	optimal	MI	radar
weighted	sum	solution

Figure 4. MI and SR versus the number of targets K using the proposed ISAC optimization methods,
compared with the individually optimal precoder and weighted-sum solution in [8].

5. Conclusions

We have proposed three optimization methods based on the threshold-constrained
methodology. The one-threshold (SR/MI-constrained) methods tackle the non-convex
optimization problem due to the non-convex nature of MI and SR, whereas the doubly-
threshold (ISAC-constrained) method uses traditional convex toolboxes to optimize the
waveform. In the one-threshold constrained method, the searching area is larger than
that of the doubly-threshold constrained method. Simulation results show that the SR-
constrained method obtains higher MI and the MI-contained method obtains higher SR.
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The doubly constrained method achieves a balanced performance between the MI of radar
and the SR of communications.
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Appendix A. Derivations for MI of Radar

We note that RT ∼ CN (0, D) with D = STPTΣGP∗S∗ + σ2NRIL and ΣG = E{G∗GT}.
The conditional MI between G and received sensing signal block, R, is calculated as

I(G; RT |S) = h(RT |S)− h(NT), (A1)

where h(·) is the entropy. Then, we need to obtain the conditional probability density
function (pdf) of RT for a given S, given by:

pdf(RT |S) = 1
πNR L|σ2

r NRIL + STPTΣGP∗S∗|exp
(
−Tr

(
RTD−1R∗

))
. (A2)

Then, h(RT |S) is calculated as:

h(RT |S) = NRLlog(π) + log |σ2
r ILNR + STPTΣGP∗S∗|+E(Tr

(
RTD−1R∗

)
)

= NRLlog(π) + log |σ2
r ILNR + SHPHΣGPS|+ L. (A3)

The entropy of noise is given by:

h(N) = NRLlog(π) + log |σ2
r ILNR|+ L. (A4)

Then, the MI is given by:

I(G; RT |S) = log
∣∣∣∣IL +

1
σ2NR

STPTΣGP∗S∗
∣∣∣∣. (A5)
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