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Abstract: To tackle the challenges posed by dense small objects and fuzzy boundaries on unstructured
roads in the mining scenario, we proposed an end-to-end small object detection and drivable area
segmentation framework for open-pit mining. We employed a convolutional network backbone as a
feature extractor for both two tasks, as multi-task learning yielded promising results in autonomous
driving perception. To address small object detection, we introduced a lightweight attention module
that allowed our network to focus more on the spatial and channel dimensions of small objects
without impeding inference time. We also used a convolutional block attention module in the
drivable area segmentation subnetwork, which assigned more weight to road boundaries to improve
feature mapping capabilities. Furthermore, to improve our network perception accuracy of both tasks,
we used weighted summation when designing the loss function. We validated the effectiveness of
our approach by testing it on pre-collected mining data which were called Minescape. Our detection
results on the Minescape dataset showed 87.8% mAP index, which was 9.3% higher than state-of-the-
art algorithms. Our segmentation results surpassed the comparison algorithm by 1 percent in MIoU
index. Our experimental results demonstrated that our approach achieves competitive performance.

Keywords: autonomous driving; small object detection; drivable area segmentation; open-pit mine

1. Introduction

Image-based object detection is a critical task of autonomous driving perception [1],
providing essential environmental information for decision-making and planning of au-
tonomous vehicles. In mining operation situation, autonomous driving technology for
mining trucks can provide valuable security guarantees for workers. However, current
environment perception technology primarily aims for generalization in common scenarios
and overlooks applicability for special scenarios, such as mines and ports. Designing
a perception algorithm based on the particular scene’s characteristics is the foundation
for improving perception in the corresponding scene. In a general mining environment,
numerous small stones cluster on the surface without road lane markings, making it
challenging to identify drivable areas with indistinct boundaries [2]. These issues pose
significant challenges to visual perception methods, which can negatively impact mining
truck driving safety. Deploying algorithms on autonomous vehicles necessitates balancing
limited computational resources with low latency requirements. Compared to sequential
methods, multi-task networks with a shared backbone for each task can handle tasks in
parallel. Thereby, it is necessary to design an efficient object detection and drivable area
segmentation joint framework for these two typical tasks of the mining scene so as to
improve the perception capability of the mining truck.

Recent vision-based object detection methods, such as YOLO [3] and CornerNet [4]
showed remarkable behavior in structed urban road. In relation to ordinary object detection
in structed urban road, small stones are arranged more densely, irregularly, easily occluded
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and their appearance are similar to the background in the mining situation. Generally,
small objects are defined as objects with pixels less than 32 × 32 in pictures [5]. In the past
few years, small object detection (SOD) attracted the attention of researchers. Many repre-
sentative studies emerged such as data-manipulation methods, feature-fusion methods,
scale-aware methods and context-modeling methods [6]. In terms of data-manipulation,
RRNet [7] invented AdaResampling, an adaptive resampling strategy for copying and
pasting small objects in image, to improve detection accuracy. Feature pyramid network
(FPN) [8] designed a bottom-up and top-down network, which can construct feature maps
of different scales. FA-SSD [9] used additional features in different depth levels of the
network as context, supplemented by attention mechanism to focus on the object in the
image. The above methods achieved competitive results. However, there is still a large gap
between the performance of these methods and that of general object detection.

In addition, drivable area segmentation for the mining environment is also a chal-
lenging task which need to be solved. The drivable area, which is entirely distinct from
the structured urban road, has indefinite shape features, unstable color features and vari-
able texture features. Recently, deep convolutional neural networks were used to handle
the drivable area segmentation [10]. Some algorithms were proposed to deploy the seg-
mentation methods directly on autonomous vehicles. For instance, ref. [11] proposed
the dual-resolution networks for real-time semantic segmentation of road-driving images.
Ref. [12] regarded the recognition of the drivable area as a row-selection task, which signifi-
cantly reduced the computational costs. The ability of these algorithms in mining scenarios
remains need to be tested. The above algorithms were designed to solve the assignments of
SOD and semantic segmentation; thus, there is no general and end-to-end framework for
mining environment detection and drivable area segmentation.

To summarize, we proposed a novel framework that tackled the autonomous mining
vehicles challenges faced by small object detection and drivable area segmentation (also
called mineSDS). Our contributions include: (1) An end-to-end framework capable of con-
currently processing object detection and drivable area segmentation tasks. Our framework
employs a shared feature extractor to extract features for both tasks, thereby reducing
inference time and computational costs. (2) A lightweight attention module designed to
enhance the detection accuracy of small objects. By enabling our network to pay more
attention to small objects in the spatial and channel dimensions, we achieved improved
detection performance. (3) We incorporate a convolutional block attention module to en-
hance the feature mapping ability of convolutional operations in the segmentation decoder,
improving our network’s sensitivity to fuzzy road boundaries. Our framework’s perfor-
mance was evaluated on the Minescape dataset, and our results demonstrated comparable
performance in both tasks.

The remainder of this paper is organized as follows: related works are summarized in
Section 2; the details of our proposed algorithm are described in Section 3. Additionally,
the experimental analysis is demonstrated on Section 4. At last, the contributions of this
paper are summarized on Section 5.

2. Related Works

In recent years, significant progress was made in small object detection and drivable
area segmentation. This section review related work about mine scene perception, small
object detection and drivable area segmentation.

2.1. Open-Pit Mining Perception

In the field of mine scene detection, Ren et al. [13] proposed a multi-scale feature fusion
method for obstacle detection of roads in open pit mining areas, normalized the features,
compressed the features and extracted multi-scale features. Song et al. [14] used multi-scale
and attention fusion modules to capture richer context features on their own data sets and
achieved good results in the field of mine target detection. For mining scene segmentation,
Wei et al. [15] extracted multi-scale features by a multi-branch feature extraction network.
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Xiao et al. [16] designed RATT-UNet network to extract open-pit mine roads information.
Liu et al. [17] used point cloud data to track mine road.

2.2. Small Object Detection

Small object detection made great progress in recent years. The researchers mainly
made improvements to solve problems as follows: (1) the feature information of small
object is extremely lacking, (2) small gravel objects are more densely arranged, more
irregular, and more easily blocked. First of all, many studies made improvements in the
data-manipulation methods. The most direct way is to increase the number of small objects
in the data set. Ref. [18] first proposed the strategy of randomly copying small objects in
the data set, simply and directly increasing the number of small objects. On this foundation,
Chen et al. proposed the [7] network to determine the background of small objects before
copying and pasting small object samples. In addition, Duan, Wei et al. [19,20] proposed a
variety of ways to use mosaic to solve the small object detection problem, and achieved
certain results. The mosaic data augmentation method was proposed in YOLOv4 [21] paper.
The main idea is to randomly cut four pictures and then splice them into one picture as
training data. The advantage of this is that it enriches the background of image, and the
four images are spliced together to improve the batch size in a disguised way, four images
will also be calculated during batch normalization.

For small objects, the most important thing is to complete the feature extraction at the
corresponding scale. Dollár [8] used an image pyramid with a sliding window scheme to
extract features. Yang et al. [22] selected a feature layer of appropriate size for the pooling
operation of small object features. Cai et al. proposed the MS-CNN [23] method to select
the best reception region for small object objects in different layer scales. In the solution of
feature fusion, Lin et al. [8] first proposed a feature pyramid network (FPN), the purpose
of which is to aggregate high resolution semantic features with higher level features in
low resolution. This simple and effective design became an important part of the feature
extractor. Zand et al. built DarkNet RI [24] on the basis of DarkNet-53 and skip-connection
to generate high-level semantic feature maps of different scales.

Using attention mechanism is also a common way for small object detection. Its
main principle is to use the weight relationship to obtain the feature information that
should pay more attention. SE Attention [25] module is the comparative attention, which
is characterized by adding attention mechanism in the dimension of special channel.
ECA-Net [26] module effectively captures cross channel interaction by using one-
dimensional convolution. CBAM (convolutional block attention module) [27] starts from
the two scopes of channel and spatial, introduces two analysis dimensions of spatial
attention and channel attention and realizes the sequential attention structure from channel
to space.

2.3. Drivable Area Segmentation

Semantic segmentation involves pixel-level classification of dense image prediction.
The problem of early semantic segmentation is that it cannot effectively extract high-level
semantic features, and the effect is poor on complex images. The fixed receptive field cannot
match the scale change of the object, and simple up-sampling will lead to the loss of detailed
information. Long et al. first proposed a network (FCN) [28] that can process features on
images of arbitrary resolution. U-Net [29] proposed a novel u-shape network structure,
in which the down-sampling image features are fused with the up-sampling information
and the pixel level features are segmented to avoid the loss of pixel level semantic features.
Chen et al. proposed DeepLab [30,31], which first used dilation convolution to increase re-
ceptive field, effectively avoiding the problem of feature disappearance in down-sampling.

Drivable area segmentation derives from semantic segmentation. Drivable area seg-
mentation task is a special task of semantic segmentation. Travelable area segmentation is
mainly used for the perception of autonomous vehicle. Due to the particularity of the task
and the characteristics of large range and clear edge features of the drivable area compared
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with complex segmentation targets, drivable area segmentation requires more accuracy
and real-time. In the aspect of drivable area segmentation, the YOLOP [32] panoramic
perception network completed three times of up-sampling on the basis of YOLO framework
to achieve the segmentation of drivable area. YOLOPv2 [33] uses a new mixed loss function
to improve the segmentation and detection effects. HybridNets [34] uses the efficient
segmentation head of the weighted bidirectional feature network to perform segmentation,
which is an accurate and practical method. Hong et al. proposed DDRNet [11], which
uses deep dual-resolution networks are composed of two deep branches between which
multiple bilateral fuels are performed. Asgarian et al. [12] consider the process of drivable
area recognition as a row-selection task, increasing the speed of performance. Wang et al.
added C6 and C7 modules with larger receiving fields on the basis of YOLACT [35] to
improve the segmentation of the drivable area.

In order to better detect small obstacles on the road surface, we presented two net-
works: (1) we added a combination of SimAM and channel attention CAM (channel
attention module) module on the last layer of the in the redesigned YOLOv7 head, which
achieved better detection results. (2) In terms of segmentation, five up-samples followed
by RepbottleneckCSPA and CBAM were used. As for the above two points, we proposed
MineSDS, which can simultaneously meet the requirements of obstacle detection in the
mining area and segmentation of the exercisable area.

3. Methodology

We put forward a framework to achieve small object detection and semantic segmen-
tation; the details of the proposed method are shown in Figure 1. As the figure shows, our
architecture consisted of a (a) feature extractor, (b) segment decoder and (c) multi-head
feature fused detector.
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(c) Segmentation Decoder.

3.1. Feature Extractor

The feature extraction module takes an image as input and outputs semantic features,
which can be used as input for subsequent object detection and semantic segmentation.
Many representative classification networks were used for feature extractors, such as
ResNet [36], DenseNet [37], etc. In the down-sample module, we used both max pooling
and convolution with the stride of two. The input image first passed through three convo-
lution modules, and the size of feature map became (H/4, W/4, 128). Then, the feature
went into three modules consisting of ELAN module and down-sample module. Finally,
the feature was enhanced by an ELAN module. The input image, thus, became a feature
map with the size of (H/32, W/32, 1024). The detail of the feature extractor is shown in
Figure 2:
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3.2. Multi-Head Feature Fused Detector

We implemented a multiscale detection scheme in our multi-head detection module,
which relied on anchor-based detection. To aggregate features, we used a combination of
feature pyramid network (FPN) and path aggregation network (PAN) modules. The feature
map was first passed through a top-down feature pyramid, and then through a bottom-up
feature pyramid with PAN structure. This allowed us to merge information from different
scales and perform object detection at different scales using multiple prediction heads
directly on the fused feature map of the PAN. In our approach, each grid on the feature
map corresponded to a branching head, which was assigned three anchors of different
shapes. Each detection head predicted three tensors encoding the bounding box, category
and prediction confidence. By using FPN and PAN, we can fuse features at different scales,
which allows the smaller object detection branch to obtain valuable information from
earlier feature maps, preventing the loss of information during repetitive down sampling.
Furthermore, we proposed a small object attention submodule to enhance detection of
smaller objects. This submodule reassigned feature weights to better detect small objects
on the branch that detects smaller objects.

In order to address the challenges associated with detecting small objects, we intro-
duced a novel small scale-wise attention module that was capable of reassigning weights
for both spatial and channel features. This innovative module comprised two components:
SimAM and CAM.

SimAM is a method grounded in neuroscience theory, which employs energy functions
to explore the significance of various elements within the feature map. Utilizing SimAM, we
were able to derive 3D attention, whereby spatial attention was 2D and channel attention
was 1D. The energy function was initially defined in thermodynamics to characterize the
stability of a system. It is now widely employed to express the degree of divergence of
elements within a system, where smaller energy values correspond to a more stable system.
The energy function can be mathematically expressed as:

ev(wv, bv, u, xi) = (uv − v̂)2 +
1

L− 1

L−1

∑
i=1

(uo − x̂i)
2 (1)

where v̂ = wvv + bv represents the feature values of the target elements and x̂i = wvxi + bv,
which represents the feature values of other elements in the same spatial dimension. i and
L = W × H is the index of the feature element and the number of feature element over
spatial dimension.
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To find the linear separability between the target element v̂ and other element x̂i, it
adopts binary labels (i.e., 1 and −1) for uv and uo. and also add a regularization term into
Equation (1) for simplicity. Then, the final energy function is as follows:

ev(wv, bv, u, xi) =
1

L− 1

L−1

∑
i=1

(−1− (wvxi + bv))
2 + (1− (wvv + bv))

2 + λw2
v (2)

By minimizing the final energy function, the separability between v̂ and x̂i can be
found. Additionally, the minimal energy can be computed with the following:

emin
v =

4
(
σ̂2 + λ

)
(v− µ̂)2 + 2σ̂2 + 2λ

(3)

here, µ̂ = 1
l ∑L−1

i=1 xi and σ̂2 = 1
L ∑L−1

i=1 (xi − µ̂)2 the smaller emin
v , the more different the

element is from the surrounding elements and the higher the corresponding attention
weight. We can achieve attentional weight redistribution by:

X′ = sigmoid
(

1
E

)
� X (4)

where X, X′ ∈ RC×H×W .
With this method, the spatial information of the small object was well attended to by

the network.
It was observed that while the attention weights generated by SimAM were 3D, the

majority of the attention was assigned to the spatial dimension. To address the reassignment
of channel weights to features, which is a common practice in attention methods, we
implemented the CAM prior to SimAM. The CAM comprised two parallel branches that
performed max-pooling and avg-pooling, respectively. The channel attention weight was
then obtained through MLP and normalized using the sigmoid function, before being
used to weight each channel in the original input feature map one by one to recalibrate
the channel attention to the original feature. The overall channel attention process can be
summarized as follows:

Ac(Fin) = σ(MLP(MaxPool(Fin)) + MLP(AvgPool(Fin))) (5)

Fout = Ac(Fin)⊗ Fin (6)

Fin and Fout are the input feature map and output feature map, Fin, Fout ∈ RC×H×W . MLP is
multilayer perceptron.

3.3. Segmentation Decoder

The segmentation decoder is responsible for assigning a label (drivable area or
background) to each pixel in the input image. The input feature map with a size of
“(H/32, W/32, 1024)” was fed into the segmentation decoding module. After performing
five up-sampling module operations, the output feature map was restored to the origi-
nal image size, representing the probabilities of each pixel being part of the background
or drivable area. Our up-sampling module included an up-sampling operation and a
RepBottleneckCSP module, which employed the CSPNet architecture to connect rep convo-
lution groups. The CSP architecture enabled richer gradient combinations while reducing
computational complexity, and the RepConv structure improved fitting ability by using
a multichannel structure during training and a single-channel structure during inference,
making the RepBotterneckCSP module a popular choice for many mainstream networks.
The structure of RepBotterneckCSP is shown in Figure 3.
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To address the challenging problem of the fuzzy boundary of drivable areas, we used
the CBAM module to redistribute feature weights after the first up-sampling operation as
shown in Figure 4. This was achieved by inferring the attention map along two independent
dimensions (channel and space) and then multiplying it with the input feature map to
perform adaptive feature optimization. This step was necessary to enable the segmentation
decoding module to focus more on the fuzzy boundary of drivable areas.
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3.4. Loss Function

Our framework performed object detection and drivable area segmentation simul-
taneously, and our loss function included the object detection loss and the drivable area
segmentation loss.

The object detection loss Ldet contains classification loss Lcls, object loss Lobj and bound-
ing box loss Lbbx. Lcls and Lobj are both binary cross-entropy loss, which is used to minimize
the error of classification and of the confidence of one prediction separately. We used
SIoU loss [38] as Lbbx, which takes the distance, overlap rate, the similarity of shape and
orientation between the predicted box and ground truth into account, while most other
loss functions do not consider orientation.

The definition of SIoU loss is:

LossSIoU= 1− IoU+
∆ + Ω

2
(7)

The angle cost Λ is:

Λ = 1− 2sin2
(

arcsin(x)−π

4

)
(8)
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The distance cost ∆ is:

∆ = ∑
t=x,y

(
1− e−γρt

)
(9)

where γ = 2−Λ.
The shape cost Ω is

Ω = ∑
t=w,h

(
1− e−ωt

)θ (10)

The IoU cost is:

IoU =
/B ∩ BGT/
/B ∪ BGT/

(11)

As Equation (12), the Ldet is the weight sum of three loss above.

Ldet = α1Lcls + α2Lobj + α3Lbbx (12)

The drivable area segmentation loss Lseg is binary cross-entropy loss, which is used to
penalize the classification of each pixel in th Modified e segmentation map.

In conclusion, the final loss function of our network is given by.

L = αLdet+βLseg (13)

where α and β are the weight of detection loss and segmentation loss.
We can tune α1, α2, α3 to balance the three parts of detection task and tune α, β to

balance the detection part and segmentation part.

4. Experiment

In this section, we demonstrate the details of our experiment and that all our experi-
ments in this paper were conducted based on Intel Xeon E5-2698 v4 and one 32G NVIDIA
TESLA V100. The construction of the experimental model was based on PyTorch.

4.1. Dataset

Currently, there are limited datasets for object detection and segmentation specifically
tailored for mining scenes. To validate our algorithm, we constructed our own mining
perception dataset called Minescape. According to the actual mining operation scenario,
we used a XDE240 mining truck as the data collection platform and its FLIR Point Grey
Flea front camera as the image sensor with 10Hz capture frequency as shown in Figure 5.
The Minescape consisted of 4547 training images, 1299 verification images and 650 test
images with various mine scenes, 60+ driving hours of three days and varying luminance
conditions from Shenyan Coal and Xiwan Opencast Coal Mines. To ensure the accuracy of
annotations, we used labelme to manually annotate the images. We evaluated our network
on the Minescape verification set.
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The Minescape had 9 types of label objects, including 4 types of movable objects
(mining truck, car, person, engineering vehicle) and 5 types of static objects (stone, other
obstacle, sign, background, drivable area), as shown in Table 1. These categories cover
most of the work scenes of mining trucks, and their scale and number distribution is very
uneven, which is one of the reasons why the general detection framework is not robust in
the mining environment.

It is worth mentioning that the advantage of the Minescape is that it reveals some
common problems in open-pit mine, such as clustered small objects and the unobvious
boundary of drivable areas, as shown in Figure 6. The Minescape provided us with data in
various typical scenarios to design a framework to solve such problems.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

 
(a) 

 
(b) 

 
Figure 6. Some representative pictures in Minescape. (a) The distribution of small objects in the 
mine. They are either aggregated or dispersed. They are arranged irregularly and have strong 
camouflage. (b) The characteristics of the drivable area. The boundary shape of the drivable area is 
irregular and sometimes discontinuous. Its color and texture features are also unstable. 

4.2. Metrics 
The algorithm proposed by us included two tasks: detection and segmentation. A 

general evaluation index can judge the performance of the model, which is also a visual 
manifestation of the comparison and evaluation with existing models. At present, the 
evaluation indexes of target detection algorithm widely accepted by many scholars in-
clude Loss Function, Intersection over Union (IoU) and mean Average Accuracy (mAP). 
The evaluation indicators of segmentation tasks mainly include Mean Intersection over 
Union (MIoU) and Accuracy (Acc). 

4.2.1. Evaluation Metrics of Target Detection 

Figure 6. Some representative pictures in Minescape. (a) The distribution of small objects in the mine.
They are either aggregated or dispersed. They are arranged irregularly and have strong camouflage.
(b) The characteristics of the drivable area. The boundary shape of the drivable area is irregular and
sometimes discontinuous. Its color and texture features are also unstable.
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Table 1. Detail of classes in Minescape.

Group Class Quantity Description

movable objects

mining truck 4845 mining dump trucks
car 601 cars and pickups

person 2965 workers
engineering vehicle 5638 excavator, etc.

static objects

stone 136,578 ore and rock
sign 1205 traffic signs

other obstacles 2575 other common obstacles
drivable area 9376 safe drivable ground
background 3035 undrivable area

4.2. Metrics

The algorithm proposed by us included two tasks: detection and segmentation. A
general evaluation index can judge the performance of the model, which is also a visual
manifestation of the comparison and evaluation with existing models. At present, the
evaluation indexes of target detection algorithm widely accepted by many scholars include
Loss Function, Intersection over Union (IoU) and mean Average Accuracy (mAP). The
evaluation indicators of segmentation tasks mainly include Mean Intersection over Union
(MIoU) and Accuracy (Acc).

4.2.1. Evaluation Metrics of Target Detection

The intersection over union (IoU) is an important reference index in the field of target
detection, which represents the overlap rate between candidate boxes and tag boxes. When
IoU value is 1, it indicates that candidate box and marker box are completely coincident,
and the formula is as follows:

IoU =
A ∩ B
A ∪ B

(14)

Precision refers to the proportion of real positive cases among the samples predicted
as positive cases, expressed as P. Formula is shown as follows:

p =
TP

TP + FP
(15)

Recall rate refers to the proportion of correctly predicted samples in all actually positive
samples. The formula is as follows:

recal =
TP

TP + FN
(16)

Average Precision (AP) means the average precision rate under different recall rates,
expressed as the formula:

AP =
n

∑
i=1

P(i)∆r(i) =
∫ 1

0
p(r)dr (17)

The definition of Mean Average Precision (mAP) is to calculate the mean of AP, which
is the average precision of all categories. The formula is as follows:

mAP =
∑N

n=1 AP(n)
N

(18)

in the formula, represents the category, and represents the total number of categories.

4.2.2. Evaluation Metrics for Task Segmentation

IoU represents the ratio of the intersection and union of the two sets of the real area
and the prediction area, and MIoU represents to calculate the IoU of each category, then
sum and average. The calculation formula of MIoU is:
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MIoU =
1
k

κ

∑
i=1

VTi ∩VPi
VTi ∪VPi

(19)

Pixel Accuracy represents the percentage of correctly classified pixels in the image. It’s
given by:

Accuracy =
TP + TN

TP + TN + FT + FN
(20)

4.3. Implementation Detail

We used SGD with momentum as the optimizer, with an initial learning rate of 0.01.
To better train our model, we performed 3 epochs of warm up with an initial learning rate
of 0.1. We trained 80 epochs on our dataset with the batch size of 16 and the input image
size of (640, 640, 3). In the final loss function settings, the parameters α1, α2, α3, α and β as
mentioned before were 0.5, 2.0, 0.1, 1.0 and 0.8, respectively.

4.4. Experiment Results

We developed an end-to-end multi-task network. However, it was difficult to find a
single model that can fulfill all multi-task requirements. Currently, a model that performs
well in object detection may not perform well in segmentation. Therefore, we compared
the performance of our model with the state-of-the-art (SOTA) algorithms both in object
detection and semantic segmentation. The results are shown in Table 2.

Table 2. Evaluation results of different detection algorithms on Minescape.

Model Backbone

mAP0.5 (%)

All Mining
Truck

Other
Obstacle Car Person Engineering

Vehicle Stone Sign

YOLOv7
tiny ELAN 78.5 90.8 70.4 89.4 95.6 96.9 40.6 66.0

YOLOv5n CSPNet 77.3 88.4 69.5 89.1 89.4 95.3 40.4 69.0
Faster-RCNN ResNet-50 76.8 87.8 73.3 92.5 89.1 95.5 32.2 67.0

MineSDS-det (ours) ELAN 87.8 95.7 86.5 94.9 94.9 98.3 67.6 87.5

To evaluate small object detection, we compared our model with SOTA object detection
algorithms such as YOLOv7tiny, YOLOv5n and Faster-RCNN. Our dataset consisted of
small objects such as stones, signs and other obstacles, and we reported mAP results for the
above algorithms, which ranged from 32.2% to 73.3%. Our model achieved significantly
higher results of 67.6%/87.5%/86.5%, with the highest improvement of 27.0%/18.5%/13.2%
over the SOTA algorithms. Interestingly, our model used the same backbone as YOLOv7tiny,
but with the addition of Multi-head Feature Fused Detector and CAM-SimAM, we were
able to extract better small object features.

We also conducted a comparison experiment of segmentation networks using the same
experimental setup. We compared three networks: Bisnet, U-Net and HarDNet, which are
the baseline algorithms for classic segmentation networks and drivable area segmentation
algorithms. We used two evaluation indicators, MIoU and Acc, and our algorithm achieved
higher results of 0.6850/0.8150, which were 1% higher than each other. The results are
shown in Table 3.

Table 3. Evaluation results of different segmentation algorithms on Minescape.

Network MloU Accuracy

Bisnet 0.6450 0.7842
U-Net 0.6571 0.7931

HarDNet 0.6775 0.8079
MineSDS-seg (ours) 0.6850 0.8150
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We visualized the prediction results of our model on Minescape, and some of the
results are shown in Figure 7. It can be seen that our model can detect the objects very well,
and it also showed comparatively well for the small objects, but there were still, sometimes,
missing detections when comparing with the ground truth. In terms of segmentation,
comparing with the ground truth, it can basically segment the boundary correctly, and the
segmentation effect became worse at the farther distance.
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4.5. Ablation Study

The purpose of conducting ablation experiments is to explore the contribution of
various components within our framework. We conducted corresponding experiments to
explore the role of attention components and loss functions. Additionally, we trained our
model to perform both object detection and drivable area segmentation tasks separately to
assess the effectiveness of our multi-task training approach.

Our experiments and their corresponding results are presented in Table 4. The results
demonstrate that the attention module significantly improved the model’s overall mAP by
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2.9%, with significant improvements seen in small objects such as stones, other obstacles and
signs. On the other hand, there was no significant difference observed in the improvement
of other categories with normal scale. Our multi-task training framework resulted in a 1.5%
increase in overall mAP compared to training solely for the detection task. However, the
difference between the result of training for the segmentation task individually and that of
multi-task training was not apparent. Experimentally, we found that the SIoU loss function
was more favorable to our model’s training than CIoU, with the model trained with SIoU
yielding a 2.2% higher mAP than the model trained with CIoU.

Table 4. Ablation studies of MineSDS.

Method

mAP0.5 (%)
mloU (%) Accuracy

All Mining
Truck

Other
Obstacle Car Person Engineering

Vehicle Stone Sign

X (base) 84.9 95.7 80.9 95.1 94.3 97.7 52.6 77.6 68.2 81.3
Y (X + SSWAM) 87.8 95.7 86.5 94.9 93.9 98.3 57.6 87.5 68.5 81.5

Y-Det (only) 86.3 95.2 83.2 93.9 93.8 97.8 55.8 84.4 - -
Y-Seg (only) — — — — — — — — 68.4 81.5
CIoU Loss 77.6 90.4 73.4 87.6 93.1 96.3 44.8 57.7 68.3 81.4
SIoU Loss 81.7 92.6 79.5 90.7 94.3 97.5 45.8 71.7 68.4 81.4

5. Conclusions

In this paper, we proposed a perceptual framework for mining scenarios that focused
on improving small object detection and drivable area segmentation. To achieve this,
we employed a small object attention module that enhanced the network’s accuracy for
detecting numerous small objects. Additionally, we used CBAM to improve the feature
mapping capabilities of convolutional operations, allowing our network to focus on the
fuzzy boundaries of drivable areas. We also trained both tasks simultaneously using a
weighted loss function. Our extensive experiments demonstrated that our framework
performed comparably well. However, our work had some limitations. Firstly, the data we
collected did not include bad weather conditions, which could impact the robustness of the
algorithm in real-world applications. To address this, we will need to re-collect a substantial
amount of data. Moreover, we did not operate our algorithm and other algorithms on a
classical benchmark dataset. This may be biased. We will compare our algorithm with
state-of-the-art methods on a more representative benchmark dataset.
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