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Abstract: Emotional perception and expression are very important for building intelligent conver-
sational systems that are human-like and attractive. Although deep neural approaches have made
great progress in the field of conversation generation, there is still a lot of room for research on how
to guide systems in generating responses with appropriate emotions. Meanwhile, the problem of
systems’ tendency to generate high-frequency universal responses remains largely unsolved. To
solve this problem, we propose a method to generate diverse emotional responses through selec-
tive perturbation. Our model includes a selective word perturbation module and a global emotion
control module. The former is used to introduce disturbance factors into the generated responses
and enhance their expression diversity. The latter maintains the coherence of the response by limit-
ing the emotional distribution of the response and preventing excessive deviation of emotion and
meaning. Experiments are designed on two datasets, and corresponding results show that our model
outperforms existing baselines in terms of emotional expression and response diversity.

Keywords: dialog systems; emotional response generation; diversity enhancement; latent variables;
conditional variational autoencoder

1. Introduction

Building dialogue systems with the ability to communicate naturally with people is a
fundamental task of building intelligent agents. Emotional expression is a key characteristic
of a human-like dialogue system. Enabling dialogue systems to understand and express
emotions has multiple benefits [1,2]:

• More natural communication: Emotions are an important part of human communica-
tion. When dialogue systems can understand and express emotions, they can more
accurately capture and respond to users’ emotional expressions, making conversations
more natural and human.

• Emotion recognition: By understanding the user’s emotions, the dialogue system
can better understand the user’s intentions and needs. Emotion recognition helps
to parse user input more precisely and provide responses and support based on
emotional information.

• Emotional support: The dialogue system can express emotions and provide users
with emotional support and emotional management. When users need reassurance,
encouragement, or understanding, the emotional expression of dialogue systems can
provide a positive impact and emotional connection.

• Improvement of user experience: Emotion plays an important role in user experience.
When the dialog system is able to recognize and respond to the user’s emotions, the
user feels understood and cared for, which helps to build a better user experience and
enhance user satisfaction with the dialog system.

• Emotion research and application: The ability of dialogue systems to understand and
express emotions also contributes to the field of emotion research and application.
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For example, in research on affective computing, affective analysis, and affective
intelligence, dialogue systems can provide an experimental platform and tool.

Early approaches relied on artificially designed rules to generate an emotional response
from the system, but these methods had significant shortcomings in terms of cost and flexi-
bility. Deep neural networks have greatly advanced due to their development and recent
research has achieved promising results in this area [3–6]. On one hand, these advance-
ments have benefited from the successful application of general models such as seq2seq,
CVAE, and transformers in the task of generating dialogue responses. This has significantly
enhanced the performance of the models. On the other hand, the increasing focus on affec-
tive computing within the academic community has led to the development of affective
dialogue datasets such as Emotional Chatting Machines [3] and Empathetic Dialogues [7].
These datasets provide valuable data support for model training and learning.

Another important capability that a dialogue system should possess is the ability to
generate diverse responses. However, one problem with neural training approaches is that
the resulting models tend to generate high-frequency responses, often providing meaning-
less statements such as “I don’t know”. This problem arises because of the MLE training
target, leading to an overconfident probability estimate for high-frequency tokens [8],
which results in a decrease in diversity [9,10]. As dialogue is a one-to-many mapping,
multiple responses are appropriate for the same input. Therefore, the ideal training target
should be a soft target that assigns probability weights to multiple valid candidates [11].
However, studies have shown that the distribution of real text fluctuates significantly in
the confusion degree of each target, and it is hard to achieve soft targets [12].

To tackle the problems mentioned above, we propose introducing perturbations to the
decoding process of the system, which can reduce the generation of high-frequency words
to some extent. In order to maintain emotional balance, we use the response’s emotion
label to regulate the impact of perturbations on the system’s output. This ensures that
the generated response maintains emotional consistency, preventing large deviations that
could disrupt the overall emotional context.

To achieve this, we propose a CVAE-based model architecture. During training, the
encoder processes both the input and response and leverages the recognition network to
capture the potential variable z, which guides response generation and emotion recognition.
To introduce perturbations, we incorporate a perturbation word selector to predict the type
of each decoded word yt and determine whether to include a disturbance factor r. The
global emotion label constraint, which utilizes an emotion classifier to identify the emotion
of the hidden state st during decoding, determines the value of the disturbance factor r.
This ensures the generated response’s emotional consistency with the real response. To
better learn the characteristics of the real response, we utilize KL divergence to close the
gap between the prior network and the recognition network.

This paper’s contributions can be summarized as follows:

• A selective disturbance module is proposed that uses a disturbance word selector to
perturb a portion of the response words based on learned potential variables, thereby
improving response diversity.

• We introduce a global emotion label constraint to control the impact of perturba-
tions during decoding, ensuring that the model improves response diversity while
maintaining emotional expression.

• Our model’s ability to generate more diverse emotional responses compared to the
baseline is demonstrated through extensive experiments on two standard datasets.

2. Related Works
2.1. Emotional Response Generation

In recent years, emotional dialogue generation methods have attracted significant
interest. For instance, Zhou et al. proposed the emotional chat machine (ECM), which
leverages external emotional vocabulary and internal emotional state memory to enable
the system to generate responses of specific emotional categories [3]. Huang et al. utilized
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a special word that represents a specific emotion in a dictionary as an emotion marker at
the encoder or decoder side. This pushes the decoder to generate responses with target
emotions [13]. Song et al. proposed an emotion dialogue system (EmoDS) that leverages
utterance-level classifiers and extra emotion vocabulary for generation [6]. Colombo et al.
use a continuous representation of emotion to produce an emotional response in a controlled
manner [14].

Using an emotion dictionary poses a challenge as the inclusion of fixed emotion words
can result in a lack of consistency and diversity in the generated responses’ content. To
address this issue, a CVAE-based emotion regularization method called Emo-CVAE has
been developed to enhance the emotional expression of responses [15]. This approach
greatly enhances the accuracy of predicting response emotions and also promotes diversity.
However, Emo-CVAE only incorporates the emotion label as an additional input condi-
tion and does not explore the interplay between emotion and the content generated in
responses.

Moreover, Rashkin et al. introduced the Empathetic Dialogues dataset, which was the
first dialogue dataset focused on empathy [7]. It categorized dialogues into 32 emotional
categories. In a similar vein, Lin et al. developed a specialized decoder that can generate
responses tailored to the emotions expressed by the interlocutor [16]. Majumder et al.
explored the concept of emotional imitation [17] and developed a generation model
that relies on similar examples [18]. Subsequently, classical models emerged, such as
the EmpTranfo model based on the GPT framework, which incorporates an empathy
prediction task [19], and the CoMAE model, which employs a hierarchical approach to
model empathy factors [20]. Nevertheless, these models have yet to achieve the ability
to generate dialogue responses that authentically and accurately express emotions as hu-
mans do. In addition to empathic conversation generation, there are also studies from
the perspective of emotion regulation that combine emotion and conversation intention
to generate responses [21] together. The previous studies mentioned primarily emphasize
enhancing the emotional representation of the model, but there is a lack of specific research
on the diversity of the generated emotional responses.

2.2. Response Diversity

In Section 1, we mentioned that neural dialogue systems tend to produce high-
frequency but boring responses. How to avoid this problem is a long-term problem
in the research of response generation. Researchers have tried this in different ways. Some
methods detail the training objectives of MLE loss [10,22,23]. Other methods directly de-
sign auxiliary loss terms to impose a certain penalty on the response [24,25]. In addition,
alternatives to MLE are also tested constantly. Li et al. propose a diversity promotion goal
based on maximum mutual information (MMI) [26]. On this basis, Zhang et al. propose to
optimize with the objective of maximizing adversarial information [27]. Some researchers
use constraints on target responses to enhance diversity [28,29]. An adaptive label smooth-
ing method is proposed to adaptively estimate the distribution of targets in the processing
of decode in different contexts [30]. Negative training strategies are also used to improve
the diversity of responses [31]. Although these methods are effective to a certain extent,
they also have some disadvantages. Take MMI as an example. Although it can lead to
greater mutual information, the resulting response is likely to be the same in connotation
as the input, and cannot bring more information. The possible reason is that the model
can easily find a shortcut to achieve the maximum goal of mutual information by simply
copying a portion of the markers in the last speech, rather than learning the conversational
features.

Inspired by some related studies and combined with the idea of adversarial train-
ing [32,33], we apply certain disturbances to the process of response generation to make the
model generate more diversified responses. It should be noted that dialogue models based
on adversarial learning are difficult to train and may suffer from pattern breakdown, which
is not conducive to a diversity of responses. Therefore, we choose to perturb the decoded
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word embedding rather than the decoded hidden state. At the same time, emotional labels
of responses were used to constrain disturbances to ensure that increased diversity did not
lead to decreased ability of emotional expression.

3. Approach
3.1. Formalized Definition

For a given input utterance X = (x1, x2, . . . , xn), we aim to give the appropriate
response Y = (y1, y2, . . . , ym), and the response Y should have the appropriate emotion e,
where n is the number of words in X and m is the length of the response, e ∈ e1, . . . , ek, and
k refers to the number of emotion categories. By connecting all the above inputs, we get the
dialogue context c = [X; e]. Therefore, the target of response generation is

P(Y, z|c) = P(z|c) · P(Y|z, c), (1)

where z is a latent variable for learning the characteristic distribution of the Y. P(z|c) means
the sampling of z from the input, and P(Y|z, c) is the decoding process of generating the
response according to the latent variables and context. It can be expressed as

P(Y|z, c) =
m

∏
t=1

P(yt|y<t, z, c), (2)

where yt is the decoding word at a current time step. y<t means the first t − 1 words
generated by the decoder.

3.2. Model Framework

Our model overview is shown in Figure 1, which is built on the CVAE framework [34].
The encoder codes the input and response respectively and acts as the input of the identifi-
cation network to obtain the latent variable z. The classifier performs emotion recognition
for z. The perturbation word selector predicts the type of generated words yt according
to z and decoder hidden state st and controls the addition of perturbation. At the same
time, emotion recognition is carried out on the decoder-generated response. By making the
response’s emotion fit the real response’s emotion distribution respectively, the disturbance
factor r is dynamically constrained, so that the generated response has similar emotion
to the real response. The perturbation factor is applied to the word embedding of yt−1 to
influence the decoding, so as to achieve the goal of enhancing the diversity of response.

3.3. Basic Encoder-Decoder

Our model is implemented based on the Encoder-Decoder framework, and the basic
Encoder-Decoder is introduced in this section. Here, ht is used to represent the current
hidden state of the encoder and st is used to represent the current hidden state of the
decoder. The corresponding ht−1 and st−1 represent the hidden state of the encoder and
decoder at the previous time, respectively. The Encoder and Decoder can be specific
structures such as RNN, LSTM, transformer, etc., so no specific network structure is used
to refer to them.

For each word xi in input X, we first obtain its embedding representation w(xi) and
send it to the encoder. Then the hidden state ht is calculated by the current input w(xi) and
the previous hidden state ht−1.

ht = Encoder(w(xt), ht−1). (3)

To improve the performance of the decoder, dynamic attention is utilized to allow the
decoder to focus on different content at different time steps prior to decoding

at =
n

∑
i=1

(αt
i hi). (4)

Here, αt
i represents the weight between the decoder’s state st and the encoder’s state hi.
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Based on these above, the decoder’s hidden state st is updated by the previous hidden
state st−1, dynamic attention at−1 and the previous generated word yt−1. The softmax layer
is hired to predict the current generated word yt by the decoder’s hidden state st

st = Decoder(st−1, at−1, w(yt−1)) (5)

yt ∼ P(yt | y<t, st) = so f tmax(Wst). (6)

Here, w(yt−1) represents the embedding of yt−1.
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Figure 1. The total framework. During the training process, the input and real response are encoded
respectively. The latent variable z is sampled by the recognition network, and a classifier is employed
to identify the emotion category of z. In the decoding process, the perturbation word selector jointly
predicts the type of the current generated word according to the hidden state st and z and selectively
applies the perturbation factor r to the decoding according to the type. At each time step of decoding,
the currently generated response emotion is identified, and the disturbance factor r is dynamically
constrained by bridging the gap between the emotion expressed in the generated response and the
actual emotion. The section enclosed by the blue dotted line refers to the selective word disturbance
module. The response encoder is only used for training purposes.
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3.4. Latent Variable Learning

Using the basic framework presented in Section 3.2 as a foundation, we incorporate
two networks in CVAE, name recognition and prior, and conduct sampling of the input and
response during both training and testing. The latent variable z contains rich features and
plays a crucial role in the selection process of disturbance words and emotion classification
of discourse.

We make the assumption that z follows a multivariate Gaussian distribution, with a
diagonal covariance matrix. Specifically, in the process of training to identify the network re-
sponse to real samples, we get a posterior probability distribution of qθ(z|Y, c) ∼ N (µ, σ2 I).
During the test process, the prior network pθ′(z | c) is used to extract the latent variable,
which is involved in the response generation of the decoder. Obviously, the goal of the
system is to make the generated response close to the real response. KL divergence is used
to estimate the difference in probability distribution between the two. Minimizing the KL
divergence between the prior network and the recognition network allows the former to
better fit the latter. Therefore, we take the KL loss term as a part of the total system loss and
write it as L1. The parameterization of the above identification network and prior network
can be achieved by MLP.

[µ, σ2] = MLPrecog(Y, c) (7)

[µ′, σ′2] = MLPprior(c) (8)

L1 = KL(qθ(z | Y, c) ‖ pθ′(z | c)). (9)

3.5. Adversarial Word Selector

Adding perturbations to models to enhance robustness has been practiced in some
studies [32]. However, in the training of dialogue systems, the adversarial learning models
are difficult to train and may have the problem of pattern collapse, so it is more inclined
to generate boring responses. In order to address the issue of lack of diversity in the
generated responses, we proposed a method to reduce the generation of high-frequency
words in the model by introducing perturbations to influence the decoding process. The
main aim of this method is to introduce disturbances to the generation of words during the
decoding process, thus increasing the diversity of the generated responses. We introduce
the emotional category of the response as a regulator. This means that the extent to which
the disturbance affects the system’s output depends on the emotional category of the
response. We use the emotional category as an auxiliary input to the decoder, which
is concatenated with the decoder’s state and used to regulate the perturbation process.
Specifically, we use a simple feedforward neural network to map the emotional category
to a weight vector, which is then used to adjust the magnitude of the disturbance for each
token in the response. This allows us to achieve a balance between diversity and emotional
relevance in the generated responses. We use emotional labels to constrain the process, as
described in Section 3.6.

It is important to note that not all generated words are suitable for perturbation. The
research shows that topic headings play a very important role in dialogue interaction [35],
and the random deviation of topics is not conducive to the continuity of dialogue. Therefore,
our model needs to distinguish whether the current generated words are topic words or
general words, to selectively perturb the decoding process. For the calculation of topic
words, we refer to the PMI [36] method, that is, for any word xi in utterance X and yj in
response Y, there is

PMI(xi, yj) = log
p(xi, yj)

p(xi)p(yj)
= log

p(xi | yj)

p(xi)
. (10)

PMI measures the co-occurrence of words in a corpus and can be used to identify words that
frequently occur together. A higher PMI score indicates a stronger association between two
words, which can be interpreted as them being more likely to be related to the main topic.
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Further, we compute the PMI value between sequence X = (x1, . . . xn) and yi. This
means that each word in X is assessed for relevance to yi, and a higher score can be
interpreted that yi is more likely to be relevant to the topic.

PMI(x1 · · · xn, yj) = log
p(x1 · · · xn | yj)

p(x1 · · · xn)
(11)

≈ log
∏n

i=1 p(xi | yj)

∏n
i=1 p(xi)

=
n

∑
i=1

log
p(xi | yj)

p(xi)
=

n

∑
i=1

PMI(xi, yj). (12)

In the decoding progress, the adversarial word selector combines the current state st
and the hidden variable z to predict the category of the currently generated word. If it is a
topic word, it will not be disturbed; otherwise, it will be disturbed.

P(tp | st, z) = so f tmax(Wo ·MLPadv(st, z)), (13)

where MLPadv is the prediction network for the currently generated word class, Wo is the
corresponding weight matrix, and tp is the marker indicating whether the current word is
the main topic, with values of 1 and 2.

3.6. Selective Adversarial Decoding

On the basis of the framework introduced in Section 3.2, we decode together with
context, latent variables, and the prediction of adversarial word selector

st = Decoder(st−1, w(yt−1), at−1, c, z) (14)

P(yt | y<t, c, z) = P(yt | yt−1, st, c, z)

=
2

∑
i=1

P(tp = i | st, z)P(yt | yt−1, st, c, z, tp = i),
(15)

Here, tp = 1, 2 is the category of words, indicating whether the current generated word is a
topic word, which is used to distinguish whether to add disturbance to the current word.
The category is predicted by the perturbation word selector. When decoding yt, we choose
to add a disturbance to the embedding of yt−1, rather than directly on the hidden state st, to
ensure the independence of the disturbance effects when each response word is generated.

If tp = 1, it means that the current generated word is a keyword, and its generation
probability is

P(yt | yt−1, st, c, z, tp = 1) = so f tmax(W1st). (16)

Otherwise, it means that the current generated word is not a topic word, and a disturbance
is added to yt−1’s embedding.

r = −εg/‖g‖2 (17)

g = ∇xlogp(e | x; θ̂) (18)

w(y′t−1) = w(yt−1) + r, (19)

where r is the perturbation term added to the embedding of yt−1, and g is the gradient
of the emotional consistency loss (the loss is described in Section 3.7), in which e is the
emotion category and θ̂ is the emotional classifier’s parameter set. The perturbation r uses
L2 normalization, which divides the value of each dimension of the gradient by its L2-norm,
in order to preserve the direction of the gradient. The prediction for the current word is
represented by the following formula

st = Decoder(st−1, w(yt−1)
′, at−1, c, z) (20)

P(yt | yt−1, st, c, z, tp = 2) = so f tmax(W2st). (21)

Thus, the loss of the decoding process is
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L2 = −Eqφ(z|Y,c)[ogP(Y | z, c)]

= −Eqφ(z|Y,c)[∑ logP(yt | y<t, z, c)].
(22)

3.7. Emotional Label Constraint

To prevent a significant deviation between the generated and actual response, it is
crucial to control the amount of disturbance during the decoding process. To this end,
we introduce a global emotional label constraint. In the training process, the recognition
network obtains the hidden variable z, which is identified by the emotion classifier, so as to
obtain the emotion distribution qψ(e | z).

qψ(e | z) = so f tmax(WE ·MLPemo(z)), (23)

where MLEemo is an emotion classifier implemented by MLE, which identifies the emotion
category of the real response according to the hidden variable z, and WE is the correspond-
ing weight matrix.

When decoding, the current emotion type distribution pψ′(e | st, z) is obtained by
the emotion classifier under the influence of the hidden state st of the decoder and the
hidden variable z. We expect the response generated by the perturbation decoding to be
emotionally consistent with the real response. To limit the deviation between the generated
response and the real response caused by excessive perturbation during the decoding
process, we use a KL divergence to measure the distance between the two emotional
distributions, and the perturbation signals r are constrained accordingly. The resulting loss
of emotional restraint is

L3 = (pψ′(e | st, z) ‖ qψ(e | z)) (24)

3.8. Loss

The total loss of the model can be expressed as:

L = αL1 + L2 + βL3 (25)

where L2 is the reconstruction loss, L1 is the KL divergence loss, and L3 is the adversarial
loss. α and β are hyperparameters that control the trade-off between the losses.

4. Experiments
4.1. Datasets

We use two datasets for our experiment, DailyDialog [37] and OpenSubtitles2018 [38].
DailyDialog contains ten topics and seven emotions, totaling 13,118 rounds of dialogues.
The average conversation is 7.9 rounds and the utterances are 14.7 tokens on average.
OpenSubtitles2018 is a dialogue dataset from movie subtitles. The data set was filtered into
conversations with sequences of 5–30 words long, each containing at least four utterances.
The filtered data set contained 25,000 utterances.

Since the OpenSubtitles2018 dataset does not contain emotion labels, we need to train
the dialogue emotion recognition model on other datasets to label the OpenSubtitles2018
dataset. IEMOCAP [39] and MELD [40] are two datasets commonly used in conversational
emotion recognition tasks. Among them, IEMOCAP contains 151 dialogues with a total of
7433 utterances. Six types of emotions were labeled, among which non-neutral emotions
accounted for 77%. MELD consists of 1433 dialogues and 13,708 utterances. The utterances
in the dialogue were labeled with seven categories of emotions, of which 53% were non-
neutral. It should be noted that IEMOCAP is played by professional actors, so emotions are
expressed more clearly than in natural dialogue. The advantage of this dataset is its high
quality and the limitation is its small data size. MELD, on the other hand, comes from the TV
series Friends and several movies, and the dialogue is more natural. However, the dialogue
in MELD involves too many plot backgrounds, so it is difficult to identify emotions.
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In order to balance accuracy and generality, we trained several popular dialogue
emotion classification models on two datasets, MELD and IEMOCAP. Since the sentiment
categories of MELD and IEMOCAP are not exactly the same, we filtered the raw data to
retain six sentiment categories shared by the two datasets. We selected the M2FNet [41]
model that achieved the best performance on both datasets to label the OpenSubtitle2018
dataset. The relevant classification results are shown in Table 1. Note that M2FNet is a
multi-modal dialogue emotion recognition model, but since OpenSubtitle2018 only contains
text data, only text modal data are selected in our training and annotation.

Table 1. The performance of the emotion classifiers.

Method MELD IEMOCAP
Acc wF1 Acc wF1

DialogRNN [42] 59.54 57.03 63.40 62.75
DialogGCN [43] 59.46 58.10 65.25 64.18

M2FNet [41] 67.24 66.23 66.29 66.17

4.2. Baselines

We select four related works as baseline models for comparison. They are CVAE [34],
ECM [3], EMODS [6] and Emo-CVAE [15].

CVAE obtains a posteriori distribution of latent variable z in training based on seq2seq
framework and uses prior distribution to fit a posteriori distribution in testing, so as to
minimize reconstruction errors. ECM combines implicit internal emotional state changes
with explicit external emotional vocabulary expressions to generate responses with specific
emotions. EmoDS captures the emotional features of words and sentences to generate
responses. Emo-CVAE introduces a conditional variational autoencoder model of emo-
tion regularization, which is used to regularize the latent spaces of CVAE by adding an
additional emotion recognizer.

In the interest of fairness, we implemented the basic modules of all the above models
with GRUs (Bidirectional GRUs).

4.3. Settings

In the experiment, we used bidirectional GRUs to implement the encoder with a
hidden size of 256, and 512 GRUs to implement the decoder. Pre-trained 300-dimensional
word embedding [44] is employed for initialization. The dimension of latent variable z is
set to 300. We used the ADAM optimizer [45]. The learning rate is 1 × 10−5, the batch size
is set to 128, and the dropout rate is set to 0.2. A beam search with the size of 5 is used
when decoding.

4.4. Automatic Evaluation

We use four automatic metrics, namely emotional accuracy (acc), dist-1, dist-2, and
perplexity (ppl), for response evaluation in terms of emotional expression, diversity, and
content. The accuracy of the emotion expressed by the generated response, or simply
“Acc”, is used to evaluate the consistency of the emotion category between the generated
response and the ground truth response. It measures the percentage of responses that are
correctly classified into the corresponding emotion categories. Dist-1/2 to evaluate the
diversity, representing different single and double words in the generated responses. It is
an evaluation at the n-gram level. Ppl stands for perplexity, which is commonly used to
evaluate language models. It measures how well a model can predict a sequence of words
in a given corpus. A lower perplexity score indicates that the model can predict the next
word more accurately and with less uncertainty, which reflects a better-fitting ability of the
model to natural language. In other words, the generated response content is relevant and
syntactically correct.
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Tables 2 and 3 show the results of the automatic evaluation in DailyDialog and Open-
Subtitles2018, respectively. ↑ represents that the larger the metric is better and ↓ means
the opposite. The best results are shown in bold.

The results of the automatic evaluation showed that our model significantly improved
the accuracy of emotional expression and the diversity of responses compared with the
baseline method. In terms of confusion degree, ECM and EmoDS based on seq2seq gener-
ally performed better than other models based on CVAE. This makes sense because good
diversity usually leads to increased confusion in the model. Compared with EmoCVAE,
our model achieves better results in terms of emotional accuracy and response diversity
and is almost the same in terms of perplexity degree.

Table 2. Results of automatic evaluation metrics on the DailyDialog dataset.

Method Acc ↑ Dist-1 ↑ Dist-2 ↑ Ppl ↓

CVAE [34] 82.53 0.074 0.358 65.79
ECM [3] 93.27 0.017 0.073 62.31

EmoDS [6] 88.06 0.013 0.049 63.68
Emo-CVAE [15] 95.14 0.083 0.407 64.52

Ours 97.33 0.091 0.486 64.72

Table 3. Results of automatic evaluation metrics on the OpenSubtitles2018 dataset.

Method Acc ↑ Dist-1 ↑ Dist-2 ↑ Ppl ↓

CVAE [34] 79.62 0.072 0.403 67.29
ECM [3] 88.51 0.018 0.090 64.41

EmoDS [6] 86.27 0.012 0.037 64.34
Emo-CVAE [15] 90.34 0.096 0.512 66.38

Ours 92.89 0.104 0.656 66.21

In order to further study the performance of our model on emotional expression, the
emotional accuracy of different categories in the DailyDialog dataset is given in Table 4.
The corresponding confusion matrix of emotion classification is shown in Figure 2.

Table 4. Results of emotional accuracy in different categories on the DailyDialog dataset.

Method Natural Anger Disgust Fear Happiness Sadness Surprise Average

CVAE [34] 96.29 49.27 74.19 83.85 90.16 81.79 85.33 82.53
ECM [3] 97.13 77.50 83.22 93.92 97.62 94.12 93.27

EmoDS [6] 95.92 62.31 65.98 92.03 97.27 90.08 95.87 88.06
Emo-CVAE [15] 97.35 91.06 95.21 93.99 96.90 95.28 96.13 95.14

Ours 98.12 92.34 94.57 95.24 97.57 96.74 97.93 97.33

The results demonstrate that our model outperforms the baselines not only in terms
of average performance but also in recognizing most emotion categories. This indicates
that the global emotional label constraint proposed in our method has a positive effect
on generating emotional responses. Notably, our model also achieves good performance
for emotions that are difficult to identify by baseline models such as CVAE and ECM,
such as anger and frustration. This can partially explain why our model is better at
expressing emotions. Accurately identifying the emotion of the actual response is essential
for accurately expressing the corresponding emotion.

As can be seen from Figure 2, our model tends to produce a relatively neutral response
in more cases when the generated response emotion category is wrong (that is, inconsistent
with the true response). In addition, our model is better at generating neutral, happy,
and surprised responses than negative emotions such as anger and disgust. Our model
is relatively less likely to generate responses where the emotion category is fear, possibly
because it is the least represented in the original dataset.
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Figure 2. Confusion matrix of emotional classification on DailyDialog dataset.

4.5. Manual Evaluation

In addition to the above automatic evaluation, we also designed a manual evaluation
to further verify the effectiveness of the proposed method. We used a pairwise comparison
method to compare each of the four baselines.

The manual evaluation was conducted on the DailyDialog dataset, following the
methodology of [15], which involves non-uniform random sampling to obtain samples
based on the distribution of whether the emotion categories of responses generated by the
baseline model are correct compared to ours. The evaluation uses the following notation:
TT represents the responses with correct emotion categories generated by both our model
and the baseline model, TF represents samples where the responses generated by our model
have the correct emotional expression, but the baseline model does not, and FT and FF
have similar meanings. The distribution of response samples is shown in Table 5.

Table 5. The distribution of response samples generated by baselines. The numbers in the table
are percentages.

Method TT TF FT FF

CVAE [34] 80.69 16.22 2.39 0.70
ECM [3] 93.15 4.37 1.93 0.55

EmoDS [6] 85.43 16.86 1.89 0.82
Emo-CVAE [15] 94.72 3.81 1.26 0.21

For each case included in Table 5, 30 samples were randomly selected. We asked three
evaluators to select responses that were better in terms of accuracy of emotional expression
and variety of content. We allow ties to happen.

The results of the manual evaluation are shown in Tables 6 and 7. By combining the
results from the perspectives of sensibility and diversity, it can be seen that our model can
generate more appropriate emotions under the three conditions of TT, TF and FF. Especially
when our model correctly identifies the emotion of the response, the response produced by
the decoder not only expresses the emotion better than the baseline models but also has
certain advantages in terms of diversity.

It is also observed that when our model did not correctly identify emotion categories
and when the baseline model correctly identified emotion in the case of FT, there was
a significant decline in the dominance of the generated responses in terms of emotional
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expression. However, combined with the sample distribution in Table 5, the probability
of this happening is very small, so it will not cancel out the advantages of our model in
most cases.

Table 6. The performance of manual evaluation in terms of emotional expression (p < 0.05).

Win Lose Tie

vs. CVAE [34]

TT 31.2 11.7 57.1
TF 64.3 4.5 31.2
FT 13.7 42.6 43.7
FF 35.9 8.4 55.7

vs. ECM [3]

TT 29.6 22.5 47.9
TF 79.4 2.7 17.9
FT 12.2 54.3 33.5
FF 31.3 14.5 54.2

vs. EmoDS [6]

TT 33.8 19.6 46.6
TF 72.5 2.9 24.6
FT 9.4 48.7 41.9
FF 30.6 12.3 57.1

vs. EmoCVAE [15]

TT 24.9 19.3 55.8
TF 58.2 6.1 35.7
FT 9.1 43.4 47.5
FF 29.4 17.3 53.3

Table 7. The performance of manual evaluation in terms of diversity (p < 0.05).

Win Lose Tie

vs. CVAE [34]

TT 35.8 21.5 42.7
TF 51.0 22.8 27.2
FT 35.4 26.7 37.8
FF 37.2 16.9 45.9

vs. ECM [3]

TT 52.3 17.6 35.1
TF 43.9 28.5 27.6
FT 33.2 41.5 25.3
FF 26.6 32.7 40.7

vs. EmoDS [6]

TT 45.6 19.2 35.2
TF 61.3 11.5 27.2
FT 52.9 31.7 15.4
FF 31.7 40.5 27.8

vs. EmoCVAE [15]

TT 39.8 25.4 34.8
TF 47.6 12.3 40.1
FT 49.5 25.3 25.2
FF 33.3 26.7 40.0
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4.6. Ablation Study

An ablation experiment was conducted on the DailyDialog dataset to verify the effec-
tiveness of the proposed selective word perturbation module and global emotion control
module. Two submodels were designed, one without selective adversarial (w/o SA), which
does not add disturbance to the decoding process and only uses global emotion constraint
to fit the emotion distribution of the generated and real responses. The other model adds
fixed disturbances to non-subject words without using global emotion constraints and is
denoted as w/o EC (without emotion constraint) only according to the perturbation word
selector’s prediction. The DailyDialog dataset was used for the ablation study, and the
experimental results were shown in Table 8.

Table 8. Results of ablation studies on the DailyDialog dataset.

Method Acc ↑ Dist-1 ↑ Dist-2 ↑ Ppl ↓

Ours 97.33 0.091 0.486 64.72
w/o SA 97.82 0.018 0.092 64.25
w/o EC 83.90 0.121 0.706 60.43

The results of the ablation study demonstrate that when the model’s decoding process
is not disturbed, its emotional expression ability remains largely unaffected. However,
the diversity of the generated responses decreases significantly, and the performance is
similar to that of the ECM baseline model. On the other hand, when the perturbation is
not constrained, the diversity of the generated responses increases significantly, but the
emotional expression ability and quality of the generated responses decrease significantly.
This suggests that unconstrained perturbation is insufficient for generating high-quality
responses. The selective perturbation and global emotional constraint modules proposed
by our model are validated through the ablation study, showing their effectiveness in
improving the diversity and emotional expression of the generated responses.

5. Conclusions

In this study, we propose a selective perturbation of emotional response generation
to generate content-rich responses with appropriate emotional categories. The model is
based on CVAE, and perturbation training is used to improve the diversity of response.
In order to ensure that the dialogue topic does not have a large shift in the perturbation,
we use the selective jamming module to predict the type of the current generated word
according to the state and potential variables of the current decoder, so as to selectively
apply interference to its decoding process. The global emotion constraint module uses
the emotion distribution difference between the real response and the currently generated
response to constrain the decoding interference, so as to ensure that the generated response
is emotionally appropriate. Through the synergistic effect of the above two modules, the
method proposed in this paper has achieved good results in the aspects of emotional
expression and response diversity. Experiments on two standard datasets validate that our
model outperforms baselines in generating more diverse responses with accurate emotions.

One potential direction could be to explore how this method could be adapted for use
with pre-trained models, such as GPT-3 or BERT. Additionally, further research could be
conducted to research the availability of this approach on other language generation goals
beyond emotional response generation, such as machine translation or text summarization.
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