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Abstract: Pixel-level information of remote sensing images is of great value in many fields. CNN has a
strong ability to extract image backbone features, but due to the localization of convolution operation, it
is challenging to directly obtain global feature information and contextual semantic interaction, which
makes it difficult for a pure CNN model to obtain higher precision results in semantic segmentation
of remote sensing images. Inspired by the Swin Transformer with global feature coding capability, we
design a two-branch multi-scale semantic segmentation network (TMNet) for remote sensing images.
The network adopts the structure of a double encoder and a decoder. The Swin Transformer is used to
increase the ability to extract global feature information. A multi-scale feature fusion module (MFM) is
designed to merge shallow spatial features from images of different scales into deep features. In addition,
the feature enhancement module (FEM) and channel enhancement module (CEM) are proposed and
added to the dual encoder to enhance the feature extraction. Experiments were conducted on the
WHDLD and Potsdam datasets to verify the excellent performance of TMNet.

Keywords: remote sensing images; global modeling; semantic segmentation; Swin transformer

1. Introduction

In the field of image processing, the research on semantic segmentation of remote
sensing images is becoming one of the hot topics nowadays. It classifies each pixel in the
image, and the information of the classification results is valuable in many fields, such as
land planning [1] and natural disaster assessment [2] and land surveying [3].

Remote sensing images contain a large amount of feature information, and the same
type of features present feature diversity and complexity at different times or locations [4].
Compared with car scenes and object images [5,6], the semantic segmentation of remote
sensing images is obviously more difficult. Its characteristics of long distance and large
scope of shooting make the size of the object features extremely inconsistent, and it is easy
to have large intra-class variance and small inter-class variance. Features such as the large
range of size variation of the same kind of target, obvious color and texture differences,
and difficulty in distinguishing between mixed objects of different kinds mean that remote
sensing image segmentation is more difficult compared with other images.

The rapid development of convolutional neural networks (CNNs) has played an
important role in promoting research in the field of image processing, but CNN structures
are always used for the classification of the whole image rather than for each pixel in
the image. The invention of the full convolutional network (FCN) [7] is a milestone for
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the semantic segmentation of images, replacing the fully connected layer after the CNN
with a deconvolutional layer to achieve the upsampling of features, thus allowing the
output of per-pixel classification results of the same size for any size of the input image
size. U-Net [8] inherits the idea of FCN, deepens the feature upsampling process, and
makes its network a ‘U’-shaped symmetric structure to improve the accuracy of image
semantic segmentation. SegNet [9] builds an encoder–decoder structure to achieve end-to-
end pixel-level image segmentation. However, CNN-based models often result in missing
small-scale features during feature extraction using operations such as convolution and
pooling [10]. In addition, different classes of objects may have similar size, material,
and spectral features in an image, which are difficult to distinguish and cannot be fully
recovered in high-resolution detail, especially for class edges [11]. The local nature of the
convolution operation hinders the ability of the model to directly interact with contextual
information and global modeling [12]. Given the complexity of category features in remote
sensing images, more contextual information and global features are needed to support
image pixel classification [13]. In order to address the shortcomings of the pure CNN
model in extracting global features of remote sensing images performance and enhance
its ability to obtain contextual information, we propose a two-branch multiscale semantic
segmentation network (TMNet), which differs from classical network structures such as
U-Net or Deeplab [14] in that it uses a dual encoder–decoder structure that can balance
computational complexity and model parameters while improving model accuracy. Given
the great advantage of the CNN model in spatial feature extraction capability, this model
uses CNN as the main encoder to extract image backbone features. The Swin Transformer
has powerful global feature modeling capability. In this model, the Swin Transformer
is used as an auxiliary encoder to compensate for the lack of global feature extraction
capability of the CNN to achieve better extraction results. Adding a skip connection
between the encoder and decoder increases the contextual information interaction capability
and increases the stability of data features. In addition, we proposed a multi-scale fusion
module (MFM) to increase the feature fusion at different scales, and we design a feature
enhancement module (FEM) and a channel enhancement module (CEM) to enhance the
feature extraction capability of the model. The main work of this paper can be summarized
by the following three points:

1. A two-branch multi-scale semantic segmentation network (TMNet) for remote sensing
images is proposed to improve the model image classification performance by the
global feature information encoding capability of the Swin Transformer.

2. The MFM is proposed to merge shallow spatial features of images at different scales
into deep features and increase the fusion of multi-scale deep image features of the
model to recover more minute details in the classification process.

3. FEM and CEM are added to the main and auxiliary encoders, respectively, to enhance
feature extraction. FEM enhances feature information interaction by calculating the
relationship between its own feature information and updateable feature storage units;
CEM further increases the spatial correlation of global features by establishing an
inter-channel correlation to encode the spatial information of Swin Transformer.

The main work of this paper is as follows: Section 1 summarizes the current research
status in the field of remote sensing image segmentation and the methodology and con-
tributions of this paper. In Section 2, the related work on the proposed method of this
model is presented. Section 3 is a detailed description of this method, and Section 4 is the
experimental part, including various parameters, results, and analysis of the experiments.
Section 5 is the conclusion of this paper.

2. Related Work
2.1. Classical Image Semantic Segmentation Network

In recent years, remote sensing image segmentation methods based on the deep learn-
ing framework have made great progress. DenseASPP [15] uses dilated convolution with
different expansion rates to enhance its global modeling capability. PSPNet [16] uses a
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pyramid pooling module to acquire features and uses multiple scale pooling operations to
realize the fusion of different scale features. DenseU-Net [17] improves the image classifica-
tion accuracy by deepening the convolution layer and using U-Net architecture to realize
the aggregation of small-scale features. BiSeNet [18] is a bilateral segmentation network
designed to extract spatial information and generate high-resolution features in small steps,
and to obtain sufficient receptive fields using a context path with a fast downsampling
strategy. BSNet [19] enhances the global contextual information interaction and boundary
information extraction by dynamic gradient convolution and coordinate sensitive attention.
HRNet [20] enhances feature fusion by the iterative information exchange of multi-level
features and has multiple scales of convolutional combinations to enhance spatial informa-
tion accuracy. DBFNet [21] uses bilateral filtering to focus on enhancing the extraction of
boundary information and filtering noise using a combination of feature nonlinearities at
different scales. OANet [22] is a semantic segmentation network for marking directional
attention, which uses asymmetric convolution to focus on features in different directions
and explore their anisotropy, enhancing the semantic feature representation within the
model. All the above methods fuse local features to form global feature information based
on CNN, rather than directly encode global features.

2.2. Work on Transformer

In recent years, Transformer [23] has moved from natural language processing to
image processing. Compared with CNN to obtain local feature information through con-
volution operation, Transformer can realize remote image dependence and encode global
feature information by using a self-attention mechanism [24]. Transformer will divide
the whole image into multiple tokens, and the multi-head attention mechanism is used
to explore the feature relationship among all tokens and to encode the global feature. Its
success in global relational feature modeling provides a new idea for many research fields.
SETR [25] first applied the Transformer architecture to the field of image segmentation
and introduced a sequence-to-sequence classification model, which greatly improved the
problem of difficulty in obtaining global receptive fields. Segmenter [26] designs the
encoder–decoder structure using Transformer and transforms the processed tokens into
pixel-level annotations for encoding. PVT [27] combines Transformer with a pyramid
structure, which can reduce the computation of the model by using the pyramid mod-
ule while training the features intensively. SegFormer [28] was used for the design of a
layered Transformer architecture with an improved MLP decoder to fuse the features of
different layers to improve the classification performance of the network. RSSFormer [29]
embeds Transformer into HRNet and designs adaptive multi-headed attention and MLP
with dilation convolution to increase the foreground saliency of remote sensing images.
DAformer [30] designs a multi-level context-aware structure based on Transformer, which
effectively enhances the contextual semantic interaction. However, since the Transformer
places each attention computation on the entire image, the rapidly increasing training
cost will hinder the application of the model when the image size is large [31]. The Swin
transformer [32] divides the image into different windows and restricts the attention com-
putation to the windows, which makes it only linear in complexity. The shifting of window
partitions between layers is a key component of the Swin Transformer architecture, where
the shifted windows connect the windows of the previous layer and significantly improve
the modeling capabilities. With only linear computational complexity, the Swin Trans-
former delivers advanced performance in a variety of fields such as video processing [33],
image generation [34], and image segmentation [35].

3. Methods

In this section, we will explain in detail the architecture of TMNet and the main
modules that make up this network architecture.
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3.1. Network Structure

The overall network architecture of TMNet is shown in Figure 1. The dual encoder-
decoder architecture is adopted, in which the CNN module with powerful feature extraction
capability is used as the main encoder, and the Swin Transformer module with global feature
information encoding capability is used as the auxiliary encoder. For a given remote sensing
image, the image is first divided into different blocks and uses linear embedding to ensure
the feature size is 128×H/2×W/2 and enhance the semantic features, and then the Swin
Transformer module is used to enhance feature global modeling and feature extraction. In
addition, we added CEM to the Swin transformer block to enhance the feature relationships
between channels, reduce dimensionality by downsampling features in the patch merging
layer, and increase dimensionality by splicing features. The three output sizes of the auxiliary
encoder are 128 ×H/2 ×W/2, 256 ×H/4 ×W/4, and 512 ×H/8 ×W/8 and are summed
with the corresponding output of the main encoder, enhancing the global modeling capability
of the network. In the main encoder, the CNN module is used to extract the image backbone
features, the FEM enhances the feature extraction capability of the main encoder by calculating
the relationship between the input data and the updatable feature storage units, and the
MFM fuses features at different scales through softpool of different sizes, especially enhancing
the extraction capability of small-scale features. The decoder is primarily implemented by
convolution and bilinear interpolation upsampling, and we use skip connections to increase
the contextual relationship between the encoder and decoder. After decoding 3 times, the
1 × 1 convolutional layer and argmax function are used to obtain the final predicted image.
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3.2. Main Encoder
3.2.1. CNN Blocks

CNNs have been successful in many fields due to their powerful feature extraction
capabilities. CNN Blocks have three modules, and Table 1 shows the detailed parameters
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of each module. The order of the parameters in Conv2d is in_channel, out_channels,
kernel_size, step size, and padding, and all other parameters are default. maxPool2d(2)
indicates that max pooling uses convolutional kernels to halve the input size, and BN
indicates BatchNormal.

Table 1. CNN block parameters.

Name Input Size Layer Structure Out Size

CNN block-0 3 × H ×W
Conv2d(3,64,3,2,1), Relu

128 × H/2 ×W/2Conv2d(64,96,3,1,1), BN, Relu
Conv2d(96,128,3,1,1), BN, Relu

CNN block-1 128 × H/2 ×W/2
MaxPool2d(2)

256 × H/4 ×W/4Conv2d(128,192,3,1,1), BN, Relu
Conv2d(192,256,3,1,1), BN, Relu

CNN block-2 256 × H/4 ×W/4
MaxPool2d(2)

512 × H/8 ×W/8Conv2d(256,384,3,1,1), BN, Relu
Conv2d(384,512,3,1,1), BN, Relu

3.2.2. Multi-Scale Feature Fusion Module

CNN-based models perform convolutional operations for downsampling during
feature extraction, which can easily lead to the loss of small-scale features. To solve this
problem, we propose a multiscale feature fusion module (MFM), as shown in Figure 2.
We ingeniously combine Softpool [36] with convolution operations, and Softpool obeys
a certain probability distribution to retain finer feature cues compared to Avgpool and
Maxpool. MFM uses SoftPool to extract multi-scale features by downsampling at scales
of 2, 4, 8, and 16, respectively. Then 1 × 1 convolution is used to make the finer semantic
feature information more refined, and bilinear interpolation is used for upsampling to
augment the features. Subsequently, 3 × 3 convolution is used, and feature concatenation
is performed to fuse multi-scale semantic features for feature class recovery.
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Softpool is computed as follows:

ã = ∑
i∈R

eai ∗ ai

∑j∈R eaj
, (1)

The MFM execution process can be expressed as follows:

Yn = Softpool(X),Tn = Bi(σ(Conv1× 1(Yn))),Wn = σ(Conv3× 3(Tn)), (2)
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Bi(·) stands for bilinear interpolation upsampling and σ represents the Relu function.
The input features X ∈ Rc×h×w, after the Softpool Yn ∈ Rc×h/n×w/n, where n is the
downsampling rate. The features Yn are convolved by the 1 × 1 convolution kernel and
the Relu function, the number of channels is halved, and the size becomes the original size
after upsampling bilinear interpolation, Tn ∈ Rc/2×h×w. For further feature extraction, after
convolution and Relu activation function, the number of channels becomes one-fourth of
the original number of channels. Finally, four different scale features are connected for
multi-scale feature fusion and the number of channels becomes the output of the module,
Wn ∈ Rc/4×h×w. Finally, four different scale features are concatenated for multi-scale
feature fusion, and Z ∈ Rc×h×w the number of channels resets to the original as the output
result of this module.

Z =[W16, W8, W4, W2] (3)

[·] Representing dimensional concatenated.

3.2.3. Feature Enhancement Module

CNN has a strong feature detection capability, but the understanding of features is
insufficient and the spatial resolution of features gradually decreases with the increase in
depth and number of layers, which hinders the prediction capability of the target location
in remote sensing images [37]. To address this problem, this paper proposes a feature
enhancement module (FEM) to deepen the relationship between features and improve the
performance of the encoder. The FEM is added after each CNN module to further learn
the output features of each module, as shown in Figure 3. The FEM is designed with two
updateable feature storage units to retain the feature relationships of the data, which can
better learn the distribution weight relationships of the features with constant feature size,
and adding normalization in the two parameter units can further densify the features and
accelerate the convergence speed of the model. At the same time, the FEM parameters are
small, which can better trade-off the efficiency and accuracy of the model. FEM can be
expressed as follows:

O =Mb ⊗ N(Ma ⊗ F), (4)

where the input features are F ∈ Rc×h×w, and the output features are O ∈ Rc×h×w, learnable
features storage units are Ma ∈ Rc×c, Mb ∈ Rc×c, N(·) denotes the BatchNorm, and ⊗
denotes the matrix multiplication.
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3.3. Auxiliary Encoder
3.3.1. Swin Transformer

The standard transformer consists of a multiple attention mechanism (MSA), a mul-
tilayer perceptron (MLP), and layer normalization (LN), as shown in Figure 4a. MSA is
the key mechanism in the Transformer that takes the input token and performs the feature
relationship operation and encodes the positional relationship between different features
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in it to establish the global relationship. For the standard transformer, the output of l-layer
sl can be expressed as:

ŝl = MSA(LN(sl–1))+s,
sl= MLP(LN(ŝl)) + ŝl ,

(5)
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The transformer uses MSA to compute the global feature information among all
tokens, resulting in a computational complexity that is linearly related to the image area
size, which is not friendly to its practical application. Unlike the transformer module, the
Swin Transformer applies the attention mechanism to the different windows divided from
the image and enhances the global feature relationships by shifting between windows,
as shown in Figure 4b, where the Swin Transformer consists of a window multihead
self-attention (W-MSA) module connected to a shift window multihead self-attention (SW-
MSA). In the Swin Transformer, the image is divided into different patches according to
their positions by patch partition, and the input information is converted into sequences
and embedded as tokens; then the sequences are encoded, the dimensions are changed by
the linear embedding layer, and the uniformly encoded tokens are passed through the Swin
Transformer block and the patch merging layer to generate a global feature relationship
representation. The Swin transformer uses multihead self-attention to divide the features
into multiple heads, where each head is responsible for exploring different local information
relationships, and the global information is obtained by fusing the resultant letters from
different heads. This can be expressed as follows:

ŝl = W-MSA(LN(sl–1)) + sl–1,
sl= MLP(LN(ŝl)) + ŝl ,

ŝl+1 = SW-MSA(LN(sl)) + sl ,
sl+1= MLP(LN(ŝl+1)) + ŝl+1,

(6)

where ŝl and sl denote the output of the lth (S)W-MSA and MLP modules, respectively. The
number of layers corresponding to each stage of the Swin transformer configured in this
experiment is (2,2,2), and the number of heads corresponding to each stage is (3,6,12), and
the partition window size is set to 8.

3.3.2. Channel Enhancement Module

The Swin Transformer constructs patch token relationships in a limited number of
windows, significantly reducing the computational complexity. However, this approach
limits the window-to-window channel modeling capability to some extent, even with the
strategy of the window and shift window cross execution. In this paper, we propose the
channel enhancement module (CEM) to further enhance the window-to-window feature
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relationship interaction, compress the deep features in each channel through Avgpool,
and use 3 × 1 convolution to interact with the channel features to extract more accurate
spatial location information. The design of the CEM considers not only patch-to-patch but
also channel-to-channel relationships, compensating for the window-to-window modeling
capability limited by Swin Transformer and making the converter more suitable for image
segmentation tasks. Unlike other methods [38,39], which divide windows by simply
changing the Swin Transformer, our proposed CEM learns the deep relationships between
channels to make its feature weight distribution more accurate. The CEM is shown in
Figure 5. Channel information is first obtained by Avgpool, which is calculated as follows:

vk =
1

wh

w−1

∑
i=0

h−1

∑
j=0

ẑk(i, j), (7)
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For the average pooled features, we convert the dimensions to 1 × c × 1 and then
perform a convolution operation using a 3 × 1 convolution kernel and matrix multiply it with
the original features to enhance their spatial characteristics. This is represented as follows:

F =sl ⊗ R(conv3× 1(R(v))⊗ sl , (8)

sl represents the output of the lth Swin Transformer block, R(·) represents the Reshape,
and v ∈ Rc×1×1 represents the feature matrix after Avgpool.

3.4. Decoder

The decoder primarily decodes the features by convolutional operation and upsam-
pling and skips the link with the main encoder in its process to enhance the global context
information, as shown in the decoder part of Figure 1. Firstly, the MFM module output
features are spliced with the CNN-Block3 module output to enhance the feature informa-
tion interaction, followed by a convolutional kernel of 3 × 3, and after the Relu function
for feature decoding and channel size reduction, the feature size is doubled by image up-
sampling using linear interpolation. After three upsamplings, the feature size is changed to
the original image size, and then the features are further refined using a 3 × 3 convolution
kernel, and the number of feature channels is reduced to the number of image classes, and
the prediction results are output by argmax function.
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3.5. Loss Function

The loss function applied in this paper is a combination of Cross-entropy loss and
Dice loss, where Cross-entropy loss primarily measures the difference in accuracy between
pixels and Dice loss measures the accuracy of category regions.

Cross-entropy loss is expressed as follows:

Lce = –
1
N

N–1

∑
i=0

K–1

∑
k=0

yi,klnpi,k, (9)

where N is the number of samples and K represents the number of categories, pi,k represents
the prediction probability of the kth category in the ith sample, and yi,k indicates whether
the prediction result corresponds to the true label.

The Dice loss is expressed as follows:

Ldice = 1−
2

N−1
∑

i=0

K−1
∑

k=0
gk

i sk
i

N−1
∑

i=0

K−1
∑

k=0
gk

i +
N−1
∑

i=0

K−1
∑

k=0
sk

i

, (10)

si
k, gi

k denote the predicted classification result and the actual label value of the image
for the kth class of the ith sample, respectively.

The total loss function is expressed as:

Ltotal = Lce + Ldice, (11)

4. Experiments and Results

To verify the efficiency of TMNet in the field of remote sensing image segmentation,
we conducted experiments on two publicly available remote sensing image datasets and
compared them with other classical methods.

4.1. Datasets

The two publicly available datasets used in this experiment are the Wuhan Dense
Labeling Dataset (WHDLD) [40,41] and the Potsdam dataset [42].

The WHDLD was captured by the Gaofen-1 and ZY-3 satellites in Wuhan and consists
of 4940 RGB images of size 256 × 256 that were fused and upsampled to a resolution
of 2 m. There are six image categories in the WHDLD, including bare soil, buildings,
pavement, vegetation, roads, and water, which have been classified pixel by pixel. The
Potsdam dataset has 38 remote sensing images of size 6000 × 6000 with a resolution of
5 cm, covering 3.42 km2 of the building complex structures in Potsdam. The Potsdam
dataset contains six categories: Impervious surface, building, low vegetation, tree, car, and
clutter/background. In this paper, only 14 RGB images are selected for the experiment
(image IDs: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 5_14, 5_15, 6_14, 6_15, 7_13), and
similar to WHDLD, to facilitate the experiment, we cropped the image size of the potsdam
dataset to 256 × 256, for a total of 6877 images. We divided the training, validation, and
test sets of these two datasets in the ratio of 6:2:2. To make the model more accurate, we
used random rotation, flip, and Gaussian noise for data enhancement.

4.2. Training Setup and Evaluation Index

TMNet is built by PyTorch. We train the network using the SGD optimizer, where the
momentum term is set to 0.9, the weights are decayed to 1 × 10−4, and for the learning
rate, we set its initial value to 0.01 and halve the learning rate every 20 epochs to ensure the
model reaches the optimal value faster. The experiments included are implemented on an
NVIDIA GeForce RTX 3090 GPU with 24 GB RAM. The batch size is 16 and the maximum
epoch is 150. We evaluate the performance of the model using mean intersection over union
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(MIOU), Mean F1 (MF1), and Mean Pixel Accuracy (MPA). The three evaluation metrics
are calculated from the confusion matrix, which has four components: True positive (TP),
false positive (FP), true negative (TN), and false negative (FN). Based on the above four
terms, IOU is defined as the degree of overlap between the predicted and true values of an
image and is calculated as follows:

IOU =
TP

TP + FP + FN
, (12)

The F1 score for each category is expressed as follows:

F1 = 2× precision× recall
precision + recall

, (13)

where Precision = TP/(TP + FP) and Recall = TP/(TP + FN). MIOU represents the mean of IOU
for all categories, MF1 represents the mean of F1 for all categories, and MPA represents the
mean value of precision for all categories, where we use MIOU as the main evaluation metric.

4.3. Comparison Results on WHDLD

In this section, we compare TMNet with other classical semantic segmentation networks,
including DFANet [43], DenseASPP [15], PSPNet [16], Deeplabv3plus [44], DFANe-t [43],
DUNet [45], MAUNet [46], MSCFF [47], MUNet [48], HRNet [20], SegFormer [28], and
HRVit [49] where DenseASPP, PSPNet, and Deeplabv3plus use resnet101 as the backbone.
The experimental results are shown in Table 2 and Figure 6.

Table 2. Results of comparison with other methods on WHDLD (%).

Method Parameters (M) FLOPs (G) MIOU MF1 MPA
IOU

Bare Soil Building Vegetable Water

DFANet 2.32 0.947 54.93 68.46 67.88 49.46 47.75 77.02 90.56
DenseASPP 46.04 48.178 55.94 69.23 67.60 49.04 47.14 78.63 92.41

PSPNet 72.31 70.058 56.41 69.88 68.44 48.18 53.43 76.28 91.74
DUNet 29.21 30.889 56.86 70.27 68.44 49.27 54.43 76.42 91.97

MAUNet 14.55 41.263 57.12 70.41 69.56 50.88 49.79 78.99 92.70
MUNet 7.77 13.756 58.50 71.65 70.20 51.40 54.45 79.38 93.17
MSCFF 51.95 140.680 59.87 72.88 70.82 53.60 56.86 79.41 94.05

Deeplabv3plus 59.34 22.243 60.37 73.32 71.61 56.54 53.04 80.80 93.96
HRNet 49.20 49.302 60.43 73.21 71.51 55.66 54.01 80.96 93.97

SegFormer 47.34 79.105 60.45 73.33 71.55 55.26 52.91 81.16 94.18
HRVit 28.62 27.415 60.71 73.57 71.82 55.17 53.42 81.12 93.89
TMNet 20.55 47.499 61.23 74.14 72.57 55.77 54.06 81.19 94.28
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From Table 2, it can be seen that the experimental results of TMNet outperform the other
networks, where DFANet is based on pure CNN architecture, DenseASPP improves its global
modeling capability by using convolution with different scaling rates, PSPNet utilizes context
through pyramid pooling module, and all the above methods use local features to aggregate
contextual information. The MSCFF uses trainable convolutional filters to densify the feature
map and enhance small-scale features, MAUNet subdivides features at different scales by
increasing the number of downsampling and attention mechanisms, which cannot achieve
multi-scale feature fusion compared with TMNet, and Deeplabv3plus uses atrous space
pyramidal pooling and applies deep separable convolution, but the performance is still inferior
to TMNet. SegFormer designs a hierarchical Transformer architecture and fuses features at
different scales using an improved MLP decoder. HRVit uses Transformer to design cascading
converters that generate multi-scale feature representations. However, the lack of contextual
information interaction makes its performance inferior to that of TMNet. In addition, we
compared the parameters and FLOPs of each method, and TM performed moderately well in
both aspects, indicating that TMNet does not simply pile up computational effort to obtain
high accuracy. Compared with the three advanced models of HRNet, SegFormer, and HRVit,
TMNet improves MIOU by 0.80%, 0.78%, and 0.52% with only 41.77%, 43.41%, and 71.80%
of HRNet, SegFormer, and HRVit in terms of parameters. Compared to FLOPs, TMNet is
3.65% and 39.95% less than HRNet and SegFormer. Figure 6 shows the prediction results
of each method on the WHDLD. From Figure 6, it can be seen that the prediction results
of TMNet are closest to the real image and better in terms of small-scale features and edge
details. The first row of Figure 6 shows that TMNet achieves the best classification results in
the road category due to the powerful global modeling capability of the Swin Transformer
that enhances the feature extraction ability of the network. For the more difficult-to-classify
bare soil category, TMNet also has good classification results for it, as can be seen in the third
row of Figure 6. This shows the excellent performance of TMNet in the semantic segmentation
of remote sensing images.

4.4. Comparison Results on Potsdam Dataset

Table 3 shows the segmentation results of each method on the Potsdam dataset, which
further proves the effectiveness of TMNet in the semantic segmentation study of remote
sensing images as MIOU, MF1, and MPA reach 68.15%, 79.91%, and 78.77%, respectively,
which are higher than other methods. Due to the difference in dataset resolution, the segmen-
tation accuracy of Potsdam is better than that of WHDLD. Figure 7 shows the experimental
prediction results of each method on the Potsdam dataset, and we can see that the classifi-
cation results of TMNet are better than other methods, for example, it is obvious from the
first and fifth rows that TMNet is significantly better than other methods in the prediction of
clutter/background category, which demonstrates the performance of TMNet.

Table 3. Results of comparison with other methods on Potsdam dataset (%).

Method MIOU MF1 MPA
IOU

Impervious
Surface Building Low Veg-

etation Tree Car Clutter/
Background

DFANet 61.05 73.70 72.30 70.92 77.79 60.18 63.49 73.16 20.75
MAUNet 62.31 75.01 73.15 70.55 77.75 61.30 65.53 74.07 24.66

DenseASPP 62.93 75.92 75.24 75.00 80.02 61.29 56.69 72.53 32.02
PSPNet 63.76 76.37 75.51 74.28 82.83 62.01 59.49 73.99 29.99
DUNet 64.70 77.00 75.65 76.70 83.17 63.09 58.47 76.29 30.45

Deeplabv3plus 65.32 77.49 77.46 75.73 83.90 63.06 63.46 75.51 30.25
HRNet 66.22 78.18 77.49 76.62 83.51 64.66 61.53 77.28 33.69
MSCFF 66.35 78.36 78.88 75.28 84.31 64.95 63.21 77.83 32.48
MUNet 66.60 78.42 77.05 76.26 83.10 64.13 62.94 77.44 32.31
HRVit 67.33 79.72 77.70 76.70 84.86 64.71 64.05 77.65 35.99

SegFormer 67.43 79.07 78.43 76.61 84.66 65.08 63.70 78.17 36.36
TMNet 68.15 79.91 78.77 78.63 84.20 66.65 63.74 78.57 37.14
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4.5. Ablation Study

In this section, to verify the effectiveness of each module proposed in this paper, we
conducted ablation experiments on WHDLD with the CNN blocks and decoder as the
baseline, and the results are shown in Table 4. SW stands for Swin Transformer.

Table 4. Results of ablation experiments on WHDLD (%).

Method MIOU MF1 MPA

Baseline 58.20 71.43 69.95
Baseline + MFM 59.38 72.36 71.17

Baseline + MFM + SW 60.41 73.42 72.08
Baseline + MFM + SW + FEM 60.78 73.71 72.59
Baseline + MFM + SW + CEM 60.89 73.82 72.34

Baseline + MFM + SW + FEM + CEM 61.23 74.14 72.57

4.5.1. Effect of SW and MFM

Table 4’s first three rows demonstrate that the addition of MFM improves MIOU by
1.18%, which is primarily due to the fact that MFM combines low-level spatial features of
images at different scales into high-level semantic features, which enhances multi-scale
feature information and increases the network’s ability to detect minute features. The
MIOU improves by 1.03% when SW is added, which is primarily due to the powerful
global modeling capability of SW and the enhanced global context acquisition capability
of the network using the dual branch structure. Figure 8 shows the results, from which
it can be seen that after adding MFM and SW again, the segmentation effect capability is
significantly improved, especially for small, detailed features of the image. For example,
the accuracy improvement of the Road category detection results in the first and second
rows of Figure 8 is more obvious.
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4.5.2. Effect of FEM and CEM

We refer to baseline + GD + SW as baseline_1. As shown in the last four rows of
Table 4, the MIOU improves by 0.37% when FEM is added, which is due to the fact that
FEM combines the input data with learnable parameters to further enhance the feature
extraction capability. When CEM is added, the MIOU is improved by 0.48% due to the
enhanced window-to-window modeling capability of CEM by focusing on the relationship
between channels. When both modules are added, MIOU is improved by 0.82%, which
shows the effect of FEM and CEM on network performance enhancement. Figure 9 shows
the segmentation results. From the first row, we can see that the building category is more
clearly segmented after adding the two modules, and the confusion between the Road and
Pavement categories in the second row has been greatly improved.
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5. Conclusions

In this paper, a two-branch multi-scale semantic segmentation network named TMNet
for remote sensing images is proposed. It adopts the encoder–decoder structure, enhances
the global contextual interaction of the network with the dual-branch structure of the Swin
Transformer to make up for the lack of global modeling capability of CNN, and the MFM is
proposed to improve the fusion of features at different scales. In addition, FEM and CEM
aim to enhance the feature capture capability of the network through feature information
relationship calculation. However, the TMNet prediction contours still cannot be fully
fitted with the actual results. We will explore new methods to improve, and also work on
network simplification to improve computational efficiency.
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