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Abstract: Capacitive sensors that utilize the Coplanar Interdigitated (CID) electrode structure are
widely employed in various technical and analytical domains, such as healthcare, infectious disease
management, pharmaceuticals, metrology, and environmental monitoring. The present exigency
for lab-on-a-chip contrivances and the requisite for the miniaturization of sensors have led to the
widespread adoption of CID sensors featuring multiple dielectric layers (DLs), either in the form
of substrates or superstrates. Previously, we derived an analytical model for the capacitance of
CID capacitive sensors with four distinct 1-N-1 patterns (namely, 1-1-1, 1-3-1, 1-5-1, and 1-11-1)
using partial capacitance (PC) and conformal mapping (CM) techniques. The aforementioned model
has been employed in various applications wherein the permittivity of successive layers exhibits a
monotonic decrease as one moves away from the electrode plane, resulting in highly satisfactory
outcomes. Nevertheless, the PC technique is inadequate for structures with multiple layers where the
permittivity exhibits a monotonic increase as the distance from the electrodes increases. Given these
circumstances, it is necessary to adapt the initial PC method to incorporate these novel configurations.
In this work, we have discussed a new approach, splitting the concept of PC into partial parallel
capacitance (PPC) and partial serial capacitance (PSC), where new CM transformations are proposed
for the latter case. Thus, the present study proposes a novel methodology to expand upon our prior
analytical framework, which aims to incorporate scenarios where the permittivity experiences a
reduction across successive layers. The outcomes are juxtaposed with the finite element simulation
and analytical findings.

Keywords: coplanar interdigitated (CID) electrodes; conformal mapping (CM); partial capacitance
(PC) techniques; capacitive sensors; infectious disease management

1. Introduction

Coplanar Interdigitated (CID) capacitive sensors are extensively used to calculate
near-surface parameters, including conductivity, permeability, and dielectric properties.
Therefore, a more accurate description of their electrical performance is required. Depend-
ing on the sensor configuration selected and the properties of the substance being tested,
the conditions under which these various types of sensors can be utilized will vary. The
majority of CID configurations find use in bacterial detection [1,2], in liquid detection as a
noninvasive sensor in chemical and biological fields [3–5], in surface acoustic wave (SAW)
sensors [6,7], in the detection of tainted seafood [8], in biosensor applications [9,10], and
in the advancement of MEMS fabrication technologies [11]. Several attempts have been
made to enhance the sensing capabilities and maximum field penetration depth (PD) and
to estimate the capacitance value of the CID sensor by altering its geometrical configura-
tions [12,13]. The study conducted by A. R. Mohd Syaifudin et al. [13] investigated the
impact of the optimal quantity of negative electrodes (NEs) positioned between two posi-
tive electrodes (PEs) with a CID configuration on the measurement sensitivity. An analysis
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was conducted to examine the effects of different quantities of NEs situated between two
positive electrodes. The authors put forth four distinct configurations of CID sensors, each
utilizing a 1-N-1 structure. These configurations, namely, 1-1-1, 1-3-1, 1-5-1, and 1-11-1,
were designed to possess identical effective areas, pitches, lengths, widths, and equivalent
electrode numbers. All sensor configurations possess a coplanar morphology and exhibit a
straightforward architecture. Closed-form expressions are necessary for accurately comput-
ing the capacitance of CID sensors with varying geometrical patterns, taking into account
the chemical-sensitive layer and substrate properties.

The optimization of operating sensitivity is a crucial aspect of a miniaturized sensor.
The predominant methodology employed involves the utilization of a numerical approach,
such as the finite element method (FEM), to model the entire structure and evaluate the
electromagnetic field’s distribution. Although the numerical method has the capability
to yield precise and dependable results, the iterative procedure of altering the structure,
configuring the parameters, and processing the data can be deemed as a laborious and
ineffective process. In addition, a significant number of researchers are unable to access
the most precise commercial numerical tools due to their high cost. An economical and
effective analytical methodology that can depict the electromagnetic field distribution
within the CID structure and evaluate the conduct and attributes of the CID sensor may
offer significant benefits.

To date, several exemplary models have been documented for CID electrodes with
multilayer structures [14–22]. Alley [14] proposed an estimated model for a CID capacitor
utilizing a loss-less integrated microstrip line principle. This model can aid in estimating
the capacitance values of CID capacitors with uniform electrode width and gap width,
specifically for the uppermost infinite air layer. In their study, Esfandiari et al. [15] made
modifications to Alley’s model by integrating the impact of metallization thickness on the
total capacitance measurement. Wei [16] proposed a CID sensor capacitance estimation
model in the situation of an infinite uppermost air layer, utilizing conformal mapping
CM techniques. The model’s predictive capacity was found to be insufficient for CID
structures that feature a DL of finite thickness or a configuration with multiple layers on
the electrodes.

The initial proposal for a multilayered configuration was put forth by Wu et al. in their
work [17]. Gevorgian et al. [18] introduced a novel multilayered top structure model
for a CID electrode sensor that utilizes CM techniques. This model differs from the
model presented by Wu. The Gevorgian model exhibits a notable drawback: the ca-
pacitance values estimated through its implementation do not align with those obtained
through experimentation.

A novel approach was introduced in [19] that utilizes conformal transformations and
the PC method [20] to estimate the total capacitance values of multilayered structures in
CID sensors. The present model takes into account the fringing capacitances arising from
the outer fingers. Nonetheless, the aforementioned model proved inadequate when applied
to structures with multiple layers, wherein the permittivity continuously increases as one
moves farther from the electrodes. In their work [21], R. Igreja et al. presented a modified
model and a novel approach involving dividing PC into PPC and PSC. The authors also
introduced new CM transformations for the latter case. Consequently, this innovative
methodology expands upon their prior analytical framework to accommodate scenarios in
which permittivity is reduced from one layer to the next.

The applicability of all proposed models is limited to the 1-1-1 CID pattern, which
consists of one NE positioned between two PEs in the context of the CID sensor. Our prior
work [22] proposed a model utilizing CM transformations and PC techniques to derive
expressions for estimating sensor capacitances for all feasible configurations of CID sensors
(1-N-1) in multilayered structures. This model incorporates considerations for the impact
of fringing field capacitance resulting from the external electrodes of the CID capacitive
sensor. The present study provides a comprehensive analysis of the theoretical aspects
of the CID sensor, considering various geometrical configurations. The permittivity of
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the layers situated in the upper or lower half-plane in relation to the electrodes exhibits a
decrease as the distance from the electrode plane increases. The PC is a highly effective
technique that yields precise outcomes in this scenario.

In modern times, there has been a growing demand for compacting and incorporating
CID electrodes on limited surface areas. Modern lab-on-a-chip (LOC) devices have been de-
veloped to meet this demand, utilizing conventional microelectronic fabrication techniques
such as Si/SiO2 substrates [23]. These techniques are employed to yield highly polished
surfaces for the deposition of electrodes or to apply protective passivation layers atop the
electrodes [24]. In several instances, the superstrate and/or the substrate’s permittivity
exhibits a non-monotonic reduction as we depart from the electrode plane. Consequently,
as elaborated in the forthcoming sections, the conventional partial capacitance technique
becomes inadequate in providing precise outcomes.

As previously stated, the initial PC method is inappropriate for implementation in
complex structures where the permittivity continuously increases with distance from the
electrodes. In the scenario described, the EF near the interface separating two contiguous
dielectric layers (DLs) exhibits a perpendicular orientation with respect to the interfaces.
This behavior is analogous to the presence of a Dirichlet boundary condition (DBC), in
which the EF sustains an unchanging magnitude along the boundary. Consequently, as
initially outlined, the PC technique is inadequate in providing precise outcomes.

Zhu et al. [25] raised concerns regarding the effectiveness of the PC technique in
scenarios where the permittivity exhibits a monotonic reduction as the distance from the
electrode plane increases. Specifically, the authors examined coplanar waveguides and
proposed that a serial decomposition approach may be more appropriate than a parallel
decomposition approach. Ghione et al. proposed a modification to the PC technique for
coplanar waveguides that involves separating the situation into three distinct cases [26,27].
The first case involves a monotonically decreasing permittivity as one moves away from
the plane of the electrodes, while the second case involves a monotonically increasing
permittivity in the same direction. The third case is a mixed scenario where there is no
discernible monotonic behavior for the permittivity. Ghione et al. demonstrated that it
is feasible to assess the effectiveness of the PC method by utilizing an approximation of
Green’s function. They propose that for scenario (i), the Parallel Partial Capacitance (PPC)
technique should be employed, while for scenario (ii), the Serial Partial Capacitance (PSC)
technique is recommended. An answer to the problem for case (iii) could not be found.
Prior research [23] initially introduced the proposal in question regarding interdigital
electrodes. However, the requisite conformal mapping equations were not provided at that
juncture, constituting the current study’s primary objective. To partition the problem into
PPC or SPC, it is imperative to generate novel expressions utilizing the CM methodology
specifically for the SPC scenario to accommodate the novel boundary conditions.

In the current work, we have proposed a new CM transformation technique for partial
serial capacitance (PSC) by splitting the concept of PC into partial parallel capacitance
(PPC) and partial serial capacitance (PSC) to obtain an analytical expression (model) for the
capacitance of CID capacitive sensors for four 1-N-1 patterns (such as 1-1-1, 1-3-1, 1-5-1, and
1-11-1) with monotonically increasing/decreasing permittivity. This model also considers
the effects of the CID sensor’s outer electrodes’ capacitance-causing fringe field capacitance.
A detailed study of the theory of the CID sensor with various geometrical configurations is
provided. MATLAB has been utilized to analyze the multiple patterns of 1-N-1 CID sensors.
The 1-N-1 CID electrode structure has been designed and simulated with finite element
software in order to validate the proposed analytical model and simulation results.

2. Physical Model of the CID Sensor

The CID capacitive sensor employs the same operating principle as a parallel plate
capacitor. The CID sensor’s electrode pattern can be repeated numerous times in order to
generate a potent signal. EF distribution between PE and NE can exhibit multiple excitation
patterns at varying levels of proximity for various electrode arrangements with optimal
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pitch lengths. Two adjacent electrodes with similar polarity can be used to calculate the
CID sensor’s penetration depth (PD). Based on the information mentioned above, four
distinct electrode patterns (1-1-1, 1-3-1, 1-5-1, and 1-11-1) have been devised with optimal
numbers of NEs, deeper penetration, and uniform EF distribution throughout the sensor
geometry [13]. The optimal number of NEs between two PEs of the CID sensor pattern
contributes to the most precise sensitivity measurement. The 1-1-1 pattern sensor exhibits a
high signal intensity but a relatively small PD, whereas the 1-11-1 pattern sensor depicts the
opposite. When designing the sensor, a compromise must be made between the intended
signal strength (in terms of equivalent capacitance) and the PD. Therefore, 1-3-1 or 1-5-1
may be the optimal choice for moderate signal intensity and depth of penetration [12].

The 1-N-1 CID capacitive sensor patterns with 13 fingers are depicted in Figure 1,
illustrating the four potential patterns (1-1-1, 1-3-1, 1-5-1, and 1-11-1). The layout of the
schematic diagram of the periodic Coplanar Interdigitated (CID) cross-section with multiple
dielectric layers on the upper and lower half-planes is shown in Figure 2. All electrodes
possess a uniform width denoted by ‘w’ and a length of ‘l.’ The distance between them is
represented by ‘g.’ Each positive and negative electrode is linked to a constant voltage of
+V and −V, respectively.
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The determination of the total capacitance value between the PEs and NEs of all four
CID patterns is contingent solely upon the two non-dimensional variables, namely, the
metallization factor ‘ξ′ and the height-to-wavelength factor ‘γ′, which have been explicitly
stated as

ξ =
w

w + g
=

2w
λ

(1)

and
γ =

h
2(w + g)

=
h
λ

(2)

where “h” represents the height of the DL (as seen from the electrode surface), and
λ = 2(w + g) is the electrode’s spatial wavelength (SW). The SW for the 1-N-1 (with
N 6= 1) CID pattern can be expressed as

λα = 2α(w + g) (3)

where α (= 1, 2, . . . .(n + 1)/2).
The analysis of Figure 3 reveals that the 1-3-1 pattern exhibits a total of two SWs, denoted

as λ1 and λ2. Conversely, the 1-5-1 and 1-11-1 patterns display a more significant number of
SWs, specifically three (λ1, λ2 and λ3) and six (λ1, λ2, λ3, λ4, λ5 and λ6), respectively.

The equipotential planes with a zero potential are the normal planes between the
PEs and NEs of the four CID structures. This is because the EF is perpendicular to these
equipotential planes, as depicted in Figure 3. The condition for a pattern to be infinitely
periodic is satisfied when the Laplace equation is verified without the presence of electric
charge and the length of the electrodes is significantly greater than the thickness.

In practical terms, the electrode fingers’ finite length can be deemed infinite due to
their significant size in comparison to the SW of the CID sensor structure.

The electrodes’ negligible thickness relative to their width allows for considering
electrode potentials between the upper and lower half-planes. Several authors have sug-
gested incorporating electrode thickness corrections [26,28,29] to improve the accuracy of
transducer measurements. However, it should be noted that while these corrections may
be effective for transducers with infinite layers, they may not be suitable for multilayered
structures. In instances where the thickness of the layer housing the electrodes exceeds that
of the electrodes themselves, it is feasible to incorporate the impact of the parallel plate (PP)
capacitor that arises between neighboring electrodes, thereby achieving precise outcomes.

Figure 3 depicts the electric circuit that corresponds to four distinct configurations
(1-1-1, 1-3-1, 1-5-1, and 1-11-1) of the 1-N-1 CID pattern. These configurations consist
of 13 fingers and feature a single layer above the electrode plane. Due to symmetry
considerations, the total capacitance of a single layer can be assessed based on two distinct
types of capacitance, as illustrated in Figure 3: (1) CIα, which is equal to half the capacitance
of an interior electrode with respect to the ground voltage, and (2) CEα, which represents
the capacitance between the ground and the external electrode. The variable α (where α is
an integer ranging from 1 to (N + 1)/2) is contingent upon the specific CID pattern being
utilized. For instance, in the case of a 1-5-1 pattern, α would take on the values of 1, 2,
and 3. The interior and exterior capacitances corresponding to the aforementioned entities
are denoted as CI1, CI2, CI3 and CE1, CE2, CE3, respectively. Likewise, in the case of CID
patterns: 1-1-1, 1-3-1, and 1-11-1.

By employing network analysis to assess the equivalent circuit depicted in Figure 3, it
is possible to derive the comprehensive formula for the aggregate capacitance linking of
the NEs and PEs of a 1-N-1 CID sensor configuration, which is equivalent to

CC.I.D.,1−N−1 =
(N+1)/2

∑
α=1

[
2CIα ×CEα

CIα + CEα
+ (k− 2)CIα

]
(4)
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The variable “N” represents the number of sensing electrodes that are positioned
between two consecutive Positive Electrodes (PEs). The term “k” refers to the total count of
positive electrodes. It should be noted that this assertion remains valid solely under the
circumstance where the initial and final electrodes are operating as PEs.
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3. Reconsidering the Multilayer Issue

In order to solve the cumulative capacitance of a multilayered pattern, we only need
to model one side of the plane (the upper side in this case) because the capacitance on the
other side (lower side) can be estimated in the same manner.

As suggested by Ghione [27], we have separated the problem into two independent
scenarios for each side of the plane: (1) Partial Parallel Capacitance (PPC) and (2) Partial
Series Capacitance (PSC).

3.1. Partial Parallel Capacitance (PPC)

In this instance, the previous method of PC can be implemented, and the theory of
an NB condition (magnetic wall with d∅/dn = 0) at the boundary of successive layers is
applicable. In order to differentiate, this technique may be referred to as Partial Parallel
Capacitance (PPC), as suggested by Ghione et al. [27]. In the situation of multilayered CID
structures, where the dielectric permittivity reduces monotonically as we progress farther
from the electrode plane, the capacitances earlier specified as CIα and CEα (see Figure 2)
are now parallel to the electrode plane.

CIα and CEα are subsequently determined based on the geometric capacitances (GCs)
CIpα and CEpα (The first index denotes the classification of a finger as either an inner or
outer finger. The second index pertains to the method of application, which is parallel in
this particular case. The third index provides information regarding the configuration of
the CID structure) (see Figure 4):

CIα =
n−1

∑
i=1

(εid − ε(i+1)d)CIpα(hi) + εndCIpα(∞) (5)

CEα =
n−1

∑
i=1

(εid − ε(i+1)d)CEpα(hi) + εndCEpα(∞) (6)

where εid represents the relative permittivity of the ith layer. CIpα(hi) and CEpα(hi) repre-
sent the GC of the ith layer, assuming an NB between the ith layer and (i+1)th layer for the
inner and outer fingers, respectively. The term ‘hi’ represents the layer’s height (relative to
the electrode plane). εnd denotes the relative permittivity of the outermost layer. The capac-
itances with an infinite height layer (the outermost layer) are CIpα(∞) and CEpα(∞). It is
essential to point out that for an infinite layer, CIpα(∞) = CIsα(∞) = CIα(∞) and CEpα(∞)
= CEsα(∞) = CEα(∞), where CIsα(∞) and CEsα(∞) are the capacitances with an infinite
height layer (the top layer) in the case of PSC (discussed in the next section). Applying
the above Equation (4) calculates the CID sensor’s total capacitance. The computation of
CIpα(hi) and CEpα(hi), was already proposed in our previous work (refer [22] for details)
and is summarized in Table 1.
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Table 1. Important equations required for the calculation of CIpα(hi) and CEpα(hi) for PSC.

Interior Electrodes Exterior Electrodes

Finite Layer

CIpα(hi) = εoL
[

K(kIpα)
K( k′ Ipα)

]
CEpα(hi) = εdL

[
K(kEpα)
K(k′Epα)

]
k′Ipα =

√
1− k2

Ipα k′Epα =
√

1− k2
Epα

kIpα = t2, Ipα

√
t2
4, Ipα−1

t2
4, Ipα−t2

2, Ipα
kEpα = 1

t3, Epα

√
t2
4, Epα−t2

3, Epα

t2
4, Epα−1

t4, Ipα = 1
kpα t3, Epα = cosh

(
π(1−ηpα)

8rpα

)
t2, Ipα = sn

[
K
(
kpα

)
ηpα, kpα

]
t4, Epα = cosh

(
π(1+ηpα)

8rpα

)
kpα =

(
υ2(0, Qpα)
υ3(0, Qpα)

)2

Qpα = exp
(
−4πrpα

)
3.2. Partial Series Capacitance (PSC)

In cases where the permittivity exhibits a monotonic increase and the EF is predom-
inantly oriented away from the electrode plane, the layers are assumed to be serially
interconnected, leading to the adoption of the PSC technique. This method is known
as Partial Series Capacitance (PSC), as proposed by Ghione et al. [27]. The capacitances,
previously labeled CIα and CEα, are now measured with the aid of all of the various layers
above the plane of the electrode in series and can be computed in terms of the GCs CIsα
and CEsα (refer Figure 5). The sum of all n layers’ contributions should now be calculated
as follows [22]:

1
CIsα

=
n−1

∑
i=1

(
1
εid
− 1
ε(i+1)d

)
1

CIsα(hi)
+

1
εnd

1
CIsα(∞)

(7)

1
CEsα

=
n−1

∑
i=1

(
1
εid
− 1
ε(i+1)d

)
1

CEsα(hi)
+

1
εnd

1
CEsα(∞)

(8)
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Figure 5. PSC technique used to determine capacitance at the interfaces between two successive
layers under a DB condition. The measurement of the layer height is conducted with reference to the
plane of the electrodes.

CIsα(hi) and CEsα(hi) represent the GC of the ith layer, considering a DB between
the ith layer and (i+1)th layer for the interior and exterior fingers, respectively. In the case
of PSC, CIsα(∞) and CEsα(∞) are the capacitances with an infinite height layer (the top
layer). Equation (4) represents the overall capacitance of the half-plane. In this instance, the
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GCs CIsα(hi), and CEsα(hi) must be determined in order to use the PSC method, as a DB
condition must be investigated.

4. Estimating the Geometric Capacitance (GC):
4.1. Interior GC CIsα(hi) Estimation

The appropriate space region of the 1-N-1 CID electrode pattern will be mapped
onto a PP capacitor geometry to calculate CIsα(hi) using conformal mapping techniques.
The present scenario involves a limited layer that exhibits a Dirichlet boundary condition,
where the value of the function is zero, positioned between two neighboring layers. The
representation of the x-plane on the Argand complex plane is analogous to the scenario
of the NB condition between successive DLs. However, the ground electrode has been
extended to the upper boundary (i.e., the boundary between two successive DLs), as
depicted in Figure 6. Four conformal transformations are employed, which are depicted
on complex Argand planes (refer to Figure 6). The variables x, z, t, y, and w denote
complex values.
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The initial x-plane is transformed onto the complex z-plane while maintaining its
original aspect ratio, utilizing the complete elliptic integral of the first kind.

z =
4K(kIsα)

λsα
x (9)

The variable K(kIsα) represents the complete elliptic integral of the 1st kind with
modulus kIsα.

kIsα =

(
υ2(0, Qsα)

υ3(0, Qsα)

)2
(10)

The functions υ2(0, Qsα) and υ3(0, Qsα) correspond to the 2nd and 3rd Jacobi func-
tions, respectively [30],

and

Qsα = exp(−4πrsα) (11)

The rectangular shape located in the z-plane has been subjected to a mapping process
onto the t-plane by utilizing a particular function.

t2, Isα = sn[Zsα, ksα] (12)

The function sn[Zsα, ksα] denotes the Jacobi elliptic function with a modulus of ksα.
Subsequently, the t-plane undergoes a mapping process that results in its transforma-

tion onto the y-plane, which can be expressed as

y =
t

t2, Isα
(13)

Ultimately, the y-plane undergoes a transformation into the w-plane through the
utilization of the SC transformation. Specifically, the upper semi-plane within the y-plane
is mapped onto the interior of the rectangle located within the w-plane.

w = F(∅, kIsα) (14)

where
kIsα = t2, Isα and ∅ = sin−1 y

Furthermore, the symbol F(∅, kIsα) represents the first kind of incomplete elliptic
integral with modulus.

A PP electrode is generated upon performing the electrode transformation from the
x-plane to the w-plane, which constitutes the principal characteristic of this particular
series of transformations. Therefore, given the dimensions of the PP capacitor in the w-
plane, it is possible to readily approximate the capacitance value in the x-plane using the
aforementioned formula.

CIsα(hi) = εoL

[
K(kIsα)

K
(

k′Isα
)] (15)

where
k′Isα =

√
1− k2

Isα (16)

It can be observed that the variable CIsα(hi)/L is solely contingent upon the two
non-dimensional parameters, namely, ηsα and rsα.

4.2. Exterior GC CEsα(hi) Estimation

The computation of variable CEsα(hi) involves the depiction of the initial physical
domain on the Argand complex x-plane, as illustrated in Figure 7. The ground line has
been extended to the boundary that separates two contiguous layers (x1 = jh). The



Sensors 2023, 23, 5838 11 of 17

transformation utilized to map the semi-infinite strip on the x-plane onto the upper t-plane
is as follows:

t = cosh
(
π

2hi
x
)

(17)
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Subsequently, the t-plane undergoes a mapping process onto the y-plane through the
utilization of a mapping function:

y = t

√√√√ t2
4, Isα − t

t2
4, Isα − t3

(18)

The y-plane has been shifted onto the w-plane through the utilization of the SC
transformation [31].

w =
∫ y

0

dw′√(
1−w′2

)(
1− kEsα

2w′2
) (19)

where

kEsα =

√√√√ t2
4, Esα − t2

3, Esα

t2
4, Esα − 1

(20)

where t3, Esα = cosh
(

π(1−ηα)
4rα

)
and t4, Esα = cosh

(
π(1+ηα)

4rα

)
k′Esα =

√
1− k2

Esα (21)

The shifting of electrodes from the x-plane to the w-plane results in the acquisition of
a PP.
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Therefore, if one possesses knowledge of the dimensions of the PP capacitor after
transformation in the w-plane, it is feasible to effortlessly approximate the capacitance in
the x-plane using the following method:

CEsα(hi) = εidL

[
K(kEsα)

K
(
k′Esα

)] (22)

4.3. Interior GC for an Infinite Layer CEα(∞) Estimation

The transformations required for the calculation of CIα(∞) are as depicted in Figure 8.

t =
1

kIsα∞
sin
(

2π
λ

z
)

(23)

and

w =
∫ t

0

dw′√(
1−w′2

)(
1− kIsα∞

2w′2
) (24)

with

kIsα∞ = sin
(π

2
ηsα

)
(25)

and
k′Isα∞ =

√
1− k2

Isα∞ (26)
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Therefore, the value of capacitance can be expressed as

CIα(∞) = εoL

[
K(kIsα∞)

K
(

k′Isα∞
)] (27)
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4.4. Exterior GC for an Infinite Layer CEα(∞) Estimation

The expression of CEα(∞) depicted in Figure 9 was obtained through the use of
transformations, as follows:

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18 
 

 

 

  

 

 

Figure 8. Conformal transformation methods for calculating C (∞) . The solid line shows the equi-
potential line transition, while the shaded zone shows the dielectric transformation. 

with k = sin η    (25)

and k′ = 1 − k   (26)

Therefore, the value of capacitance can be expressed as C (∞) = ε L ( )( )    (27)

4.4. Exterior GC for an infinite Layer 𝑪𝑬𝜶(∞)  Estimation 
The expression of C (∞)  depicted in Figure 9 was obtained through the use of 

transformations, as follows: 

  

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18 
 

 

 

 

Figure 9. Conformal transformation methods for calculating C (∞) . The solid line shows the equi-
potential line transition, while the shaded zone shows the dielectric transformation. 

t = z   (28)

and w =    (29)

where k =    (30)

k = 1 − k   (31)

k =   (32)

and k′ = 1 − k    (33)

Ultimately, the resulting capacitance is as follows: C (∞) = ε L ( )( )   (34)

Tables 2 and 3 provide a detailed explanation of the important expressions utilized 
in the computation of capacitances: C (h ), C (h ), C (∞), and C (∞). 

Table 2. Important equations required for the calculation of C (h ) and C (h ) for PSC. 

 Interior Electrodes Exterior Electrodes 
Finite 
Layer 

C (h ) = ε L K(k )K(k )  C (h ) = ε L K(k )K(k′ )  

 k′ = 1 − k  k′ = 1 − k  

 k = t ,  k = t , − t ,t , − 1  

 t , = sn K(k )η , k  t , = cosh π(1 − η )4r  

Figure 9. Conformal transformation methods for calculating CEα(∞) . The solid line shows the
equipotential line transition, while the shaded zone shows the dielectric transformation.

t =
2

gpα
z (28)

and

w =
∫ t

0

dw′√(
1− w′2

)(
1− kpα∞2 w′2

) (29)

where
kpα∞ =

1− ηsα
1 + ηsα

(30)

kEsα∞ =
√

1− ksα∞2 (31)

kEsα∞ =
2
√
ηsα

1 + ηsα
(32)

and
k′Esα∞ =

√
1− k2

Esα∞ (33)

Ultimately, the resulting capacitance is as follows:

CEpα(∞) = εoL

[
K(kEsα∞)

K
(
k′Esα∞

)] (34)

Tables 2 and 3 provide a detailed explanation of the important expressions utilized in
the computation of capacitances: CIsα(hi), CEsα(hi), CIα(∞), and CEα(∞).
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Table 2. Important equations required for the calculation of CIsα(hi) and CEsα(hi) for PSC.

Interior Electrodes Exterior Electrodes

Finite Layer

CIsα(hi) = εoL
[

K(kIsα)

K( k′ Isα)

]
CEsα(hi) = εdL

[
K(kEsα)

K(k′Esα)

]
k′Isα =

√
1− k2

Isα k′Esα =
√

1− k2
Esα

kIsα = t2, Isα kEsα =
√

t4, Esα−t3, Esα
t4, Esα−1

t2, Isα = sn[K(ksα)ηsα, ksα] t3, Esα = cosh
(
π(1−ηsα)

4rsα

)
- t4, Esα = cosh

(
π(1+ηsα)

4rsα

)
ksα =

(
υ2(0, Qsα)
υ3(0, Qsα)

)2

Qsα = exp(−4πrsα)

Table 3. Important equations required for the calculation of CIα(∞), and CEα(∞).

Interior Electrodes Exterior Electrodes

Infinite layer

CIα(∞) = εoL
[

K(kIα∞)

K( k′ Iα∞)

]
CEα(∞) = εoL

[
K(kEα∞)

K(k′Eα∞)

]
k′Iα∞ =

√
1− k2

Iα∞ k′Eα∞ =
√

1− k2
Eα∞

kIα∞ = sin
(
π
2 ηα

)
kEα∞ =

2
√
ηα

1+ηα

5. Results and Discussion

This section presents a comparison between the outcomes derived from the analytical
model of PPC and PSC methodology and the two-dimensional finite element methods
(FEMs) produced by COMSOL Multiphysics. The scope of the models is confined to uncom-
plicated CID electrode configurations featuring four unique 1-N-1 patterns (namely, 1-1-1,
1-3-1, 1-5-1, and 1-11-1), which yield a comprehensive two-dimensional cross-sectional
representation. It is not easy to model structures of greater complexity in the horizontal
plane. Nevertheless, these uncomplicated configurations are frequently encountered in
research papers. Additionally, the electrode fingers must possess adequate length to dis-
regard fringing field effects in proximity to the ends of each electrode finger. According
to the observations presented in reference [32], in the case of two-electrode structures, it
is recommended that the finger length L be approximately ten times greater than λ to
avoid significant errors. Further, the thickness of the electrode fingers is not taken into
account. This assumption may not be suitable when the thickness is comparable to the
lateral dimensions of the electrode, specifically w and g. The significance of these uncompli-
cated models lies in their minimal computational cost compared to numerical simulations
while still providing adequate precision as preliminary estimators for the capacitance of
CID structures.

Figure 10a–d show the values of total capacitance per unit length CC.I.D.,1−N−1/L as a
function of the ratio between the relative permittivity of the layers (i.e., ε1d/ε2d) for γ = 0.3
(as an example) and ξ = 0.5 for all possible distinct 1-N-1 patterns (1-1-1, 1-3-1, 1-5-1, and
1-11-1). Notably, the dependence of the total capacitance is not on SW (λ) but is instead on
the dimensional parameters ξ and γ.
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Figure 10. Total capacitance per unit length for the upper half-plane with two DLs as a function of
the permittivity ratio between the layers for all patterns: (a) 1-1-1, (b) 1-3-1, (c) 1-5-1, and (d) 1-11-1,
comparison between the models suggested, and simulation results.

The continuous line was derived using the equations formulated in the outcomes
of the PPC analytical study. In contrast, the dotted line was derived using the equations
developed in the results of the PSC analytical study (refer to Table I, II, and III).

The triangular symbols in Figure 10 represent numerical values obtained from FEM
simulations. The findings indicate that, while the previous model demonstrated a strong
correlation between the FEM values and the continuous line of the parallel partial curve
(PPC), this relationship was only observed when the ratio of ε1d/ε2d exceeded 1. However,
in instances where the ratio of ε1d/ε2d was less than 1, the PPC approach was unable to yield
precise outcomes. This suggests limitations in the applicability of the PPC method under
certain conditions. When the ratio of ε1d to ε2d is less than 1, a complete correspondence is
noted between the PSC curve (represented by a dotted line) and the FEM analysis. Various
simulations have been conducted, utilizing different values of γ, from 0.05 to 0.5, for PPC
and PSC with all four CID patterns (1-1-1, 1-3-1, 1-5-1, and 1-11-1). In the worst-case
scenario, the maximum error was determined to be approximately 4%. Nevertheless, it
was observed that the approximations for PPC and PSC were highly precise when the
ratio of ε1d/ε2d was significantly greater than 1 (in the case of PPC) and when the ratio of
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ε1d/ε2d was considerably less than 1 (in the case of PSC), or when ε1d/ε2d approached 1,
in both cases.

The findings are consistent with the conclusions outlined in reference [27], which
compares the PSC and PPC approaches to the spectral-domain static Green’s function
method. The results depicted in Figure 10a through Figure 10d demonstrate that the
utilization of both PPC and PSC techniques in conjunction is necessary to achieve precise
outcomes across the complete spectrum of relative permittivity values for both layers in all
four unique 1-N-1 patterns (1-1-1, 1-3-1, 1-5-1, and 1-11-1).

6. Conclusions

This article has successfully employed a new CM technique to make comparatively
simple expressions (model) for the capacitance estimation of different 1-N-1 multilayered
CID patterns with monotonically increasing/decreasing permittivity. In order to achieve
this objective, the PC technique was bifurcated into PPC and PSC, and novel analytical
expressions were suggested for the PSC scenario utilizing the principles of conformal
mapping (CM). Thus, enhanced model robustness resulted in precise outcomes for the
commonly utilized structures featuring CID electrodes. The results acquired through this
expanded model exhibit satisfactory concurrence with the FEM simulations. Subsequent
research endeavors will involve establishing a generalization of this developed model for
multiple layers that lack a monotonic behavior of the permittivity among neighboring
layers. This can be achieved through the utilization of a mixed PC decomposition.
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