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Abstract: The current trends in 5G and 6G systems anticipate vast communication capabilities and the
deployment of massive heterogeneous connectivity with more than a million internet of things (IoT)
and other devices per square kilometer and up to ten million gadgets in 6G scenarios. In addition,
the new generation of smart industries and the energy of things (EoT) context demand novel, reliable,
energy-efficient network protocols involving massive sensor cooperation. Such scenarios impose new
demands and opportunities to cope with the ever-growing cooperative dense ad hoc environments.
Position location information (PLI) plays a crucial role as an enabler of several location-aware network
protocols and applications. In this paper, we have proposed a novel context-aware statistical dead
reckoning localization technique suitable for high dense cooperative sensor networks, where direct
angle and distance estimations between peers are not required along the route, as in other dead
reckoning-based localization approaches, but they are obtainable from the node’s context information.
Validation of the proposed technique was assessed in several scenarios through simulations, achieving
localization errors as low as 0.072 m for the worst case analyzed.

Keywords: position location information; IoT; dead reckoning; stochastic dead reckoning; collaborative
localization; context-aware localization

1. Introduction

Indoor and outdoor localization have re-gained relevance as an enabler of new ap-
plications and requirements introduced by IoT, EoT, Industry 4.0/5.0, and 5G/6G com-
munications. For instance, the energy crisis has led to the EoT concept, which involves
both industrial and domestic environments, as well as a widespread of smarter and more
reliable scenarios in which energy consumption becomes a major issue and the deployment
of energy-sensitive devices and systems will become even more relevant for static and
dynamic applications.

Therefore, position location information (PLI) plays an important role in supporting
the operation and management of mobile systems as it has become a crucial requirement
for a growing and wide variety of location-based applications and services [1].

In scenarios where global navigation satellite systems (GNSS) are not available or their
accuracy is compromised, most conventional position estimation systems consider a set
of base stations as the reference sites, which are meant to have known locations, and they
can be observed (or be seen) by a node of interest (NoI), whose coordinates need to be
determined. In these scenarios, the node-to-landmarks distances can be estimated from a
combination of parameters such as the received signal strength (RSS), time of arrival (ToA),
time difference of arrival (TDoA), or angle of arrival (AoA) [2–4].

In ideal scenarios, simple range and angular observations may be sufficient to de-
termine a 2D location. Those positioning setups are based on a direct observation of the
radio source and are often referred to as single hop positioning systems. However, the
presence of impairments precludes the operability of those systems, and several alternative
trilateration schemes using multiple observation points are necessary.
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In cases that lack a direct observation/connection and have limited power availability
or unpredictable propagation scenarios, information delivery can be achieved via ad hoc
node-to-node relays of transmitted information from/to, and many routing algorithms for
node-to-node ad hoc paths selection can be found in the literature. Thus, PLI acquisition
becomes cumbersome as conventional algorithms cannot be applied due to the lack of
direct connectivity/observation.

This challenging problem becomes more relevant as the IoT and sensor networks
become a pervasive experience, where densities as large as one million IP devices per
square kilometer are anticipated for 5G and 6G systems.

In many cases, the device placement is imprecise, and it can be considered almost
random; some probabilistic approaches have been suggested to support location acquisition
processes, see [5–7].

The large number of IP devices, the mobility and connectivity changing scenarios, and
the complexity of inhomogeneous propagation conditions cause uncertainty of the observ-
able parameters. In order to have a reduced number of access points, low-cost alternative
location techniques are demanded. Thus, context-aware information and collaborative
location schemes have been suggested as promising techniques [8–11]. The use of cognitive
approaches has also been suggested in order to acquire location information without a
massive deployment of costly and bulky angle-range observation capabilities, and some
relational schemes have also been proposed in the literature [12–14].

A dead reckoning approach usually depends on gyroscopic, accelerometer obser-
vations, the awareness of an initial reference location often called “a fix”, and on the
knowledge of the consecutive traveling direction finding [10] of the consecutive steps, as
well as the range or path length in each travel direction, in order to determine the progress
of a traveler at a given time. Thus, conventional dead reckoning approaches demand highly
equipped nodes with accurate angle/distance measurement capabilities [15,16].

In the IoT scenarios where tiny sensor nodes are deployed, localization techniques
based on the angle of arrival observations and range measurements, as well as the implied
network communication and processing cost, might not be a feasible approach [17].

In the EoT context, fault/attack sensor detection and localization techniques for
photovoltaic (PV) systems have been addressed using statistical signal processing combined
with machine learning techniques; however, there is a high processing cost involved in the
use of artificial intelligence (AI) approaches [18]. In addition to the computational cost,
these methods are not scalable for high dense networks.

In Table 1, we present a broad comparison between the position location tech-
niques discussed above. This table compares several approaches in terms of the ex-
pected accuracy, network infrastructure (e.g., node equipment cost), processing cost, and
environment suitability.

Table 1. Location Techniques Comparison.

Principle Network
Infrastructure

Processing
Cost Scenario Accuracy

Context-aware and
collaboration location

techniques [8–11].

Low equipped.
Cognitive-based

approaches,
distance-based.

High Low dense
networks Low

Relational-based
approaches [12–14].

Low equipped ANs
and nodes.

Hop-count-based.
Low High dense

networks Low

Dead
Reckoning-based

approaches [15,16].

High equipped ANs
and nodes.

Range/Angle-based.
High High dense

networks High
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As noted before, the methods in [15,16] are based on the dead reckoning principle.
The method reported in [15] provides an accurate location estimation of the nodes in ad hoc
networks, and the reported estimation error is around [1.5 × 10−2 to 3.5 × 10−2]; however,
they consider the time and angle of arrival estimation at each node in the route. Similarly,
in [16], the authors propose a method based on previous measurements of the speed and
acceleration of vehicles to calculate the current location using the dead reckoning approach;
this implies that every vehicle in the network has measurement capabilities. The authors
reported high location estimation errors.

In this paper, a novel dead reckoning approach based on the node context awareness
and on the statistical characterization of the sensor node distribution is presented. The lack
of the need for range/angle measurements equipment and processing makes the proposed
technique adequate for the emerging localization paradigms. In this paper, we assume that
source-to-destination node paths in a high-density scenario can be established. Neverthe-
less, the routing algorithm is unsubstantial for the purposes of this paper. Although the
current technological trends include enhanced beam-forming capabilities [19], these are not
required. However, at the initial point of an ad hoc path, we also show that the direction
and range of successive steps can be obtained from the node distribution. The feasibility of
the proposed algorithm is assessed in several scenarios in Section 3 based on Figures 4–7,
where the accuracy of the method is evaluated under different network parameters, such
as the node coverage range and node density.

Please note that the proposed method is partially based on examinations performed
as part of thesis research work, as reported in [20].

2. Context-Aware Statistical Dead Reckoning Approach

In the case of Ad Hoc and Wireless Sensor Networks (AH-WSNs), direct connection be-
tween the NoI (node of interest) and base stations or anchor point (AP) may be unavailable.
This lack of direct connectivity precludes the use of direct trilateration schemes. However,
connectivity is established via the concatenation of consecutive links or hops. The localiza-
tion of a NoI is obtained through the addition of successive vectors corresponding to the
link hops. This demands that the hop lengths and physical directions be known [15,16].

APs are assumed to have fixed and known coordinates and they provide access to
the rest of the telecommunication network. Several location and angular finding schemes
for ad hoc scenarios have been proposed in the literature [21–26]. However, the reduced
size, power availability constraints, and limited processing capabilities of most nodes
make the deployment of direction-finding schemes unviable for the non-anchor nodes. In
contrast, APs are assumed to have larger power budgets, higher reception sensitivity, and
enhanced processing capabilities in order to be suited for direction finding deployment.
In this paper, it is shown that context-aware information allows the application of dead
reckoning techniques without a massive deployment of angle finding and direct range
measurements, while in traditional schemes, such as those reported in [15,16], several
distance/angle measurements are required.

The fast growth of sensor and ad hoc networks has already been noted, and this
approach takes advantage of the large number of nodes deployed. In this paper, the
proposed methodology is applicable for 2D scenarios; however, it can be generalized for
3D scenarios.

Let us consider a sensor network in which each node is aware of their one hop reachable
nodes. Let ni, i = 1, 2, . . . , be a node with coordinates (xi, yi) and reachability radius Ri. We
define an Ri-neighborhood or an Ri-ball, B(Ri) as the set of reachable nodes nζ with coordinates
(xζ , yζ) within its coverage radius Ri; that is, B(Ri) = {nζ|(xζ − xi)2 + (yζ − yi)2 ≤ Ri

2}. Note
that the coverage range Ri is set by the sensitivity of the receiver/transmitter systems and
transmitted power.

For an ordered sequence of nodes ni−1, ni, ni+1 in an ad hoc path, node ni is meant
to be reachable from both ni−1 and ni+1, this is ni∈ B(Ri−1) ∩ B(Ri+1), as illustrated in
Figure 1. For known reachability radiuses Ri−1 and Ri+1, the area Ai+1

i−1 of the intersection of
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B(Ri−1) ∩ B(Ri+1) is a function of the separation distance—Di+1
i−1 =√

(xi−1 − xi+1)
2 + (yi−1 − yi+1)

2 = Di−1
i+1—of nodes ni−1 and ni+1, and, as a matter of

fact, it can be shown (see [27]) that these parameters relate, according to:

Ai+1
i−1 = f

(
Di+1

i−1, Ri−1, Ri+1

)
= R2

i−1

{
arccos

(
α

2Di+1
i−1 Ri−1

)
−
(

α

4Di+1
i−1

2
R2

i−1

)√
4Di+1

i−1
2
R2

i−1 − (α)2
}

+R2
i+1

{
arccos

(
γ

2Di+1
i−1 Ri+1

)
−
(

γ

4Di+1
i−1

2
R2

i+1

)√
4Di+1

i−1
2
R2

i+1 − (γ)2
}

,

(1)

where α = Di+1
i−1

2
+ R2

i−1 − R2
i+1 and γ = Di+1

i−1
2
+ R2

i+1 − R2
i−1. Note that Ai+1

i−1 in (1) is
a monotonic function of the separation distance Di+1

i−1. Therefore, for given reachability
radiuses Ri−1, Ri+1, Di+1

i−1 can be inferred from Ai+1
i−1. As expressions involve transcendental

functions, inversion becomes cumbersome, but it can be obtained numerically. In addition,
note that for equal reachability radiuses, i.e., Ri−1 = Ri+1, Equation (1) is reduced to:

Ai+1
i−1 = 2Ri−1

2arccos

(
Di+1

i−1
2Ri−1

)
− 1

2
Di+1

i−1

√
4Ri−1

2 − Di+1
i−1

2
, (2)
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Figure 1. Intersection of B(Ri−1) with B(Ri+1).

For instance, in a two-dimensional scenario, for the path segment ni−1,ni, ni+1, Di
i−1, and

Di+1
i denote, respectively, the separation of consecutive nodes—ni−1,ni, and ni, ni+1—that can

be estimated from the field strength or delay measurements. On the other hand, nodes ni−1,
ni+1 are not adjacent, but their separation Di+1

i−1 can be inferred from Ai+1
i−1 and, consequently,

a triangle ∆(Di
i−1, Di+1

i−1, Di+1
i ) = i

i−1∆i+1 can be defined by its side lengths, and such a
triangle contains a segment ni−1, ni, ni+1 of a dead reckoning path that links an anchor to a
NoI. A similar process can be conducted for nodes ni, ni+1, and ni+2, and a triangle i+1

i ∆i+2

can be constructed. In addition, it can be seen that side Di+1
i is common to both triangles

(see Figure 2).
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Dead reckoning is the process of inferring a location using solely consecutive distances
Di+1

i−1 and step direction estimates from a reference known site (x0, y0) or fix. Assuming the
fix is at an anchor location (x0, y0) and that nodes ni in a path occupy coordinates (xi,, yi),
i = 1, 2, 3, . . . , the location of node nn placed at (xn, yn) can be figured out as the vector

addition ρ = ∑n
i=1 ρi, where ρi = (ρi, ψi) is defined by ρi =

√
(xi − xi−1)

2 + (yi − yi−1)
2

and ψi = arctan yi−yi−1
xi−xi−1

or ψi = tan−1 yi−yi−1
xi−xi−1

, i.e., ρi is the range and ψi is the azimuthal
angle. At this stage, coordinates (xi, yi) are unknown, with the exception of (x0, y0).

We pointed out that the range estimates ρi are obtainable through the field strength
or delay measurements. However, angular observations tend to be bulkier and resource
consuming. Nevertheless, anchor points are more able in terms of available energy, antenna
capabilities, and computing power. Therefore, the initial angle ψ0 is considered to be known
and observable at the anchor point. The subsequent angular directions ψi, i = 1,2, . . . , are
inferred from the node context as it is explained in the following paragraphs.

Recall that an ad hoc path is formed by consecutive hops connecting nodes n0,
n1,. . . ni−1, ni, ni+1, ni+2, . . . , nN. It can be observed that a path is contained within the
sides of the concatenation of adjacent triangles 1

0∆2 , 2
1∆3 , . . . , i

i−1∆i+1 , i+1
i ∆i+2 , . . . , N−1

N−2∆N
and the triangle concatenation allows the construction of a dead reckoning path.

Consider a homogeneous scenario with randomly deployed nodes to obtain Ai+1
i−1,

which is the area estimation of the intersection of B(Ri−1)∩B(Ri+1). The number N of

nodes in an area A is distributed according to Poisson as (λA)N

N! e−λA, where λ stands for
the node density (nodes per area) parameter, and for a given number N of nodes, the
maximum probability occurs for λA = N [28]. Thus, for a known node density λ, the
estimation of the area Ai+1

i−1 can be obtained from the number N of nodes in the intersection
B(Ri−1) ∩ B(Ri+1).

In practice, the node density λ is not known, but it can be approximated from the
average number of nodes Ni−1 and Ni+1 in balls B(Ri−1) and B(Ri+1), respectively. For

instance, the estimated node density λ∗ is given by: λ∗ ≈
[

Ni−1
R2

i−1
+

Ni+1
R2

i+1

]
/4π.

It has been stated that the location of all the nodes in the ad hoc path become known
after the initial hop n0 − n1 is known, where n0 is an anchor node with enhanced angle
observation capabilities. Subsequent angular estimations can be obtained via the node
context. Note that angle βi subtended by adjacent hop lines of length Di

i−1 and Di+1
i (see

Figure 2) is given by:
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βi = acos


(

Di
i−1
)2

+
(

Di+1
i

)2
−
(

Di+1
i−1

)2

2Di
i−1Di+1

i

. (3)

This scheme produces a vector sequence, ρi = (ρi, ψi), which allows us to construct a
dead reckoning path as the vector addition ρ = n0 + ∑n

i=1 ρi, where node n0 is meant to
be an anchor node that has direction finding capabilities and known coordinates. Thus,
ρ1 = (ρ1, ψ1) is known and the subsequent vectors ρi = (ρi, ψi), i = 2, . . ., are defined by
the measurements of ρi = Di

i−1 and calculations ψi = π − ψi−1 − βi−1.
Note that for the triangle, ∆ =

(
D1

0, D2
0, D2

1
)
, the placement of the edge D1

0 is unique.
However, there are two specular triangles with that common edge. This leads to two options
for the location of n2. This ambiguity grows as a spanning tree as the path progresses
towards the node of interest NoI. Nevertheless, the uncertainties are removed by taking
the intersection of the spanning trees with roots at different anchor points (see Figure 3).
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Equation (1) states that Ai+1
i−1 = f

(
Di+1

i−1, Ri−1, Ri+1

)
. As it is a monotonic function of

Di+1
i−1 , for given reachability radiuses Ri−1 and Ri+1, Di+1

i−1 can be inferred from Ai+1
i−1 through

a minimization search function, given by:

∼
Di+1

i−1= min
Di+1

i−1

{[
f
(

Di+1
i−1, Ri−1, Ri+1

)
− Ai+1

i−1

]2
}

, (4)

Error drifts tend to accumulate along the path. Nevertheless, in this paper, it is shown
that the multilateration of the reckoning paths allows for a location uncertainty reduction.

As stated previously, the proposed localization method can be extended for 3D scenar-
ios. However, several considerations must be made. First, we will have the intersection
of two spheres instead of circles (Figure 1). Second, distance Di+1

i−1 must be redefined to
include the “z” coordinate. Third, this would force it to have an intersection volume, and
Equations (1)–(3) would be reformulated for a 3D geometry. Additionally, the node density
estimation equation must be reformulated under the basis of the intersection volumes.
Finally, the minimization search function in Equation (4) must also be reformulated to
perform the search on the intersection volume.
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3. Simulations and Results

In order to assess the feasibility of the algorithm, different homogenous scenarios
are created where the access points are assumed to be evenly spaced in a circle of radius
RA that defines the coverage area A. Note that RA = Ri−1 = Ri+1 for all i. The obtained
location is compared to the actual NoI coordinates (x, y) by calculating the error according
to ε2 = (x− x∗)2 + (y− y∗)2. That is, we summarize the simulation process as follows:

1. For a given scenario, the number of nodes Ni−1 and Ni+1 within each of the coverage
balls B(Ri−1) and B(Ri+1) corresponding to nodes ni−1 and ni+1 are known. Then, λ*

can be obtained.
2. Once λ* is estimated and the number of nodes N at the intersection is known, it is

possible to estimate the intersection area Ai+1
i−1.

3. From Ai+1
i−1, Ri−1, and Ri+1, we can calculate the estimated separation distance

∼
Di+1

i−1
using the minimization problem solution from (4).

4. Error will be assessed through a comparison of the estimated distance
∼

Di+1
i−1 versus

the actual separation distance Di+1
i−1.

5. We repeat this process depending on the number of hops required to reach the node
of interest, NoI.

In the following simulations, we consider a scenario, such as in Figure 1, where the NoI
is n* = ni. The accuracy (ε2) of the proposed localization technique is evaluated for different
node densities λ, coverage radiuses RA, as well as for different separation distances Di+1

i−1.
Figure 4 shows the performance of the method under errors due to the difference in the
current λ and the estimated λ* node densities and to the difference between the true Di+1

i−1

and estimated
∼

Di+1
i−1 separation distances for RA = 3 m.
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Figure 4. Performance analysis λ against ε2 for different Di+1
i−1 , with RA = 3 m.

In Figure 5, we compare the localization error ε2 for different node densities
λ = (2, 3, 5, 10, 15, 20, 40, 60 and 91) when RA = 3. Each curve represents the local-
ization error ε2 at different separation distances Di+1

i−1, ranging between 2 and 5 m. It is
possible to observe how the error increases as the separation distance grows when the
density is low. In addition, the error decreases due to the node density λ increments, as
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these increments provide improvements in the intersection area. In Figure 6, we present
the same results under a different perspective.
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In Figure 5, it is clear that ε2 decreases as increments of λ provide improvements
in the estimation of the intersection area. In addition, ε2 increases as Di+1

i−1 grows. These
are the expected results, as the localization method depends on the estimated λ* and
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∼
Di+1

i−1. Please note that despite the fact that the simulations are commanded to prove the
true parameters (λ and Di+1

i−1), the localization method estimates the NoI position using

estimated parameters (λ* and
∼

Di+1
i−1), as stated above.

In Figure 6, the same analysis is realized for several coverage ranges of RA = 3 to 8 m,
plotting the mean quadratic error ε2 vs. λ. In this figure, we can observe that each of the
graphs presents the same analysis as that in Figure 4, i.e., the localization error ε2 increases
as the separation distance Di+1

i−1 is increased.
However, it is also noticeable that as the size of the coverage radio RA increases, the

localization error ε2 decreases. This is because the greater the intersection area, the greater
the number of nodes at the intersection and the better the approximation; therefore, ε2

is decreased.
In Figure 7, we present the same data representation as that in Figure 5 to provide a

better understanding. From this data observation, it should be noted that the localization
error ε2 is inversely proportional to the coverage range RA.
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As we established earlier, dead reckoning does not require a large node density to
obtain accurate results. However, if we compare the results, we can see that the decrease
in the quality of the estimation is minimal between a low-density user scenario and a
large-density one. It is also important to note that the last three values of user density
appear to behave in the same way regardless of the size of the coverage range.

Please note that even though the initial consideration was for a scenario such as that
illustrated in Figure 1, this methodology can be repeated for several hops to apply in
scenarios such as that in Figure 3.

4. Conclusions

In this paper, it is shown that context information and the number of observable
neighboring nodes allow the position location problem in dense ad hoc IoT scenarios to
be solved without a high increase in the node’s equipment. A stochastic dead reckoning
methodology is presented and the proof of concept is demonstrated using simulations.
The proposed algorithm estimates the local node density and constructs the feasible dead
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reckoning paths that converge to determine the actual location of a NoI. Enhanced adequate
processing and direction-finding capabilities are only required at anchor nodes, and these
are not required for the remaining nodes that can estimate the lengths of the adjacent edges
in the path from the field strength or delay measurements. This allows concatenations
of triangles to be built that contain ad hoc paths that lead to the location inference of
the NoIs. Performance results are reported for several scenarios, and it is shown that the
proposed context-aware statistical dead reckoning method offers a good performance under
several network conditions, such as coverage range, separation distance, and node density
(i.e., ε2 < 0.072 for worst case using a coverage range Ri = 8 m). The main achievements of
the proposed method can be identified as follows:

• The method does not impose processing burn out on nodes.
• The method only requires angle measurement capabilities on anchor nodes.
• The method is based on easily obtainable network information (i.e., number of neighbors).
• The method provides an accuracy of ε2 = 0.13 m and ε2 = 0.072 m for Ri = 3 m and

Ri = 8 m, respectively, for the worst cases analyzed.

Future analysis can be conducted for diverse network conditions and for randomly
selected routes considering nodes with heterogeneous capabilities, including performance
with non-uniform node densities.
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