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Abstract: The template matching technique is one of the most applied methods to find patterns
in images, in which a reduced-size image, called a target, is searched within another image that
represents the overall environment. In this work, template matching is used via a co-design system.
A hardware coprocessor is designed for the computationally demanding step of template matching,
which is the calculation of the normalized cross-correlation coefficient. This computation allows
invariance in the global brightness changes in the images, but it is computationally more expensive
when using images of larger dimensions, or even sets of images. Furthermore, we investigate the
performance of six different swarm intelligence techniques aiming to accelerate the target search
process. To evaluate the proposed design, the processing time, the number of iterations, and the
success rate were compared. The results show that it is possible to obtain approaches capable of
processing video images at 30 frames per second with an acceptable average success rate for detecting
the tracked target. The search strategies based on PSO, ABC, FFA, and CS are able to meet the
processing time of 30 frame/s, yielding average accuracy rates above 80% for the pipelined co-design
implementation. However, FWA, EHO, and BFOA could not achieve the required timing restriction,
and they achieved an acceptance rate around 60%. Among all the investigated search strategies, the
PSO provides the best performance, yielding an average processing time of 16.22 ms coupled with a
95% success rate.

Keywords: object tracking; template matching; swarm intelligence; image cross-correlation

1. Introduction

Object tracking in videos has myriad range of applications across various domains.
It is exploited in (i) surveillance and security, which helps detect suspicious activities,
identify intruders, and provide evidence for investigations; (ii) autonomous vehicles, which
helps make informed decisions for navigation, collision avoidance, and path planning [1];
(iii) augmented reality, which utilizes object tracking to overlay virtual objects or informa-
tion onto the real-world environment [2,3]; (iv) human–computer interaction, in which
object tracking enables gesture recognition, hand tracking, and body tracking; (v) robotics,
where object tracking is used to perceive and interact with surrounding objects; (iv) and
face detection, which involves identifying and locating human faces in images or videos. It
is used in facial recognition, emotion analysis, biometrics, and video surveillance [4].

Sensors 2023, 23, 5881. https://doi.org/10.3390/s23135881 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135881
https://doi.org/10.3390/s23135881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1656-6397
https://orcid.org/0000-0002-4680-2047
https://orcid.org/0000-0002-9360-3083
https://doi.org/10.3390/s23135881
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135881?type=check_update&version=1


Sensors 2023, 23, 5881 2 of 35

Image processing is an important tool to assist in decision making. The continuous
monitoring of any environment, such as public areas and industrial parks, helps define
better action strategies and decide the right moment to act, reducing risks and enhancing
opportunities. The quality of the information resulting from image processing must be
good enough to avoid errors in scenario evaluation during the planning of future actions
and the definition of goals to be achieved. The time to obtain this information and process
it is also at the basis for the success of any related action. In general, a slow search process
always ends up delaying decision making, so that the information obtained may become
obsolete or insufficient at the time of decision making. For instance, observing the airspace
makes it possible to recognize the presence of aircraft and assess whether there are possible
collision routes. Likewise, just as an airplane pilot observes the environment to plan a flight,
a self-guided mobile artifact uses the images of the environment [5]. In a fire situation,
the rapid pinpointing of the focus facilitates the activation of firefighting and rescues,
reducing any negative impact [6]. In a shopping center, observing customer behavior can
provide information regarding whether they are about to make purchases [7].

Image and video processing has provided advances in several important areas of
research. The emergence of new sensors and new equipment capable of capturing, storing,
editing, and transmitting images has accelerated the decision-making process, allowing the
definition of strategies with lower risk and a higher success rate. The time to obtain true
information and process it is directly responsible for the success of the action. Artificial
intelligence can help speed up the execution of procedures, as a slow search process can
delay decision making so that information may become obsolete or insufficient [8].

Image tracing is the process that involves searching, identifying, and tracking a
previously chosen visual element in larger images [9]. The identification and estimation
of the target’s position in successive images allows tracking its trajectory in the frames of
a video as it moves through the environment. The first image in the sequence of frames
requires a greater effort to locate, as there is not necessarily a tendency for the target to
be positioned. For the following images, the location in the previous frame suggests the
initial search position, in case the target remains stationary or the image acquisition system
manages to keep it in similar framing throughout the video. This initial search condition
allows restricting the target search within a neighborhood, which saves search time and
tends to increase the chance of success.

A target, to be identified in the midst of a complex image, must have unique char-
acteristics so that it can be distinguished from the background. In [9,10], features are
analyzed for target identification, such as color, edges, and textures. Hence, it is possible
to identify reference elements of the objects of interest or even separate parts of the image
to seek similarity with the target. Object movement while tracking can cause changes in
object appearance, such as variation in size. Therefore, mathematical transformations such
as rotation and scaling must be applied to the target model in an attempt to offer more
possibilities for comparison with the suspected objects. Regardless, the tracking process
can be hampered by object occlusions, noise in the images, changes in ambient lighting,
and deformations caused by complex object movements, making it difficult to verify image
similarity [11]. The loss of information due to the 2D projection from a 3D scene also
complicates the target identification process in images. The adopted model for the target
must have spatial and appearance information. It constitutes the pattern to be located.

Template matching (TM) is one of the most applied methods to find patterns in
images [12]. It basically consists of counting the occurrence of a smaller image, which
represents the target, within another larger image, which represents the environment as
a whole. Among the TM techniques, the verification of the normalized cross-correlation
coefficient (NCC) is widely used due to its properties of invariance to global brightness
changes in images [13]. However, it is computationally more expensive when using large
images and/or a set of images. For this technique, the Pearson correlation coefficient (PCC),
another name by which NCC is known, is computed repeatedly.
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The computational processing of the search requires a complex and is hardware-
resource-hungry. For dedicated hardware, the available physical resources, such as memory,
processing capacity, and required energy, are limited. These limitations are far tighter
when the hardware must deal with large volumes of data, as is the case for template
matching in images. Therefore, it becomes necessary to design search systems that support
the demand, based on the optimization of available resources. One possibility of image
processing with optimized resource allocation, aiming to increase performance, is the use
of a hardware/software co-design implementation, wherein only the computationally
intensive components of the system are implemented in the hardware, while the remaining
ones are implemented in the software.

The use of dedicated hardware helps the system perform the relevant PCC calculations
more quickly. However, the proper selection of which sector of the image will be compared
with the target is essential for fast localization. A sequential search through all pixels of the
larger image could take longer than what is required to obtain the necessary information.
Thus, the use of an optimized search technique should accelerate the location of the target in
the larger image. The combined usage of the dedicated hardware to compute the required
PCCs with and optimized software-based search makes it possible to locate and track
targets in images in videos at 30 frames per second.

Among the various optimized search techniques, those of swarm intelligence are based
on real-world social behaviors, based on interaction and organization of computational
agents of simple resources to perform tasks [14–16]. Agents interact with the environment
and cooperate with each other in an attempt to produce solutions to complex problems,
exploring points in the vicinity of others previously classified as good. A common limitation
of these techniques is the adequate choice in parameters, which directly impacts the
processing time to reach the global optimum, or even the impact on the susceptibility of
converging to local optima, providing false positives and impairing decision making.

This work proposes to implement TM in a co-design system and investigate six dif-
ferent swarm intelligence techniques to accelerate the search process. These techniques
are based on behavior of cuckoo birds, bees, elephants, bacteria, fireflies, and fireworks.
In addition, this study implements the use of a coprocessor. For each technique, the pa-
rameters are configured to process video images at 30 frames per second. To evaluate
the performance of each technique, the average processing time, the average number of
iterations, the average success rate, and their respective standard deviations are considered.

The proposed system can operate according to three different approaches: the first
uses only an FPGA-based general-purpose processor for the search; the second uses a
coprocessor operating in serial mode to compute the required PCCs; the third uses a
coprocessor operating in parallel mode, via a pipeline, to process the images even faster.
Furthermore, each search technique is implemented using the programming environment
of the FPGA-based board Smart Video Development Kit, which is used to prototype the
proposed co-design tracking system, considering the three aforementioned approaches.
Mainly, the contribution of this work consists of an effective, concise, yet efficient real-time
hardware system for object tracking that uses swarm intelligence techniques to assist during
the tracking process. The proposed design can be embedded into any bigger device.

The remainder of this paper is organized into six sections. Initially, in Section 2, we
present the details in the problem of object tracking, wherein emphasis is assigned to TM,
the technique adopted in this work to identify the target. Then, in Section 3, we present
the works related to object tracking in images and videos. After that, in Section 4, we
describe the co-design system to efficiently implement the proposed object tracking solu-
tion, wherein emphasis is assigned to the hardware subsystem architecture. In Section 5,
we present the optimized swarming search techniques implemented in this work. Later,
in Section 6, we describe the methodology adopted during the experiments and present
the results of the implementation of the optimized search strategies used to implement
the software subsystem, including a thorough comparative study regarding the perfor-
mances of the techniques. Finally, in Section 8, we draw pertinent conclusions about which
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search strategy proved to be more suitable for searching and tracking targets in images,
depending on the prescribed performance goals. We also suggest some directions for future
work improvement.

2. Pattern Tracking Problem

A pattern is a collection of objects that are similar to each other, arranged in a way
that is in contradiction of their natural arrangement [17]. It can also be defined as the
opposite of chaos, an entity, loosely defined, which one can assign a specific name [18].
For pattern tracking, tracked objects are usually called patterns [19]. Objects can be defined
as something of interest for future analysis. For example, in images, tracking boats at sea,
vehicles on the road, aircraft in the air, and people walking on the street can be considered
monitoring for a certain purpose and thus tracking [20].

Pattern recognition is one of the most important and active branches of artificial intelli-
gence. It is the science that tries to make machines as smart as human beings in recognizing
patterns, among the desired categories, in a simple and reliable way [21,22]. It is also
defined as the study of how machines can observe the environment, distinguish various
patterns of interest, and make rational decisions. Pattern recognition provides solutions to
problems in the most diverse areas such as image analysis, industrial automation, computer
vision, biometric identification, remote sensing, voice recognition, face recognition, surveil-
lance, and defense, among many others. Recognizing patterns in images and tracking
their positions in videos has been the subject of several studies and has stood out for being
a demanding area of image processing and computer vision [23,24]. In this section, we
introduce the basic concepts associated with tracking patterns in images.

2.1. Pattern Detection

Any tracking method requires a mechanism that can identify the object the first
time it appears in the video and also in each frame. The most common approaches used
for this purpose are based on segmentation, background modeling, point detection, and
supervised learning.

Segmentation partitions the image into similar regions to obtain the object of interest.
Segmentation algorithms have to balance criteria for good and efficient partitioning. Some
examples of algorithms used for segmentation include graph-cut [25] and active contours [26].
Background modeling builds a representation of the scene and performs object detection
based on the deviations observed in each frame [20]. Scene objects are classified by forming
a boundary between the background and the foreground. The foreground contains all
objects of interest. Some examples of algorithms used for background modeling include
background subtraction and frame differencing, mixture of Gaussian functions [27], eigenback-
ground [28] and optical flow [29].

Point detectors are used to find points of interest in images. These points are called
features and are highlighted by their distinguishing characteristics in terms of color, texture,
geometry, and/or intensity in gradient variation. Object detection is performed by com-
paring these points. An interesting feature of this approach is its invariance to changes in
light and camera position [20]. Some examples of algorithms based on features include Scale
Invariant Feature Transform (SIFT) [30], invariant point detector [31], and Speeded-Up Robust
Features (SURF) [32]. Supervised learning can also be used for object detection. In this
case, the task is performed by learning the different points of view of the object, from a set
of samples and a supervised learning mechanism. This method usually requires a large
collection of samples regarding each class of objects. In addition, the samples must be man-
ually labeled, a time-consuming and tedious task [9]. The selection of the characteristics of
the objects in order to differentiate the classes is also an extremely important task for the
effectiveness of the method. After learning, the classes are separated, as best as possible
by hyper-surfaces in the feature space. Some methodologies using this approach include
neural networks [33], adaptive boosting [34], and decision tree [35].
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It is noteworthy to point out that object detection and tracking are very close and
related processes because tracking normally starts with object detection, while repeated
object detection in subsequent frames is required to help perform tracking [23].

In order to track an object and analyze its behavior, it is essential to classify it cor-
rectly. The classification is directly linked to the characteristics of the object and how it
is represented. Approaches to classification are often based on the object’s shape [36],
movement [29,37], color [23], and texture [38,39].

2.2. Tracking Techniques

Tracking can be defined as a problem of approximating the trajectory of an object in a
given scene. The main purpose is to find the trajectory of this object by finding its position
in each video frame [37]. Basically, tracking techniques can be divided into the following
categories: point-based tracking, kernel-based tracking, and silhouette-based tracking.
Figure 1 illustrates the three categories for camera tracking in the known “Cameraman”
image. The tasks of detecting the object and matching those of the previous and subsequent
frames can be performed together or separately [9].

(a) Points (b) Kernel (c) Silhouette

Figure 1. Illustration of existing tracking techniques.

2.2.1. Point-Based Tracking

For point-based tracking, the objects are represented by dots and the position of
the dots in the frame sequence allows the tracking to occur. This approach requires a
mechanism to detect the objects in each frame. The Kalman filter, which is a recursive
algorithm that provides a computationally efficient means of estimating the system state,
is usually used to estimate the position of objects, based on the dynamics of movement
along the video. A limitation of the Kalman filter is the assumption that the variables are
normally distributed. Thus, when the state variables do not follow a Gaussian distribution,
the estimate does not produce good [9] results. This limitation can be overcome with
the particle filter, which uses a more flexible state space model. Multiple Hypothesis
Tracking (MHT) is another method which is generally used to solve multiple target tracking
problems. It is an iterative algorithm based on predefined assumptions about the object
trajectories. Each hypothesis is a set of disconnected trajectories. For each hypothesis,
the estimate of the target in the next frame is obtained. This estimate is then compared
to the current measurement using a distance measurement. This algorithm can deal with
occlusions and has the ability to create new trajectories for objects that enter the scene
and finalize those related to objects that disappear from the scene.

2.2.2. Kernel-Based Tracking

In pattern tracking, a kernel refers to an object with a notable region related to its shape
and appearance. It can be a rectangular area or an elliptical shape. Objects are tracked
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by the location after their movements, starting from the embryonic region represented
by the kernel, from one frame to the next. These movements are usually represented by
affine transformations such as translation, rotation, and scaling. Some of the difficulties
of this approach are that kernel does not cover the entire procured object and it includes
background contents. The latter is usually mitigated by the layering-based technique,
which models the image as a set of layers. One layer is associated with the background
and the others are associated with each object in the image. The probability of each pixel
belonging to a layer (object) considers the shape characteristics and previous movements
of the object. This method is generally useful to track multiple objects.

Template matching, also known as model matching, is a brute force method that
looks for regions of the image that are similar to a reference image that represents the
procured object, called the template. The position of the template in the image is computed
from similarity measures, such as sum of absolute differences, sum of squared differences,
cross-correlation, and normalized cross-correlation, among others. This method is capable
of handling single-image tracking and background changes. A limitation of template
matching is the high computational cost associated with brute force. Many researchers,
in order to reduce this cost, limit the search area to the neighborhood of the object in the
previous frame [9]. We explore this method in this work; it will be further detailed in
Section 2.3.

2.2.3. Silhouette-Based Tracking

Objects can have complex shapes that cannot be well described with simple geometric
shapes [9]. Silhouette-based tracking methods aim to identify the precise shapes of objects
in each frame. This approach can be divided into two categories, depending on how the
object is tracked: by contours or by shapes. (i) Contour matching approaches evolve the
initial contour of the object to its new position. It is necessary that part of the object in
the previous frame overlaps with the object in the next one. There are many algorithms
that extract object contours, such as the one called active contours (or snakes), based on the
deformation of the initial contour at determined points [40]. The deformation is directed
towards the edges of the object by minimizing the snake energy, pushing it towards lines
and edges. (ii) Shape matching approaches are very similar to template matching. The main
difference is that the model represents the exact shape of the object. An example of this
type of method is presented in [41]. The algorithm uses the Hausdorff distance to find the
location of the object.

2.3. Template Matching

Template matching (TM) is widely used in image processing to determine the similarity
between two entities of the same type (pixels, curves, or shapes). The pattern to be
recognized is compared with a previously stored model, taking into account all possible
positions. The task basically boils down to finding occurrences of a small image, considered
the template, in a sequence of larger images of the frames. Figure 2 shows two matrices
representing two black and white images. The image in Figure 2b represents the template
to be found in the image of Figure 2a. In integer-byte representations for black and white
images, the larger the value of a pixel, the closer to white it is, and the smaller the value of
the pixel, the closer to black it is.
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(a) Main image (b) Template

Figure 2. Byte matrices representing the frame and template images in black and white.

The search in the frame is conducted by comparing the template, in each pixel,
with pieces of image of the same size. The template slides, pixel by pixel, on the main image
until all positions are visited. At each position, a similarity measure is computed and used
to compare the images. After calculating all similarity measures, the one with the highest
value, above a pre-established threshold, is considered to be the location of the sought
template within the frame [42]. This operation is very costly when considering large models
and extensive sets of frames [21]. The advantage of template matching is that the template
stores several particular characteristics of the object (color, texture, shape, edges, centroid,
etc.) which differentiate it from others, allowing greater accuracy and tracking of a specific
object within a group of similar ones. Furthermore, object detection is not compromised by
choosing how to classify or represent it. The disadvantage is the high computational cost
required for the computation of the similarity measure at all image pixels.

To evaluate the degree of similarity of the template along the frame, a range of tech-
niques are used. These include the sum of absolute differences (SAD), sum of squared (SSD),
and cross-correlation (CCO). For a given patch, i.e., original image patch A of the same
size as the procured template, these indices are computed as shown in Equations (1), (2),
and (3), respectively:

SAD =
N

∑
i=1
|(pi − ai)|; (1)

SSD =
N

∑
i=1

(pi − ai)
2; (2)

CCO =
N

∑
i=1

piai, (3)

where N is the overall number of pixels in the template and patch, pi is the intensity of
pixel i in the template image, and ai is the intensity of pixel i in patch A.

Note that in the case of the similarity metrics SAD and SSD, the closer to zero the index
is, the more similar the compared images are. However, CCO is sensitive to changes in the
amplitude of images’ pixels [43]. To overcome this drawback, normalized cross-correlation
(NCC) is used. It is noteworthy to point out that, in this work, we use NCC, which we
explain in detail hereafter.

The term correlation is widely used in common language to mean some kind of
relationship between two things or facts. In the field of signal processing, cross-correlation
is obtained by the convolution of one signal by its conjugate. In this work, the term
correlation has a more restricted meaning and refers to the similarity measure associated
with the normalized cross-correlation between two images. This metric is an improved
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version of simple cross-correlation CCO. It features a normalizing value in the denominator
that provides it invariance to global changes in brightness and results always within
the range [−1, 1]. The normalized cross-correlation, also known as Pearson’s correlation
coefficient (PCC) [44], is defined in Equation (4):

PCC =

N
∑

i=1
(pi − p)(ai − a)√

N
∑

i=1
(pi − p)2

√
N
∑

i=1
(ai − a)2

, (4)

where pi is pixel intensity i in the template image; p is the average pixel intensity of the
template image; ai is the intensity of pixel i in patch A; and a is the average intensity of the
pixels in patch A. The template and patch A must be the same size, and the overall number
of pixels is N.

The PCC can be understood as a dimensionless index with values between −1 and
+1, inclusive, which reflects the intensity of the degree of the relationship between the two
compared images. A coefficient equal to 1 means a perfect positive correlation between the
two images. A coefficient equal to −1 means a perfect negative correlation between the
two images. A coefficient equal to 0 means that the two images do not linearly depend on
each other.

The ideal use of the normalized cross-correlation, presented in Equation (4), considers
that the appearance of the target remains the same throughout the video [45]. It is note-
worthy to mention that any change in target scale or rotation can influence metric values.
Additionally, the change in lighting conditions and/or noise, also known as clutter, that is
inserted into the environment can cause errors. A possible solution to this problem is to
update the template at every frame, allowing adaptive correlation.

3. Related Works

In [13], different TM methodologies were analyzed for their performance regarding
variations in illumination, contrast, and position of observation of the target in an image.
Some works analyzed sought to increase robustness in relation to the ability to maintain
efficiency in the presence of these variations. Area-based and feature-based methods have
also been described. A matched filter system was proposed to increase the signal-to-noise
ratio to facilitate target identification [46]. In contrast with the present work, there was no
application of a noise-removal filter, but this could improve the ability to detect targets
in the sequence of frames of a video. In [12], evaluation methods for TM were presented
based on CCO and PCC. TM was used to classify objects, aiming to find a small image
(template) within a larger one or to identify similar images. In contrast, TM and PCC
were employed in this work to find the target in each frame. In [47], a TM application of
real-time tracking was proposed. Therein, a fast and compressed tracking methodology
was presented, in which a minimal computational cost was employed, combined with a
high frame rate per second in the video. TM normalized cross-correlation was incorporated
to increase the robustness of the system due to the need to work with real-time processing.
Bayesian classifiers, correlation filters, similarity measures, and particle filtering were used
to determine the most likely location of the target in the frames.

In [48], a combination of the Cuckoo Search technique with a particle filter [9,49] was
applied to solve the tracking problem. The search technique introduced some randomness
in the process. Another important contribution of the work was a new way to address
scaling and rotation errors during tracking. Similarly, in [50], an implementation of the CS
combined with the Kalman filter was proposed and applied to tracking. An implementation
of TM with PCC was presented in [51] using the PSO, exhaustive search, and GA techniques.
The TM technique was used to look for the similarity between a template and the image
patches based on PCC. The results quantified PSO’s performance up to 131 times better
with the exhaustive search.
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An autonomous navigation system based on identifying landmarks in images using a
Kalman filter was proposed in [52]. This system utilizes recognition and tracking processes
for decision making, where the distances to the references are estimated, as well as the
angles between the vehicle trajectory and a fixed reference platform. In [53], a particle filter
implementation in FPGA was presented for the identification of objects in environments
that are nonlinear and non-Gaussian. A parallel pipelined implementation was proposed
used to improve the system’s computational efficiency.

In [54], an implementation on the Xilinx Zynq-7000 FPGA platform, dual-core ARM
processor, and NEON vector coprocessor was tailored for the detection and tracking
of moving objects. The system’s algorithm is based on the dynamic differences in the
image background. In [7], a solution to the tracking problem is proposed through a hard-
ware/software co-design system using FPGA and applying a particle filter. The objective
was to monitor the movement of customers inside stores. The work focused on images that
are susceptible to variation in template lighting and occlusion.

There are many works studying object detection and tracking based on machine learn-
ing. For the sake of generality, we comment on some of the recent literature on the subject.
Therein, optimization techniques may be exploited in the process. However, it is noteworthy
to point out that these works are not concerned with the hardware implementation of the
tracking methodology. In [1], a learning strategy based on two swarm-intelligence-based
techniques, namely, PSO and BFOA, was proposed. It aimed to optimize the parameters
of the classifier and loss function of a Region Proposal Network, which was specifically
designed for object detection to improve feature-sampling ability. The tuned network was
used in an autonomous driving application. In [55], the authors propose an algorithm for
vehicle detection and classification to overcome the problems regarding complex scenes
with backgrounds and objects of reduced size in large scenes. The algorithm is based on a
convolutional neural network to classify the detected vehicle into two classes: light and
heavy vehicles. In [56], a tracking system, where the tracked object is indicated interactively,
was designed. It involves a tracking process that combines a contour detection network
and a fully convolutional Siamese tracking network. The authors showed that the system
can be used in real-time tracking.

In [57], an efficient and accurate vehicle detection algorithm in aerial infrared images
was proposed via an improved YOLOv3 network. To increase the detection efficiency,
the anchor boxes were increased 4× to improve the detection accuracy of the small vehi-
cles. In [58], addressing the shortcomings of the current YOLOv3 model, such as large
size, slow response speed, and difficulty in deploying to real devices, a new lightweight
target detection network called YOLOv3-promote was proposed. The experimental results
show that the inference speed of the proposed methodology is about 5 times that of the
original model.

4. Proposed Co-Design System

The macro-architecture of the proposed integrated system is shown in Figure 3 and
includes a general-purpose processor for executing the PSO step, a coprocessor for cal-
culating the PCC, dedicated memory blocks (BRAM IMG and BRAM TMP) to store the main
image and template, respectively, and access control blocks to these memories (GET IMG
and GET TMP). The components are described using the hardware description language
VHDL (Very-high-speed integrated circuits Hardware Description Language) and synthesized
using the software tool Vivado, from Xilinx. The integrated system developed in Vivado
can be seen in Figure 4.
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Zynq PS
Processor

BRAM IMG

BRAM TEM

Co-processor

Get IMG

Get TEM

data_am data_p

data_ac

Figure 3. Macro-architecture of the proposed system.

Figure 4. Proposed system when implemented in Vivado.

Figure 5 presents the proposed architecture for the coprocessor. It is responsible for
yielding the correlation between two images, as defined in Equation (4). It is designed
to operate in a pipeline, where each of its three blocks corresponds to one of its three
stages. At each rising transition of the clock signal, three data points are received by
the coprocessor:
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• data_p: a pixel of the reference image (template), represented by 8 bits;
• data_ac: a pixel of the image to be compared, also represented by 8 bits;
• data_am: a pixel of the next image to be compared, of 8 bits.

SYNCHRO

data_p

data_am data_p
data_ac

datap_avg

dataa_avg
num
sum_p2
sum_a2

CLK_sync

result
error
done

Figure 5. Macro-architecture of the coprocessor.

The images to be compared have a size of 64 × 64 pixels, a total of 4096 pixels. This
is represented by 4 KBytes. The computations are performed in each block and passed to
the next one at each synchronization pulse. This pulse is generated by Block Synchro at
the 4103rd rising transition of the clock signal. As output, the coprocessor provides the
obtained correlation value (result), in 2’s complement, encoded in 32 bits, a flag signal
(done) indicating completion, and an error signal (error) indicating that the result is not
valid when a division by zero has occurred.

Figure 6 shows the micro-architecture of Block 1 that forms the first stage of the
pipeline. It is responsible for computing the average value of the pixels of the two compared
images. It has two output registers that are loaded only when the stage task is completed.
Every clock pulse, component AVG is restarted.

AVG

AVG

data_p

data_am

CLK
CLR

EN

CLR

CLK_Sync

CLK

Clear

EN
CLK CLR

EN

CLK CLR
EN

REG

REG datap_avg

dataa_avg

DoneDone

Done

out_avg

out_avg

Figure 6. Micro-architecture of component Block 1.

Figure 7 shows the micro-architecture of Block 2 that forms the second stage of the
pipeline. It is responsible for computing the three summations of the normalized cross-
correlation of Equation (4). It is composed of two components SUB that perform the
subtraction in 2’s complement of the pixels of the images with the averages returned by
Block 1; three components MULT, which perform, in one clock pulse, the multiplication of
the results returned by components SUB; and the components SUM, which carry out the
sums, in 2’s complement, of the results of the multiplications returned by components
mult. As in the case of Block 1, Block 2 has two output registers that are loaded only when
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the stage computation is completed. Every clock pulse, components SUB, MULT, and SUM
are restarted.

SUB

SUB

REG

REG

MULT

MULT

MULT

SUM

SUM

SUM

REG

REG

REG

data_p

datap_avg

data_ac
dataa_avg

CLK_sync
CLR

EN

CLK_sync
CLR

EN

CLK
Clear

EN

CLK
Clear

EN

CLK_sync Clear
CLR

CLK
Clear

EN

CLK
Clear
EN

CLK
Clear

EN

CLK
Clear

EN

CLK
Clear

EN

CLK
Clear

EN

CLK
CLR
EN

CLK
CLR
EN

CLK
CLR
EN

Out_sum

Done

Out_sum

Done

Out_sum

Done

Num

Sum_p

Sum_a

Figure 7. Micro-architecture of component Block 2.

Figure 8 shows the architecture of Block 3, which composes the third stage of the
pipeline. It is responsible for computing the main multiplication, square root, and division
of the normalized cross-correlation coefficient, as defined in Equation (4). The pipeline stage
includes component MULT, which, in a single clock pulse, performs the multiplication of the
sums of the denominator of Equation (4); and component SQRT, which yields the square
root and component PDIV, which performs the division, producing a precise factional
result. The quotient is assigned ±2−24. This last component is the one that provides the
coprocessor output signals. The operation of this block is controlled by the state machine
FSM, coordinating the actions of the included components. At every synchronization pulse,
the machine returns to its initial state. Like Block 1 and Block 2, it includes output registers
that are loaded only when the stage task is completed.

REG

REG

REG

REG

REG

REG

SQRT

PDIV

MULT REG

CTRL

CLK_Sync
CLR

EN

CLK_Sync
CLR

EN

CLK_Sync
CLR

EN

Sum

Sum_p

Sum_a

CLK

CLK CLK

CLK

CLK

CLK

CLK

CLK_Sync
CLR

Clear

Clear

Clear
EN

CLR
EN

CLR
ENCLR_m

CLR_s
EN_m

EN_r

Done_s

Done_d

CLR_d

CLR_r

Result

Done

Error

Figure 8. Micro-architecture of component Block 3.

Based on this numerical method called babylonian [59], component SQRT of Block 3 is
implemented, in the hardware, using an iterative process. Furthermore, Algorithm 1 is
used to implement, in the hardware, the accurate division upon which component PDIV
is based.
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Algorithm 1 Accurate division of Q = A/B with 24 bits

NB := 0; RA〈N−1... N
2 〉

:= A; RA〈 N
2 −1...0〉 := 0

while RA〈N−1... N
2 〉

> B do
RA := right-shift RA; NB := NB + 1

end while
Q := 0
for j = 1, NB do

RA := left-shift RA; Q := left-shift Q
if RA〈N−1... N

2 〉
> B then

RA〈N−1... N
2 〉

:= RA〈N−1... N
2 〉
− B; Q0 := 1

else
Q0 := 0

end if
end for
for j = 1, 24 do

RA := left-shift RA; Q := left-shift Q
if RA〈N−1... N

2 〉
> B then

RA〈N−1... N
2 〉

:= RA〈N−1... N
2 〉
− B; Q0 := 1

else
Q0 := 0

end if
end for

The dedicated memory blocks BRAM_TEM and BRAM_IMG store the template and the
main image, respectively. These are implemented in the programmable logic of the Zynq
chip (PL). Memory BRAM_TEM can store up to 4096 8-bit pixels, summing up 4K bytes, which
corresponds to the size of template. Memory BRAM_IMG can store up to 573 × 463 pixels
of 8 bits each, summing up 260K bytes. As the edges of the main image are padded with
zeros, the maximum size of this image is thus 510 × 400 pixels. Components GET_TEM and
GET_IMG are responsible for providing access to the dedicated memories BRAM_TEM and
BRAM_IMG, respectively. They make the data available to the coprocessor at the right time.
The access processes of reading and writing to the memories are synchronized by the clock
signal (CLK) and by the synchronization signal (CLK_sync).

5. Swarm-Intelligence-Based Search Strategies

This section presents the six optimized search techniques applied in this work to the
object tracking problem. The respective canonical algorithms are presented. In Section 5.1,
we present the technique inspired by the reproductive behavior of the cuckoo bird. Then,
in Section 5.2, we analyze the optimized search method based on the behavior of bee
colonies in the search for food. After that, in Section 5.3, we present the technique inspired
by the social behavior of elephants in their herds. Subsequently, Section 5.4 describes the
optimization technique that seeks to mimic the behavior of bacteria E. Coli in the search for
food, movement, reproduction, and their own survival in the environment they inhabit.
Section 5.5 introduces the technique inspired by the behavior of fireflies. In Section 5.6, we
address a technique modeled on the movement and dissemination of incandescent particles
from fireworks during their detonation. In Section 5.7, we present a search technique used
as a performance reference.

5.1. Cuckoo-Search-Based Technique

Cuckoo Search is an optimization algorithm that is population-based meta-heuristic,
and is inspired by the behavior of cuckoos in nature. A swarm of candidate solutions,
which are identified as nests, is used to search for the optimal solution to a problem.
The algorithm uses a combination of random walk and Lévy flights to explore the search
space, and the best solutions are selected for future swarms. The algorithm also employs
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a mechanism that mimics the the process of laying eggs by cuckoos. Therein, a fraction
of the nests are randomly replaced with new ones in order to maintain diversity in the
solution represented by the swarm. Cuckoo Search can be applied to solve any optimization
problem, including function optimization, multi-objective optimization, and combinatorial
optimization problems. In general, it shows the ability to escape from local optima, which
makes it an efficient choice for solving optimization problems. Overall, the Cuckoo Search
algorithm is a robust and efficient swarm-intelligence-based technique that can be used to
find near-optimal solutions to complex problems. The CS main steps, used in this work,
are described in Algorithm 2. Therein, the parameters to be adjusted according to the
application are: Lévy step scale factor L; number of cuckoos Nc; maximum number of
iterations M; probability of nest discovery Pa; and stopping criterion, which allows the
process to stop as soon as it finds the sought solution or reaches the generation limit.

Algorithm 2 Cuckoo Search main steps

Define objective function f (x)
Define parameters L, Nc, M, Pa
Generate initial positions xi of the host nests
t := 1
while (t ≤ M) and (solution not yet found) do

Choose cuckoo j randomically
Move it using a Lévy step
Evaluate the quality of the new nest using f (x)
Sort existing nests based on the quality
Abandon Pa of the worst nests
Generate new ones around the best nest
Keep the remaining 1 - Pa nests with the best quality
Sort nests and pick the best one
t := t + 1

end while
Return the best nest

5.2. Artificial-Bee-Colony-Based Technique

The Artificial Bee Colony (ABC) algorithm is an optimized search technique proposed
in [60] and inspired by the foraging behavior of bees. The positions occupied by food
sources in the search space represent possible solutions to the problem, and the amount
of nectar available in the source is associated with the quality of the solution, defined
through the objective function. This technique presents the mimicking of communication
activities, task allocation, swarm location selection, mating and reproduction, nectar search,
and pheromone diffusion. Three types of bees are defined: employed bees, onlookers,
and scouts. Employed bees carry routes to food sources and inform other bees about the
quality of the source. Onlookers wait for new information from the employed bees in the
hive. Scouts search for new food sources in the environment, independently of other known
sources. The number of solutions is the sum of employed bees and onlookers. The ABC
main steps, used in this work, are described in Algorithm 3. Therein, the parameters to
be adjusted according to the application are: Na of bees (onlookers), which is equal to the
number SN of food sources; D, which is the threshold value of the search space; MCN,
which is the maximum number of cycles; Nexh, which is the number of iterations that
defines whether a source i is exhausted; and Eexp, which defines the neighborhood to be
considered at when looking for new food source.
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Algorithm 3 ABC main steps

Initialize the food source locations (solutions) xij, i = 1, . . . , SN e j = 1, . . . , D
Define Nexh e Eexp; t := 1
while (t ≤ MCN) and (solution not yet found) do

Compute vij = xij + φij · (xij − xkj)
Evaluate new solutions using objective function
Apply selection greedy process
Compute probabilities Pi =

f (xi)

∑SN
1 f (xn)

Compute onlookers vij using selected xij and Pi
Evaluate new solutions using objective function
Apply selection greedy process
Determine source to abandon when hitting Nexh

Replace the abandoned source xj
i = xj

best + rand(0, 1) · (xj
max + xj

min)
Store the best solution (food source) found so fa
t := t + 1

end while
Return best solution

5.3. Elephant-Herding-Based Technique

Elephant Herding Optimization (EHO) [61] is a technique based on swarm intelligence
and inspired by the social behavior that occurs in herds of elephants. Elephants are social
animals with complex structures comprising females and young. A group of elephants
is composed of many clans under the command of a matriarch, typically the oldest one.
The clan consists of a female with her offspring or with some other related females. Female
elephants prefer to live in families, while males tend to live in isolation, which leads them to
leave their families when they grow up. When they wander off, they can maintain contact
with elephants from other clans through communication via low-frequency vibrations they
produce by hitting their feet against the ground. Elephants belonging to different clans live
together under the leadership of a matriarch. Male elephants leave their family groups
when they grow up. These two behaviors can be modeled through two operators: clan
updating and separation.

In EHO, elephants of each clan are updated, taking into account the current position
and the matriarch during the action of the clan updating operator. Then, the separation
operator can increase the population diversity in the final search phase. The EHO main
steps, used in this work, are described in Algorithm 4. Therein, the parameters to be
adjusted according to the application are: Ne, which represents the number of elephants,
and NGmax, which denotes the maximum number of cycles.

5.4. Bacterial-Foraging-Based Technique

The optimized search technique based on the behavior of colonies of the bacteria E.
Coli, called Bacterial Foraging Optimization Algorithm (BFOA), was introduced in [62].
The positions of the bacteria in the search space represent the solutions, which are evaluated
through the previously defined objective function. During the movement of the bacteria,
the positions tend to evolve until the global optimum of the function is reached. In addition,
they reproduce, act collectively in their movements, and are influenced by the facilitating
or hindering effects of their environment. The foraging behavior of E. coli bacteria is synthe-
sized through the following processes [62,63]: chemotaxis, swarm behavior, reproduction,
elimination, and dispersal. The combination of these processes models the way bacteria
survive in their environment, which can be more favorable (having adequate food) or
repellent (containing toxic substances for the bacteria). The bacteria are able to perceive this
gradient in the environment and make decisions on where to go. The BFOA main steps,
used in this work, are described in Algorithm 5.
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Algorithm 4 EHO main steps

Define Ne and NGmax
t := 1
while (t ≤ NGmax) and (solution not yet found) do

for ci := 1, . . . , Nclan do
for j := 1, . . . , Nci do

Update xci ,j
Generate xnew,ci ,j = xci ,j + α · (xbest,ci

− xci ,j) · r
if xci ,j = xbest,ci

then
Update xci ,j
Generate xnew,ci ,j

Compute xcenter,ci =
1

nci
·∑

nci
j=1(xci ,j)

Generate xnew,ci ,j = β · xcenter,ci
end if

end for
end for
for ci := 1, . . . , Nclan do

Replace worst solution xworst,ci = xmin + (xmax − xmin + 1) · rand
end for
t := t + 1

end while
Return best solution

Algorithm 5 BFOA main steps

Define f (x), NGmax
Define Nb, Ped, Ned, Nrep, Nchemo, Nsw e Kstep
Generate initial position xi of the Nb bacteria
t := 1
while (t ≤ NGmax) and (solution not yet found) do

for (l := 1, . . . , Ned) do
for k := 1, . . . , Nrep do

for j := 1, . . . , Nchemo do
Compute f (i, j, k, l) and Compute em fprev with associated m1, m2, m3
Generate mov(i) of random values in [−1, 1]
Move bacteria using fi,j+1,k,l(m1, m2, m3) = fi,j,k,l(m1, m2, m3) + C(i) ·

mov(i)√
movT(i)·mov(i)

for s := 1, . . . , Nsw do
Move for Nsw steps and generate fdev

end for
if fdev > fprev then

Goback to positions fdev for bacteria
for s := 1, . . . , Nsw do

Move for Nsw steps
end for

end if
end for
Reproduce using the best half of Nb the bacteria

end for
Eliminate Ped of the worst bacteria
Generate the same fraction randomly

end for
t := t + 1

end while
Return best position
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In BFOA, the parameters to be adjusted according to the application are: the number of
bacterial generations NGmax; the amount of bacteria Nb; the number of steps of elimination
and dispersion Ned, of reproduction Nrep, and of chemotaxis Nchem; the probability Ped of
elimination and dispersion; the number Nsw of swimming movements of each bacterium;
and the size Kstep of the swim.

5.5. Firefly-Behavior-Based Technique

The Firefly Algorithm (FFA) is a technique inspired by the behavior of fireflies, pro-
posed in [64] for optimization problems with constraints. The algorithm is based on the
bioluminescent signals, i.e., lights emitted by insects, used for communication between
fireflies and to repel predators. Fireflies exhibit swarm intelligence characteristics for self-
organization and decentralized decision making. The luminous signals are important not
only in the search for food, but also in the mating ritual of these insects. In [65], the author
reported that one advantage of FFA is its ease of use with other algorithms in a hybrid
manner to improve performance. The rhythm of the emissions, their frequency, and their
duration define a communication that attracts both sexes. Depending on the species, fe-
males may emit a unique response pattern or imitate the patterns of other species to seduce,
attract, and then devour males. The perception of light intensity by fireflies is inversely
proportional to the distance between the emitter and the receiver, so their communication is
affected by distance. This occurs due to light absorption by the air, which is quantified by an
absorption coefficient. The brightness intensity of the light emitted by a male firefly is also
an indicator of its fitness. However, the FFA technique considers the insects to be unisex,
and assigns the attractiveness of the firefly based on the brightness intensity. The intensity
refers to the value along the objective function of the position. Initially, a population of
fireflies is created. If one of the parameters that influence evaluation is changed, the fitness
of the fireflies is recalculated, and they are sorted according to it. The best insects are kept
for the next round of evaluation. The FFA main steps, used in this work, are described in
Algorithm 6. Therein, the parameters to be adjusted according to the application are: the
number of fireflies Nv, the air–light absorption coefficient γ, the number of dimensions D,
the maximum number of generations Nmax, and the stopping criterion.

Algorithm 6 FFA main steps

Define: Nv, D, f (x), γ, N
Generate firefly positions xi, i = (1, . . . , Nv)
Compute emission light intensity Ii using f (xi);
t := 1
while (t ≤ NGmax) and (solution not yet found) do

for i := 1, . . . , Nv do
for j := 1, . . . , Nv do

if (Ij > Ii) then
Move firefly i towards j

end if
Compute firefly perceived attraction
Evaluate solution via f (x)
Update light intensity

end for
end for
Sort fireflies;
t := t + 1

end while
Return best solution

5.6. Firework-Behavior-Based Technique

The Fireworks Algorithm for Optimization (FWA), proposed in [66], models the incan-
descent particles (sparks) from firework explosions and is used in complex optimization
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problems. The FWA main steps, used in this work, are described in Algorithm 7. Therein,
the parameters to be adjusted according to the application are: the number of sites for
firework detonation is N f ; a controls the amount of sparks in the case of a bad explosion;
and b controls the amount of sparks in the case of a good explosion.

Algorithm 7 FWA main steps

Define: N f , a, b, m, ξ, f (x), T
Select randomically N f sites for fireworks detonation;
t := 1
while (t ≤ NGmax) and (solution not yet found) do

Detonate the N f fireworks in the selected locations with si = m · ξ+yworst− f (xi)
ξ+∑n

i=1(yworst− f (xi))

sparks each
for i := 1, . . . , N f do

if si < a ·m, then
Compute ŝi = da ·me

else if si > b ·m, a < b < 1, then
Compute ŝi = bb ·mc

else
Compute ŝi = bsic

end if
Yield location of ŝi sparks xi using the 5 steps:

Initiate a spark locationx̂j = xi
Compute z = dd · re
Choose randomically z dimensions of x̂j
Compute displacement h = Ai · r
for each dimension x̂j

k ∈ z do

x̂j
k = x̂j

k + h

if (x̂j
k < x̂melhor

k ) or (x̂j
k > x̂pior

k ) then

x̂j
k = x̂best

k + |x̂j
k| % (x̂worst

k − x̂best
k )

end if
end for

end for
for k := 1, . . . , m̂ do

Select randomically firework xj.
Yield one spark using the 5 steps:

Initiate a spark location x̂j = xi
Compute z = dd · re
Choose randomically z dimensions of x̂j
Compute Gaussian explosion coefficient g
for each diemnsion x̂j

k ∈ z do

x̂j
k = x̂j

k · g
if (x̂j

k < x̂best
k ) or (x̂j

k > x̂worst
k ) then

x̂j
k = x̂best

k + |x̂j
k| % (x̂worst

k − x̂best
k )

end if
end for

end for
Select the best site and keep for the next iteration
Select randomically N f − 1 locations for 2 spark types
Select Current fireworks;
t := t + 1

end while
Return best solution
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In the FWA technique, there are two search processes employed that are related to
two specific types of explosion. Mechanisms for maintaining the diversity of sparks are
applied. When fireworks are set off, a shower of sparks fills the space. In [66], the explosion
was interpreted as a search process around a specific point by the sparks produced. In an
attempt to find a specific point xj that satisfies f (xj) = y, fireworks are continuously set off
in the search space until a spark hits the desired point or a region considered sufficiently
close to it. For each generation of fireworks, N f locates where the fireworks are detonated
and selects them. After each explosion, the sparks hit new points, which are evaluated.
If the optimal location is found, the algorithm stops. On the other hand, N f selects other
locations from the current sparks to generate the next generation. By observing real firework
explosions, two specific types were identified to be modeled. If the detonations are correct,
a large number of sparks is produced around the center of the explosion. In case of a
defective detonation, few sparks are released and scattered around the environment. A
good firework detonation in FWA means that the sparks have found a promising area,
which may be closer to the desired optimum; thus, it is appropriate to use more sparks to
search around the detonation location. At the same time, a poor detonation is related to the
fact that the explosion point is far from the desired optimum, which would require a larger
search radius.

5.7. Particle-Swarm-Based Technique

The Optimized Particle Swarm Optimization (PSO) search technique, proposed by
Kennedy in 1995, is inspired by the collective behavior of birds and fish. In PSO, the search
space is explored by a defined number of particles that move to find the optimal point of
the established objective function.

The particles have a position characterized by a coordinate from each of the objec-
tive function dimensions and an individual velocity that is constantly updated based
on collective movement and their own experiences. The best position occupied by each
particle so far and the best position obtained by the swarm particles up to that point are
stored. The quality of the particles in the search space is calculated using the objective
function that models the problem, and each point represents a potential solution to be
evaluated. The PSO main steps, used in this work, are described in Algorithm 8. Therein,
the parameters to be adjusted according to the application are: the number of particles Np,
the coefficients ω, φ1, φ2, c1, and c2; the maximum number of generations NGmax; and the
maximum velocity Vmax.

Algorithm 8 PSO main steps

Define: ω, φ1, φ2, f (x), M
Initialize randomically the Np particles in the search space
Initialize Pibest = f (xi)
Initialize Sbest as Gbest = best(Pibest) or Lbest = best(Pibestneighbors

)

t := 1
while (t ≤ NGmax) and (solution not yet found) do

for each particle xi do
Compute vi(t + 1) = ω · vi(t) + φ1 · r1 · (Pibest − xi(t)) + φ2 · r2 · (Sibest − xi(t))
Apply velocity control
Compute new position xi(t + 1) = xi(t) + vi(t + 1)
Update Pibest e Sbest

end for
Obtain Sbest among Pibest for all particle i
t := t + 1

end while
Return the position of the best particle
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6. System Evaluation

The hardware developed is defined as a model for the current work [67], which aims
to employ different optimized swarm-intelligence-based search techniques in a co-design
approach [68]. It is designed to run either in serial or pipeline mode. The processor available
on the board is used to execute each search technique via software, with all the necessary
parameter configurations to achieve satisfactory processing time and accuracy rate in
finding the target. The performance of the tracking system is evaluated regarding the three
compared modes of operation: software only; serial co-design hardware/software; and
pipelined co-design hardware/software. We aim to establish the impact of the co-design
implementation for the object tracking problem. Therefore, in the rest of this section, we
first present a brief description of the board used to implement the co-design system. Then,
we describe the dataset used in this performance evaluation. After that, we define the
parameters setting used to configure the used swarm intelligence techniques. Finally, we
present the performance of the compared techniques and select the best ones.

6.1. Implementation Board

The physical equipment used in this work consists of the Smart Vision Development
Kit (SVDK) rev 1.2 board. It includes a Xilinx PicoZed 7Z015 System-On-Module (with a
Zynq XC7Z015 chip), 1 GB DDR3 memory, and a 33.333 MHz oscillator. The XC7Z015 has a
general-purpose processing system based on the dual-core ARM Cortex-A9 processor and
programmable logic on a single integrated circuit. The board also features resources such
as UART interface, HDMI video encoder, tri-mode Ethernet PHY, general-purpose I/O,
USB3, GigE Vision, and CoaXPress interfaces. Its PCI Express bus allows the installation of
sensors. The board can be seen in Figure 9.

Figure 9. Development board.

As explained previously, the proposed architecture features an optimized search
technique (CS, ABC, BFOA, EHO, FFA, or FWA) in the software, executed by the processor
of the XC7Z015, working in conjunction with a dedicated coprocessor to calculate the
PCC. This calculation is the most resource-intensive part of the processing during target
localization, so the use of the coprocessor significantly improves performance, a fact proven
by the yielded results. In the next step, the SDK tool is used for programming to configure
the programmable logic of the XC7Z015. Using the SDK, the C language program is built,
which accesses the XC7Z015 and the coprocessor to implement target detection with the
aid of swarm intelligence to optimize the search.
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6.2. Dataset

The tracking system proposed in this work is used to find the targets defined in
the images presented in Figure 10, where the original image sizes are also provided.
The tested images are part of the VIVID dataset for target image tracking, which is is
publicly available [67,69]. The targets selected in the images are highlighted and have
64 × 64 pixels. The search window used is 101 × 101 pixels.

(a) Cars 521x411 – I1 (b) Pickup 522x410 – I2 (c) Sedan 524x414 – I3 (d) IR1 328x266 – I4

(e) IR2 335x272 – I5 (f) IR3 329x265 – I6 (g) Truck 522x410 – I7 (h) Rcar 524x413 – I8

Figure 10. Reference images used as the evaluation dataset.

Figure 11 shows the behavior of the objective function, which is the calculation of the
PCC, along the x and y axes for each reference image. The graphs were generated using
MATLAB version R2016B. It is possible to observe the presence of local maxima in the
images that can attract the swarms during the search, hindering convergence. To avoid
the detection of false positives, a minimum threshold of 0.95 was chosen for the objective
function, the PCC, so that the target was considered detected.

(a) Cars (b) Pickup (c) Sedan (d) IR1

(e) IR2 (f) IR3 (g) Truck (h) Rcar

Figure 11. Objective function behaviors within the search space for each reference image.
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It is worth emphasizing that the system is evaluated in three configurations:

1. The swarming search technique is implemented in software wherein the XC7Z015’s
processor is also used to calculate the PCC whenever required;

2. The search technique is implemented in software while the PCC calculation is per-
formed by the coprocessor, configured in serial mode of operation;

3. The search technique is implemented in software while the PCC calculation is performed
by the coprocessor, configured in a parallel mode of operation, using the pipeline.

6.3. System Parameter Settings

The goal of this work is to propose a system capable of working with videos at
30 frames per second, which requires finding the target within 33 ms. At the same time,
in order for the detection to be considered true, it is necessary to define a minimum PCC
threshold. The system’s effectiveness in finding the target requires defining a minimum
success rate, measured over sets of 100 searches. The evaluation goals are defined as:

• Maximum time for target identification: 33 ms;
• Minimum success rate: 60%.

Each of the three system configurations was applied to the images in Figure 10 and
evaluated for processing time, number of iterations required, and success rate obtained.
This procedure was repeated 50 times to obtain the mean and standard deviation of the
metrics for each set of 100 searches. This resulted in a total of 5000 repetitions to calculate
the mean and standard deviation.

The stopping criterion adopted for the code execution was to find the target with
PCC ≥ 0.95 or reach a maximum of 10 iterations. The performance goals were verified for
the 5000 repetitions of the system execution for each of the seven search techniques, for the
three considered configurations.

The target search window within the main image specifies the region where the swarm
technique will search for the target. Considering a video, if the target changes its position
slowly from frame to frame, the position where it was detected in a given frame will be
close to where it will be found in the next frame. Thus, it is not necessary to search the
entire image; only the vicinity of the previous location. In this work, a search window with
a size of 101 × 101 pixels was defined.

The parameters of each technique were empirically configured to obtain an average
success rate of at least 90% via a systematic search of the parameter space. Thus, it is
possible to evaluate the relationship between high accuracy and the average processing
time required to detect the target in each image. The yielded settings were as follows for
the implemented swarming techniques:

• CS: 50 cuckoos; discovery probability: 25%; Lévy flight scale factor: 15.
• ABC: 8 bees, which is the same number SN as food sources. Nexh = 1.
• EHO: 32 elephants; 4 clans; α = 0.75; β = 0.
• BFOA: 15 bacteria; 1 elimination and dispersal cycle with a probability of 30%; 1

reproduction cycle; 1 chemotaxis cycle; 1 swimming displacement cycle.
• FFA: 11 fireflies; α = 3; β = 1.6; γ = 0.0005.
• FWA: number of fireworks NF = 25; M = 50; α = 0.02; β = 1.00; ξ = 0.0001.
• PSO: number of particles NP = 18; ω = 0.6; c1 = 0.6; c2 = 2.

6.4. Performance Results

As explained before, for each of the tested techniques, we present the average values
and the standard deviations of the the execution time, the number of required iterations to
reach the stopping criterion, and the acceptance rate regarding the three system configura-
tions: software only; serial co-design; and pipeline co-design.

Figure 12 regards the performance of the usage of the CS technique. Figure 12a shows
the results of the system without using a coprocessor. The processing times obtained were
above the necessary threshold (33 ms), which requires system improvement.
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(c) Success rate

Figure 12. Performance results obtained by CS.

The success rate was over 60% for all the images. The best performance was achieved
for image IR3− I6, which showed the highest average success rate of 97.12%. The shortest
average time to find the target was 89.77 ms, while the lowest average number of iterations
was 4.53. The worst average time performance occurred when searching for the target in
image Cars− I1—145.52 ms—which required the highest average number of iterations,
6.48. The worst success rates occurred for images IR1− I4, IR2− I5, and Cars− I1, all
above 69%. Figure 12b shows the results for the system configuration with the coprocessor
operating in serial mode. The processing time target was achieved for all images, and the
success rates obtained were all above 69%. The best performance was achieved when
searching for targets located in images IR3− I6, Sedan− I3, and Truck− I7; all had average
times below 15 ms and average success rates above 93%. The worst performance occurred
when searching for targets in images Cars− I1, IR1− I4, and IR2− I5; the average success
rates were below 72.58%. Figure 12c presents the performance of the system when using
the coprocessor operating in pipeline mode. The processing times were all below 16 ms;
the best system performance occurred for image IR3− I6, which had an average time of
12.85 ms and the smallest standard deviation of time among the images. The best average
success rate was achieved for image Truck− I7: 98.22%The worst average target success
rate occurred for images IR1− I4 and IR2− I5, for which the average success rates were
the lowest (67.56% and 72.46%, respectively), and the average numbers of iterations were
the highest (7.78 and 5.85, respectively).

Figure 13 regards the performance of the usage of the ABC technique. Figure 13a
presents the results of the system without using a coprocessor. None of the average obtained
processing times was less than 33 ms. The best average processing time was achieved for
image IR1− I4 (122.88 ms).

The average success rates were above 70%; only the search in the image IR2− I5
did not exceed 80%. The best average success rates occurred for images Sedan− I3 and
Truck− I7, both above 94%. The worst performance was observed in the search for the
target in IR2 − I5, for which the highest average processing time and iterations were
required. The same image resulted in the worst average success rate of 79.40%. Figure 13b
presents the results for the system configuration with the coprocessor operating in serial
mode. There was a significant improvement in the time required to find the target, so
that for all images the timing restriction was met, and the lowest average time obtained,
of 22.45 ms, occurred for image IR1− I4. The obtained average hit rate was over 65%.
The search for the target in image IR2− I5 required a longer average time of 31.07 ms
and more iterations, and it also obtained a lower average hit rate than the searches for
targets in the other images. Figure 13c shows the performance of the system with the
aid of the coprocessor operating in pipeline mode. There was a slight reduction in the
average time and number of iterations; the time target of 33 ms was achieved for all images,
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achieving average hit rates above 78.32%. The lowest average time was obtained for image
Sedan− I3: 23.01 ms. The worst performance occurred for the search in image IR2− I5,
whose average processing time reached 28.76 ms. The number of iterations for this image
was also the highest.
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(c) Success rate

Figure 13. Performance results obtained by ABC.

Figure 14 regards the performance of the usage of the EHO technique. Figure 14a
presents the results of the system without using a coprocessor. As with previous techniques,
the obtained processing times were far above the timing restriction of 33 ms, which makes
it necessary to improve the system performance.
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(c) Succes rate

Figure 14. Performance results obtained by EHO.

The lowest average time was obtained for image IR1− I4, and the worst for image
IR2− I5, which showed the highest average number of iterations. The acceptance rate
was above 60%, except for the search in image Rcar image, which was 59.10%. The best
performances occurred for images IR1− I4 and IR3− I6; they obtained the lowest average
times and highest hit rates. Figure 14b shows the results of the system using the coprocessor
in serial mode. There was an improvement in processing time, but not enough to achieve
the timing restriction of 33 ms. The best performance in terms of processing time and hit
rate occurred during the search for the target in image IR1− I4. The worst performance was,
again, regarding image Rcar− I8, for which the average hit rate, 59.86%, was below 60%.
However, it exhibited the highest processing time to find the target, 71.06 ms. Figure 14c
shows the performance of the system in the configuration with the use of the coprocessor
in pipeline operation mode. The target time of 33 ms was not achieved in any of the images.
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Once again, the search for the target in image Rcar− I8 presented a success rate lower than
60%, and thus it did not reach the minimum performance target.

Figure 15 regards the performance of the usage of the BFOA technique. Figure 15a
presents the results of the system without the use of a coprocessor. The obtained processing
times did not respect the timing restriction of 33 ms, which again calls for system improve-
ment. The average success rate was higher than 60%, except for the target search in image
IR2− I5, which was 48.5% due to convergence to local optima. The system performed
better in searching for targets in images IR3− I6 and Truck− I7, respectively.
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(c) Success rate

Figure 15. Performance results obtained by BFOA.

Figure 15b shows the results of the system with the use of the coprocessor operating in
serial mode. There was an improvement regarding processing time, but still with average
time values above 33 ms. Once again, the best performances were achieved for images
IR3− I6 and Truck− I7, while the worst performance occurred in the search for the target in
IR2− I5, in which the average accuracy rate obtained was only 47%. Figure 15c shows the
performance of the system for the configuration with the use of the coprocessor operating
in pipeline mode. There was an improvement in response time compared to the use of
the coprocessor operating in serial mode. The best performances occurred for the search
for the targets in images IR3− I6 and Truck− I7, producing the lowest average times and
highest success rates. The worst performance occurred during the system execution for
image IR2− I5, resulting in an average success rate of 49.6%.

Figure 16 regards the performance of the usage of the FFA technique. Figure 16a presents
the results of the system without the use of a coprocessor. The processing times obtained were
above the restriction of 33 ms, which indicates the need for system improvement.

The success rate was above 79% in all image target tracking, and the best system
performance occurred for images IR1− I4, IR3− I6, and Truck− I7, resulting in lowest
processing times, lowest numbers of iterations, and highest success rates. On the other
hand, the worst average search time occurred for the image IR2− I5, which yielded a
success rate similar to those of the other images due to the complexity of the objective
function for this image.

Figure 16b displays the results of the system with the use of a serial architecture copro-
cessor. There was an improvement in processing time, and the processing time goal was
achieved for seven images; it was only not reached for image IR2− I5 (34.24 ms). The target
was found more quickly in IR1− I4; an average of 24.76 ms. All average hit rates were
higher than 80%. Figure 16c exhibits the performance of the system in the configuration
with the use of the coprocessor operating in pipeline mode. Regarding the average time,
there was an improvement compared to the serial mode, reaching the target again for
seven images. Only image IR2− I5 remained above the target, at 33.8 ms. However, the
average success rate was above 80%, meeting the acceptance tracking objective. The best
performances occurred for images IR1− I4 and IR3− I6, resulting in the lowest average
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processing times. The highest average success rates occurred for images IR3− I6 and
Sedan− I3.
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(c) Success rate

Figure 16. Performance results obtained by FFA.

Figure 17 regards the performance of the usage of the FWA technique. Figure 17a
presents the results of the system without the use of a coprocessor.
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(c) Succes rate

Figure 17. Performance results obtained by FWA.

The obtained average times were above the goal of 33 ms, so it is necessary to improve
the system. The average success rates were higher than 60%, except for image IR2− I5,
which achieved only 57.34%.The best performances refer to the searches in images IR3− I6,
IR1− I4, and Rcar− I8, which achieved average success rates of at least 90%. Figure 17b
shows the results of the system with the use of the coprocessor operating in serial mode.
There was an improvement in the average processing time, but the values were still higher
than 33 ms. The average success rate achieved met the goal of 60%, except, once again,
for image IR2 − I5, which reached only 57.66%. Figure 17c displays the performance
of the system when using the configuration with the coprocessor operating in pipeline
mode. The results were close to those obtained with the coprocessor operating in serial
mode. The best average time performance occurred for image IR1− I4; 50.75 ms, above the
33 ms target. The best average accuracy rate was 97.02%, for image IR3− I6. The system
performance was the worst for the image IR2− I5, for which the search did not achieve
the target values for either time or accuracy rate, resulting in mean values of 95.21 ms
and 57.02%, respectively.

Figure 18 regards the performance of the usage of the PSO technique. Figure 18a
presents the results of the system without the use of a coprocessor.
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Figure 18. Performance results obtained by PSO.

The obtained average times were above the goal of 33 ms, thus calling for system
improvement to reach the required timing restriction. The average success rates were
higher than 60% for all considered images. The best performances refer to the searches in
images Sedan− I3, IR1− I4, IR3− I6, Truck− I7, and Rcar− I8, achieving average success
rates of at least 99%. It is noteworthy to mention that an acceptance rate of 100% was
reached for image Truck− I7. Figure 18b shows the results of the system with the use of
the coprocessor operating in serial mode. There was a huge improvement in the average
processing time. However, some of these values were still higher than 33 ms. Nonetheless,
the time values were close to the imposed threshold, which was met for images Sedan− I3
and IR1− I4. The average success rate achieved met the goal of 60% for all considered
images, which reached at least 94%. The best performance was yielded for images IR1− I4
and Truck− I7, which reached 99.70%. Figure 18c shows the performance of the system
when using the configuration with the coprocessor operating in pipeline mode. All the
results met the timing restriction of 33 ms. The requirements in time processing were
almost half those obtained by the serial configuration system. The best performance in
average time occurred for image Sedan− I3; 14.26 ms. Moreover, all acceptance rates were
above the imposed threshold of 60%, but one can note that, overall, the hit rates were lower
than those obtained for the serial configuration. The best average accuracy rate was 99.2%
for image Sedan− I3. The worst system performance regarding acceptance rate was 89.4%,
which image IR2− I5 yielded.

6.5. Performance Comparison

Figure 19 regards the average performance comparison of the proposed tracking
system considering the three investigated configurations. Figure 19a presents the results of
the system regarding the processing time.

For the software-only configuration, the CS and ABC techniques required less time
to find the target, even compared to PSO. The EHO and FWA techniques took more time
compared to the others. For the serial co-design configuration, the results show a reduction
in the average processing time to find the target. Only the CS and ABC techniques achieved
the goal of 33 ms for all reference images. The FFA technique achieved it for seven out
of the eight images considered. For the parallel co-design configuration, the CS, ABC,
and PSO techniques achieved the goal of an average time of 33 ms for all reference images.
Again, the FFA technique achieved the goal of an average time for only seven out of the
eight images considered. The other techniques did not achieve times lower than the goal,
and the worst performances were obtained by FWA and EHO.
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Figure 19. Average performance comparison of the three investigated configurations regarding
processing time, iteration, and acceptance rate.

Figure 19b presents the results of the system regarding the required iterations. For the
software-only configuration, the techniques required approximately the same number of
iterations to find the target, except for FFA, which required much fewer iterations. For the
serial co-design configuration, the results show that the techniques again employed a
similar number of iterations to find the target, except for the FFA technique, which required
,on average, much fewer iterations to find the object of interest. For the parallel co-design
configuration, the FFA technique again required fewer iterations to find the target than the
others, which required a similar number of iterations.

Figure 19b presents the results of the system regarding the required iterations. For
the software-only configuration, all three system configurations with search techniques
achieved the goal for the images. The CS and ABC techniques provided the highest average
success rates, although they were lower than those obtained by the PSO technique for the
same stopping criteria. For the serial co-design configuration, the results show that all
implementations of the search techniques achieved the target goal of 60%. The CS and
ABC techniques again provided the highest average success rates, but they were lower
than those obtained by the PSO technique. For the parallel co-design configuration, the CS
technique achieved the target goal of 60% for all reference images, and the success rates
exceeded 90% for two of the eight images considered. The ABC search technique also
achieved the target goal for all images, and the average success rates exceeded 85% for six
of them. The EHO technique exceeded the 60% target for finding the targets in all reference
images. The BFOA technique only achieved the minimum success rate target for seven
images, for the chosen parameter configuration, falling below 60% in the search for one
of the eight tested images. The FFA technique provided results above 80% for all images,
achieving results superior to 91% for two of the images. The FWA technique exceeded
the target for seven images. The success rate obtained by the PSO technique was more
advantageous for the three investigated configurations.

7. Further Discussion

The techniques that showed an accuracy below 60% could still be useful with the
parameter settings employed for target localization, as long as another tool is used in
conjunction to reinforce the decision-making process. The system used with this technique
would need to process an image of the environment with a predefined target to obtain the
accuracy rate that would be used as a weight for decision making. The weight would be
proportional to the average rate. In this way, a cross-validation process can be applied.
To achieve higher accuracy rates, the parameters need to be altered based on the image in
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which the worst performance is observed, for use with a coprocessor operating in parallel
mode. However, these configuration changes may result in worse processing times.

In order to demonstrate the effect of each technique’s average processing time when
applied to applications that require a higher degree of certainty, i.e., closer to 100%, the tech-
niques underwent an empirical parameter reconfiguration to attain an average accuracy
rate of at least 90% for all eight defined reference images. Table 1 lists the parameters of
each technique, whether their values were altered or maintained. It is noteworthy that
all the parameter settings of the PSO technique were kept unchanged as the achieved
acceptance rates for all images were already above 90%.

Table 1. New parameter settings for the search techniques.

Technique Adjusted Parameter Value Maintained Parameter Value

CS Nc 250
Pa 25%

λ 15

ABC Na 21
Nesg 1

Eexp 5

EHO
Ne 105 α 2.75

Ncla 15 β 0.001

BFOA
Nb 65

Ned 1

Nre 1

Ped 30% Nchemo 1

FFA Nv 17
β 1.60

γ 0.0005

FWA

N f 200
B 1

A 0.01

K 800 ξ 0.001

Consequently, new average values of processing time and iterations were obtained. It
is clear that increasing the number of swarm individuals results in more objective function
evaluations per iteration cycle, leading to longer processing times. However, it also tends
to position individuals closer to the global optimum, increasing the average accuracy rate.
It should be noted that the coprocessor configuration operating in pipeline mode is limited
to a maximum of 50 agents given the area resources available on the used board. Therefore,
a new performance analysis was conducted regarding the software-only and the serial co-
design configurations as the required number of agents was above the allowed 50, except for
ABC and FFA. Therefore, for all six techniques, we analyzed the achieved performance
based on the processing time vs. the acceptance rate. Nonetheless, for ABC and FFA, it
was possible to also analyze the performance of the parallel co-design configuration as the
number of agents in these two cases was smaller than 50, i.e., 21 and 17, respectively.

The results for the average processing time obtained without using the coprocessor for
5000 repetitions are displayed in Figure 20a. In every case, the obtained times significantly
exceeded the established target of 33 ms, rendering it impractical for use in applications
requiring 30-frames-per-second videos. However, all the acceptance rates were either close
to or exceeded 90%, as shown in Figure 20b.
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(c) Time of the serial co-design configuration
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(d) Success rate of the serial co-design configuration

Figure 20. Performance comparison of the software-only and serial co-design configurations for at
least a 90% acceptance rate.

The results for the average processing time obtained using the serial architecture
coprocessor are shown in Figure 20c. The times were found to be smaller than those
obtained with the previous parameter configuration for the techniques. Among all the
techniques, only the CS technique achieved processing times below the target of 33 ms for
all images. The remaining techniques exceeded the target, and the FWA technique showed
the worst performance. The FFA technique provided processing times below 40 ms for
six images. However, considering the results for the average accuracy rate obtained using
the coprocessor operating in serial mode, which are shown in Figure 20d, all the obtained
average rates were above 90%, with the exception of the FFA technique, which showed
a rate of 89.94% for image IR2− I5 with a standard deviation of 3.29%. The image that
provided the highest accuracy rates for target detection is IR3− I6, while IR2− I5 yielded
the lowest average rates.

As mentioned before, the new parameter settings for ABC and FFA allow for its use
with the coprocessor operating in pipeline, as the number of agents was less than 50, which
is a hardware restriction. Figure 21 exhibits the results regarding time and hit rate.

For ABC, the accuracy rates were all above 90%, but the target average time of 33 ms
was not achieved. The worst average performance for target detection occurred for the
images Pickup− I2, IR2− I5, and Cars− I1. For FFA, all accuracy rates were also above 90%.
However, the average time was above 33 ms for all images. The worst average performance
in finding the target occurred for the images Pickup− I2, IR2− I5, and Cars− I1. For image
IR2− I5, the obtained average accuracy rate was 88.98% with a standard deviation of 3.04%.
ABC and FFA had similar performances, while PSO was better in terms of processing time.

We also compared the detection and tracking performance of the proposed system
using a pipelined co-design based on PSO to that obtained by works wherein machine
learning strategies were used. Table 2 presents the accuracy, precision, recall, and F1-score
for the VIVID (pktest01) and VEDAI datasets [70]. Note that the processing time, which
is the main issue in this work, was not taken into consideration for all compared works.
It is evident that the proposed detection approach yielded a similar performance to that
achieved by the machine-learning-based methodology.
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Figure 21. Performance results of the pipeline co-design obtained by ABC and FFA when pursuing at
least a 90% acceptance rate.

Table 2. Performance comparison of proposed system with existing systems wherein machine
learning was used for object detection and tracking.

Dataset Work Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VIVID
[57] – 94.30 97.00 96.10
[55] 95.73 96.77 96.49 97.24

Proposed work 95.09 96.56 98.13 97.34

VEDAI

[71] – 89.60 91.50 90.50
[72] 88.10 79.60 – 89.20
[55] 92.06 93.19 92.60 93.38

Proposed work 91.36 90.88 91.31 91.09

8. Conclusions

The focus of this research work regarded detecting target objects in images. The re-
search specifications mandate that the system be integrated into a device and exhibit
satisfactory real-time performance in videos with 30 frames per second. Moreover, high ac-
curacy rates are necessary to guarantee response quality, prevent false positives, and enable
correct decision making by the system operators.

The identification of a target in an image relies on some unique feature of the target
and the identification methodology used. In this work, the template matching technique
was adopted to analyze image patches and compare them with the target. The Pearson
correlation coefficient was calculated to determine the similarity between the target and the
cutouts, leveraging its advantages in case of brightness variations in the image. A hardware
design was proposed to compute the correlation coefficient efficiently.

The designed system provides three different equipment configurations. The first
configuration exploits the Zynq XC7Z015 general-purpose processor performing the search
and PCC calculation in the software, working in conjunction with the implemented search
technique. The second configuration involves the Zynq processor performing the search in
conjunction with a dedicated coprocessor for PCC calculation, operating in serial mode.
The third configuration involves the Zynq processor performing the search and the dedi-
cated coprocessor operating in pipeline mode for PCC calculation.

The study found that utilizing a co-design approach with FPGA and intelligent search
techniques is an effective means of performing target detection and tracking in images.
Depending on the chosen technique and configuration, the system can be applied to real-
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time video with 30 frames per second. As expected, the best processing time results were
achieved using a coprocessor operating in pipeline mode, validating the approach.

The CS and ABC techniques met the processing time and accuracy rate objectives for
all images when used with a coprocessor. Nonetheless, CS provided a superior performance
in processing time, while ABC obtained higher average accuracy rates. The FFA technique
achieved processing times below 33 ms for seven images, achieving average accuracy rates
above 80% and requiring few iterations. However, the EHO technique required processing
times above 33 ms, achieving average accuracy rates close to 60% even with the adopted
configuration. The BFOA technique offered average accuracy rates over 90% for two images,
but its timing performance was above 33 ms for all the images. The FWA also presented
processing times above 33 ms, achieving average accuracy rates above 95% for one image
but below 60% for another.

The image IR2− I5 required the highest processing time and iterations due to its
complexity regarding the adopted objective function and the presence of many local optima.
Overall, the PSO technique proved to be faster and more accurate than the other search
techniques. Nonetheless, of the implemented techniques, the CS method occasioned a
faster processing time than PSO but a lower average accuracy rate.

The new parameter configuration revealed that achieving an accuracy rate of at least
90% results in inadequate processing time for videos with 30 frames per second. However,
these configurations can be useful in other scenarios where the accuracy rate is critical,
such as pattern recognition in medical images or applications in videos with fewer frames
per second.

In future work, we intend to apply changes to the template, such as rotations, occlusion,
and scale variations. Then, we plan to to improve the coprocessor design to handle more
than 50 elements in the swarm and to receive multiple frames instead of just one. This
way, it is possible to improve the search performance while being able to update the
template for each frame, further facilitating tracking. We also suggest a parallel approach
wherein two coprocessors can cooperate: one performs video tracking, while the other
calculates the target’s future trajectory or even guides the camera, capturing images from
the search environment.
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