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Abstract: The inverse finite element method (iFEM) is a novel method for reconstructing the full-field
displacement of structures by discrete measurement strain. In practical engineering applications,
the accuracy of iFEM is reduced due to the positional offset of strain sensors during installation
and errors in structural installation. Therefore, a coarse and fine two-stage calibration (CFTSC)
method is proposed to enhance the accuracy of the reconstruction of structures. Firstly, the coarse
calibration is based on a single-objective particle swarm optimization algorithm (SOPSO) to optimize
the displacement–strain transformation matrix related to the sensor position. Secondly, as selecting
different training data can affect the training effect of self-constructed fuzzy networks (SCFN), this
paper proposes to screen the appropriate training data based on residual analysis. Finally, the
experiments of the wing-integrated antenna structure verify the efficiency of the method on the
reconstruction accuracy of the structural body displacement field.

Keywords: inverse finite element method; shape sensing; single-objective particle swarm optimization;
error correction model; Bayesian; residual analysis; fuzzy network

1. Introduction

Shape sensing is significant for the safety monitoring of structures such as aircraft
and radar antennas. This technology is applied in various aspects of aerospace, military
and civil applications [1–3]. Considering that the array accuracy and electrical perfor-
mance are affected by antenna deformation [4–6], the shape-sensing technique is significant
for antenna performance. The shape-sensing method can currently be divided into two
categories [7,8]: one is non-contact measurement and the other is contact measurement.
Non-contact measurement is based on laser tracking and the laser position sensor method
to measure displacement directly, and real-time measurement is difficult to achieve due to
the high requirements for the measurement environment and measurement instruments in
practical engineering applications. The contact measurement method is used to calculate
the deformation and displacement of the structure by using strain sensors to obtain strain
information, which has promising applications in practical engineering [9–11].

The methods for reconstructing the structural displacement field based on strain
information are divided into: KO displacement theory, modal method and iFEM. The
Ko displacement theory establishes a mathematical model for the strain according to the
primary or secondary distribution and combines it with the shape function to calculate the
displacement [12,13]. However, this method is only applicable to the problem of reconstruct-
ing the unidirectional displacement field. The modal method is to measure the strain values
and strain modes at specified locations, solve for the modal coordinates of each order mode,
and then obtain the displacement field of the structure [14,15]. But this method requires a
high-precision physical model and is not applicable to the deformation reconstruction of
structures under a high-frequency excitation response. The iFEM was proposed by Tessler
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and Spangler [16,17], with the most widespread and promising applications among the
three methods. This method discounts the material properties of the structure and the
information of the applied load, with the advantages of high reconstruction accuracy and
rapid reconstruction of the displacement field. The iFEM is based on the least-squares
variation principle. The strain values are measured experimentally, and a mathematical
model of strain–displacement is established. Kefal and Oterkus et al. [18] proposed an
inverse finite element model with a quadrilateral cell. Compared to the triangular cell, the
generation of singular matrices in the inverse operation is avoided due to the increase in an-
gular degrees of freedom in the z-direction, preventing the shear self-locking phenomenon
of the shell structure when reconstructing the deformation field. Gherlone et al. [19,20]
proposed to paste fiber brag grating (FBG) sensors on the surface of a Timoshenko beam to
obtain the shape sensing of the beam structure in transverse shear, tension, bending and
torsional deformation. Cerracchio et al. [21] proposed to combine the original inverse finite
element formulation with the refined Zigzag theory, which is applicable to the deformation
monitoring of multi-layer composites and sandwich structures. Bao et al. [22] proposed
an inverse finite element model using a univariate to optimize the number of sensors
installed on the Timoshenko beam. Niu et al. [23] proposed the inverse scaled boundary
element to model the Kirchhoff plate structure reconstruction, and the method achieves 3D
deformation reconstruction through the strain information on the single-layer surface of
the plate structure.

In practical engineering, measurement errors due to the strain transducer installation
offset and structural body errors can reduce the reconstruction accuracy of the iFEM. To
solve the problem, Rosso et al. [24] proposed an improved particle swarm optimization
algorithm that introduces a new local search operator to help solve feasible regions of
challenging optimization problems. Zhao [25,26] proposed a particle swarm optimization
algorithm to determine the sensor layout locations. Pan [27] proposed a method to calibrate
strains by mapping experiments using fuzzy networks to measure strain values. However,
structural errors can greatly affect the calibration results of this method. Fu et al. [28]
proposed a method that combines support vectors with fuzzy networks to correct strain
errors. The drawback of this method is the lack of a large amount of experimental working
condition data, which will have an impact on the training of the fuzzy network. To address
the problem of the effect of a small sample size on reconstruction accuracy, Xu et al. [29]
proposed a two-step calibration method, but this method is limited to the reconstruction
displacement accuracy at the maximum deformation position, and the reconstruction
accuracy at the rest of the positions is not as accurate. Li et al. [30] determined the layout
location of sensors based on a multi-objective particle swarm optimization algorithm.
The fuzzy network calibration method for the small sample problem was proposed by
Li et al. [31], which improves the reconstructed accuracy of the whole displacement field
effectively. However, when strain sensors are artificially installed to measure strain values,
the offset in the installation position of the sensor increases the error in the reconstruction
of the deformation field.

For improving the accuracy of the reconstructed displacement field, this paper pro-
poses a CFTSC method. Firstly, the coarse calibration method is based on a single-objective
particle swarm optimization algorithm to correct the error of the displacement–strain matrix
due to the offset of the sensor position installation. After the coarse calibration, the fine
calibration of the system error based on the self-constructed fuzzy network is continued
to further improve the accuracy of the reconstructed displacement field. Secondly, since
a suitable training set can improve the training effect of self-constructed fuzzy networks,
this paper proposes to screen suitable training data based on residual analysis. All samples
are fitted with NURBS curves to obtain the residual value of each sample point, and the
samples are classified according to the residual value of each sample, from which suitable
training data are screened.

The sections of this paper are described as follows. In Section 2, the theoretical
framework of beam iFEM is described. In Section 3, the specific method of CFTSC is
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introduced. In Section 4, The calibration effect of the proposed CFTSC method on the
displacement field is illustrated experimentally. Conclusions are given in Section 5.

2. The Framework of the Inverse Finite Element Method

The iFEM is based on the least squares function between the theoretical sectional strain
e(u) and the actual sectional strain eε. It can be expressed as:

Γ(u) =‖ e(u)− eε ‖2 (1)

The displacement dt at any position of the section can be represented by the shape
function H(x) and the nodal degrees of freedom (DOFs) ue.

dt = H(x)ue (2)

The strain at any position of the cross-section can be obtained from Equation (3).

eu = M(x)ue (3)

where M(x) is the derivative of H(x), called the strain function matrix. By taking the deriva-
tive of u in Equation (1), the derivative function of u is made to be zero, so that the differ-
ence Γ(u) between the theoretical strain and the actual strain is minimized. Equation (4)
is obtained.

keue = f µ (4)

where ke and f µ are denoted as

ke =
6
∑

p=1
wpke

p, ke
p = l

n

n
∑

i=1
[MT

p (xi)Mp(xi)]

f µ =
6
∑

p=1
wp f e

p, f e
p = l

n

n
∑

i=1
[MT

p (xi)eε
p(xi)]

(5)

where l denotes the unit length after reconstruction, n denotes the number of section strains
on the neutral axis, xi denotes the position where the calculated section strains make, and
wp denotes the weighting factor.

When the strain sensor layout position is determined, the parameters x = xi, θ = θi,
β = βi (i = 1, 2, . . . , 6) related to the sensor position are also determined. The surface strains
εa are then calculated by Equation (6).

εa(xi, θi, βi) = [(cos2β− µsin2β), (cos2β− µsin2β)sinθ × r, (cos2β− µsin2β)cosθ × r,
cosβsinβcosθ, cosβsinβsinθ, cosβsinβ× r]
×[eε

1(xi), eε
2(xi), eε

3(xi), eε
4(xi), eε

5(xi), eε
6(xi)]

T

= T × [eε
1(xi), eε

2(xi), eε
3(xi), eε

4(xi), eε
5(xi), eε

6(xi)]
T

(6)

where T denotes the conversion relationship between surface strain and section strain and µ
denotes the Poisson ratio. r represents the outer radius of the section, as shown in Figure 1.

A section strain eε
i (i = 1, 2, . . . , 6) at any position on the neutral axis can be expressed

as (eε
1, eε

2, eε
3, eε

4, eε
5, eε

6)
T = R·[q1, q2, q3, q4, q5, q6]T. The matrix [q1, q2, q3, q4, q5, q6]T is

used to represent the unknown parameters of the section strain. The specific form of the
matrices R and [q1, q2, q3, q4, q5, q6]T are shown below.

R =



1 0 0 0 0 0
0 yi 1 0 0 0
0 0 0 yi 1 0
0 Dy

Gz
0 0 0 0

0 0 0 Dz
Gy

0 0
0 0 0 0 0 1


(7)
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[q1, q2, q3, q4, q5, q6]
T = (T × Ru)−1 × εa(xi, θi, βi)

T

= (T ×



1 0 0 0 0 0
0 xi 1 0 0 0
0 0 0 xi 1 0
0 Dy

Gz
0 0 0 0

0 0 0 Dz
Gy

0 0
0 0 0 0 0 1


)−1 × εa(xi, θi, βi)

T (8)

where T = [T1, T2, T3, T4, T5, T6]T. The difference between the R matrix and the Ru matrix
is that the variable yi in the R matrix is transformed into xi, and xi and yi denote a position
at any point along the axis in the x-direction or y-direction.
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By substituting the obtained sectional strain eε
i (i = 1, 2, . . . , 6) into Equation (4),

the relationship between the nodal DOF of the structural and the surface strain can be
established. This is shown in Equation (9).

ue = (ke)−1 f µ = Tk × εa(xi)

Tk = { l
n ×

6
∑

i=1
[wp MT

p (xi)Mp(xi)]}−1 × { l
n ×

6
∑

i=1
[wp MT

p (xi)]R(T × Ru)−1]} (9)

where the matrix Tk is called the displacement–strain transformation matrix, which is
determined by the position of the strain sensors after installation.

As shown in Figure 2, taking the Timoshenko beam as an example, the deformation
of this neutral axis is determined by the displacements u, v and x along each axis and the
rotation angles θx, θy and θz of each axis, the strain values are obtained from the strain
sensors affixed to the surface of the structure, and the nodal DOFs are determined by
Equations (4)–(9) and expressed as Equation (10):

u =
[
u, v, w, θx, θy, θz

]T (10)

where u, v, w, θx, θy and θz are also called the kinematic variables of the nodal DOFs
u. When the nodal DOFs u(x) are determined, the shape function H(x) is obtained by
interpolation of the nodal DOFs, and the displacement d of the final reconstruction is
determined by the shape function and the nodal DOFs, as in Equation (11).

d =


dx
dy
dz

 =

 1 0 0 0 z −y
0 1 1 −z 0 0
0 0 1 y 0 0




u(x)
v(x)
w(x)
θx(x)
θy(x)
θz(x)

 = H(x)u(x) (11)
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3. Coarse and Fine Two-Stage Calibration Method
3.1. Coarse Calibration

The selection of the proper sensor location is critical for accurate displacement and
strain measurements. The sensor should be placed in the area that is most sensitive to the
required measurement quantity in order to obtain the most accurate data. The fixation
and alignment of the sensor during installation are also very important. If the sensor is
not properly fixed or aligned, this may lead to unwanted errors or deviations. Therefore,
ensuring good contact, stability and accuracy between the sensor and the object being
measured is critical during the measurement process.

When the layout position of the strain sensor is determined, human installation
factors will cause the sensor pasting position to offset, thus affecting the accuracy of
the displacement–strain transformation matrix Tk associated with the sensor position
in Equation (9), resulting in an error ∆Tk between the theoretical displacement–strain
transformation matrix Tk and the actual displacement–strain transformation matrix Tk

′

after the sensor is installed, as shown in Equation (12).

Tk
′ = Tk + ∆Tk (12)

To reduce the effect of sensor position offset on the reconstructed displacement accu-
racy, an error compensation method based on SOPSO is proposed for the displacement–
strain transformation matrix.

The root mean square error (RMSE) is defined as:

RMSE =

√
1
n

n

∑
m=1

(dispu
i − dispv

i (P′)) (13)

The relative root mean square error (RRMSE) is defined as:

RRMSE =
RMSE

max(dispu)
× 100% (14)

where n denotes the number of position sensors (check points). P′ denotes the actual
installation positions of the 6 strain sensors (i = 1, 2, . . . , 6), which consists of the actual
overall sensor layout position when the strain sensor installation position is offset.

After the installation of the strain sensor, the strain value during the deformation of
the structural body is measured, and the theoretical displacement value dispv

i is obtained
based on the iFEM reconstruction. dispu

i denotes the actual measured displacement at
check points.

The sensor position optimization model based on iFEM is shown in Equation (15):

Minmize Index(P′) = [RRMSE(P′)]
P′ = (P1

′, P2
′, P3

′, P4
′, P5

′, P6
′)

(15)
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where the exponent (P′) denotes the objective function of optimization. In this paper, the
number of sensors required for the displacement field reconstructed is six [22].

Since the specific offset position cannot be obtained after installation, according to
the actual situation, the optimization range can be set around the theoretical installation
position of the sensor extracted in the simulation software ANSYS. The optimized sensor
position parameter (xi*, θi*, βi*) can be obtained based on SOPSO, and the modified
displacement–strain matrix T∗k can be obtained by substituting the parameter (xi*, θi* and
βi*) into Equations (6)–(9), improving the reconstruction accuracy of the displacement field.

Particle swarm optimization (PSO) is an evolutionary computational technique. All
particles in the swarm adjust their velocity and position according to the current individual
extreme value they find and the current global optimal solution shared by the whole swarm.

The basic idea of PSO is to search for optimal solutions to optimization problems
through collaboration and information sharing among individuals in a population, as
shown in Equations (16) and (17):

Vn+1 = Vn×w+ c1× rand_ f1× (Xn
i _pbest−Xn

i )+ c2× rand_ f2× (Xn
i _gbest−Xn

i ) (16)

Xn+1
i = Xn

i + Vn+1 (17)

where the inertia factor w is a value between 0 and 1. As the number of iterations increases,
Xn

i denotes each position parameter of each particle, which in this paper means the position
of the sensor. c1 and c2 denote acceleration factors; rand_f 1 and rand_f 2 are random
values between 0 and 1; Xn

i _pbest is denoted as an individual optimum, indicating the
optimal position of particle Xi in the previous generation during the iterative process; and
Xn

m_gbest is denoted as a population optimum, indicating the best position explored by all
individuals in the population.

The fitness function f (Xi) of PSO is obtained by solving the optimization model in
Equation (15). The iterative process is shown in Equations (16) and (17), and the particle
moves from Xi to Xn

i with the updated velocity Vn as shown in Figure 3.
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The steps for solving the optimization model (15) based on the single-objective particle
swarm algorithm are shown below.

Step 1: The initial position X0 and initial velocity V0 of the particle swarm algorithm
are initialized, setting them within the installation error of the sensor. The number of the
population size is set to N = 80, and the maximum number of iterations is nmax = 100.

Step 2: In each generation of evolution, the value of the fitness function f (X1
i _pbest)

is calculated for each particle, the values are compared to see whether the current fitness
value of each particle is better than the historical local optimum, i.e., f (X1

i ) > f (X0
i _pbest),

the current particle fitness value f (X1
i ) is taken as the local optimum of the particle, and

then its current position is taken as the optimal position of the particle. The current fitness
value of each particle is compared with the fitness value f (Xn

m_gbest) corresponding to the
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global best position Xn
m_gbest; if the current fitness value is higher, the global best position

will be updated with the current particle position.
Step 3: the algorithm iterates to the maximum number of iterations, n = nmax, and the

algorithm terminates.
In summary, we call this method of displacement error calibration coarse calibration.

On the basis of the coarse calibration method, fine calibration is performed in Section 3.2 to
further improve the reconstruction accuracy of the deformation field.

3.2. Fine Calibration
3.2.1. The Nodal Degrees of Freedom Error Correction

For the errors that still exist between the displacements reconstructed based on the
iFEM and the actual displacements after the coarse calibration, the displacement nodal
degrees of freedom error correction model is further proposed. As shown in Equation (18),
the theoretical displacement of the iFEM reconstruction is denoted as dt

i , and the actual
displacement is denoted as da

i :
da

i = dt
i + ∆di (18)

where i = 1, . . . , n denotes the ordinal number of observation points and ∆di denotes the
reconstruction error. Displacement at any position in the structure can be obtained from
the shape function H(x) and the discrete nodal during the reconfiguration displacement.
As a result, the whole displacement field can be calibrated by correcting the reconstruction
error of the nodal DOFs.

The relationship between displacement error and nodal DOFs error can be expressed
as Equation (19).

∆di =

∆dx
i

∆dy
i

∆dz
i

 = G× Ni × ∆u (19)

where the number of nodal DOFs is c. The displacement field error ∆di of the inverse
finite element reconstruction is derived by Equation (19) to the nodal DOFs error
∆uj(j = 1, . . . , c), and then the displacement nodal DOFs model can be expressed as
Equation (20)

∆dz = H · ∆u + β (20)

where ∆dz = [∆dz
1, ∆dz

2, . . . , ∆dz
n]T, H = [H1.H2, . . . , Hn], β is denoted as the residuals after

displacement error correction and obeys Gaussian distribution, i.e., β ∼ N(0, σ2), and
Hi = [Hi1, Hi2, · · · , Hic] is the row vector of G*Ni for ∆dz. It follows that ∆dx and ∆dy can
also be expressed analogously by Equation (20).

The matrix H in Equation (20) is the ill-conditioned matrix. The actual measured strain
value of the sensor receives interference from random noise, which makes the estimated
value ∆u have an error with the actual value, and the error is reduced by the Bayesian
regularization algorithm using prior information. From Bayesian theory, p(∆u, σ2|∆dx)is
used to represent the joint posterior distribution of the unknown parameters, as defined as
shown in Equation (21):

p(∆u, σ2|∆dx) ∝ p(∆dx|∆u, σ2) · p(∆u, σ2) (21)

where p(∆u,σ2) denotes the joint prior distribution, rewriting Equation (21) into multi-
plicative form, which assumes that the residuals are independently Gaussian distributed,
i.e., β = [∆dx − H·∆u]Ñ

(
0, σ2), and that the non-informative prior of σ2 is taken into

account, i.e., p
(
σ2) ∝ 1/σ2. Assuming that the prior distribution of ∆u is Gaussian,

i.e., p(∆u) = N
(
0, τ2), the posterior distribution in logarithmic form lnp = (∆u, σ2

∣∣∆dx)
is represented:

lnp(∆u, σ2|∆dz) ∝ −
n

∑
i=1

[∆dz
i − Hi · ∆u]2 − λ

c

∑
j=1
‖∆uj‖2 (22)
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where λ = σ2

τ2 , and the conditional posterior distribution of ∆u in Equation (23) is calculated
using the conjugate distribution method as N(∆uj,∆s2

j ).

∆uj = (
n
∑

i=1
x2

ij + λ)−1
n
∑

i=1
xij(∆dz

i −
c
∑

j=1,j 6=j
xij∆uj)

s2
j = (

n
∑

i=1
x2

ij)
−1σ2 + τ2

(23)

For σ2, the conditional posterior distribution is the inverse chi-square distribution,
expressed as:

σ2~
1

χ2 ∑n
i=1 (∆dz

i −∑c
j=1 xij∆uj)

2
(24)

Therefore, Markov chain Monte Carlo (MCMC) samples are produced from the pos-
terior p(∆u,σ2|∆dx) via a Gibbs sampler for calibration amounts ∆u, and the steps are as
follows: (1) initialize ∆u and σ2; (2) perform Gibbs sampling on ∆u in Equation (23); and
(3) select the inverse chi-square distribution from Equation (24), σ2. The specific process
details are shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 26 
 

 

F1

F2

F3

F5

F4

F6

M0

M1

M2

M3

M4

M5

M6

NURBS curve

Control points

Control knots

Knots on curve

A NURBS curve and its control polygon 

 

 

Figure 4. NURBS approximation diagram. 

The calibration values of each kinematic variable in the nodal DOFs error are derived 

from the Bayesian regularization algorithm and are combined with the actual measured 

strain values to form the sample data, defined in Equation (25). 

L m  j 1 2 j 1 2 jQ = {(ε ,ε ,...,ε ) ,( u , u ,..., u ) }
 

(25) 

where Qj denotes the jth (j = 1, 2, …, h) sample data under working conditions and 𝜀𝑙 

denotes the lth (l = 1, 2, …, L) strain value measured by the sensor. ∆ui (i = 1, 2, …, m) 

denotes the error calibration value of the kinematic variable in the nodal DOFs error. 

3.2.2. Training Data Filtering and Sample Size Expansion

 The error correction method has limitations: the nodal DOFs errors can only be cali-

brated under specific working conditions. Therefore, in order to obtain the error calibra-

tion between strain values and nodal DOFs under arbitrary working conditions, the SCFN 

is used for calibration. The selection of appropriate training data affects the training effect 

of SCFN, and this paper employed residual analysis to screen the sample data. In addition, 

the training effect of the SCFN is also related to the number of training samples, so the 

number of training samples should be expanded before entering the training network. 

The residual is the difference between the actual observed value and the fitted value 

of the sample. The reliability and reasonableness of the data are analyzed using the resid-

ual, defined as follows. 

ˆ−e = y y  (26) 

where y represents the actual observed value, �̂� represents the fitted value, and e repre-

sents the residual. 

Figure 4. NURBS approximation diagram.

The calibration values of each kinematic variable in the nodal DOFs error are derived
from the Bayesian regularization algorithm and are combined with the actual measured
strain values to form the sample data, defined in Equation (25).

Qj =
{
(ε1, ε2, . . . , εL)j, (∆u1, ∆u2, . . . , ∆um)j

}
(25)

where Qj denotes the jth (j = 1, 2, . . . , h) sample data under working conditions and ε l denotes
the lth (l = 1, 2, . . . , L) strain value measured by the sensor. ∆ui (i = 1, 2, . . . , m) denotes the
error calibration value of the kinematic variable in the nodal DOFs error.
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3.2.2. Training Data Filtering and Sample Size Expansion

The error correction method has limitations: the nodal DOFs errors can only be
calibrated under specific working conditions. Therefore, in order to obtain the error
calibration between strain values and nodal DOFs under arbitrary working conditions, the
SCFN is used for calibration. The selection of appropriate training data affects the training
effect of SCFN, and this paper employed residual analysis to screen the sample data. In
addition, the training effect of the SCFN is also related to the number of training samples, so
the number of training samples should be expanded before entering the training network.

The residual is the difference between the actual observed value and the fitted value of
the sample. The reliability and reasonableness of the data are analyzed using the residual,
defined as follows.

e = y− ŷ (26)

where y represents the actual observed value, ŷ represents the fitted value, and e represents
the residual.

In this paper, considering that high-dimensional data can cause excessive computation,
the screening of sample data requires residual analysis for each kinematic variable in the
calibration values of DOFs to ensure the reasonableness of screening training data.

The new sample point is obtained by decomposing the original sample data Qj in
Equation (25): 

F1 = {(ε1, ε2, · · · , ε l)1, ∆u1}
F2 = {(ε1, ε2, · · · , ε l)2, ∆u2}

...
Fm = {(ε1, ε2, · · · , εL)m, ∆um}

(27)

Each sample point is decomposed into Fi (i = 1, 2, . . . , m) of the form, where each
vector Fi consists of L measured strain values εL and 1 kinematic variable of nodal DOFs
error, and the kinematic variables are denoted as ∆ui (i = 1, 2, . . . , m).

The sample fit values are obtained before the sample data are screened based on the
magnitude of the residuals. In this paper, the nonuniform rational B-spline (NURBS) curve
fitting method is used to fit the data Fi, as shown in Figure 4.

The NURBS curve of order c can be expressed as a segmented rational polynomial
vector function, and the mathematical definition is as follows.

p(t) =
∑h

i=0 ki MiEi,c(t)

∑h
i=0 kiEi,c(t)

(28)

where ki (i = 0, 1, . . . , h) denotes the weight factors, associated with the control ver-
tex Mi (i = 0, 1, . . . , h); due to the lack of expert experience, the weighting constants
ki = 1 (i = 0, 1, . . . , h). Ei,c(t) denotes the c-th order B-spline basis function, which is a non-
decreasing sequence of parameters. T = [t0, t1, . . . , th+c+1] is the nodal vector and determined
by the c-th-order segmented polynomial.

The basis function can be recursively expressed by:

Ei,0(t) =
{

1, ti ≤ t ≤ ti+1
0, otherwise

Ei,c(t) =
t−ti

ti+c−ti
Ei,c−1(t) +

ti+c+1−t
ti+c+1−ti+1

Ei+1,c−1(t)
(29)

The parameterization of the data points reflects the nature of the curve constructed
with the data points. Based on the nodal vector of basis functions and control points to
construct the NURBS fitted curves, a centripetal parameterization method is applied to the
sample data as shown in Equation (30).
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t0 = 0

ti = ti−1 +
|Fi−Fi−1|

1
2

∑h
i=1|Fi−Fi−1|

1
2

th = 1

(i = 1, 2, · · · , h− 1) (30)

As required by the definition domain of the non-closed curve, multiple knots with
repetition degree c + 1 are taken at the two endpoints of the definition domain. According
to the distribution of the sample and the method of centripetal parameterization, the
nonuniform vector method is used for the construction, shown in Equation (31).

t0 = t1 = · · · = tc = 0
tj+c =

1
c ∑

j+c−1
i=j ti (j = 1, 2, · · · , h− c)

th+1 = th+2 = · · · = th+c+1 = 1
(31)

The c-th-order NURBS curve is constructed by m + 1 sampling points Fi (i = 0, 1, . . . , m).
The approximation function is obtained by using the least squares method to approximate
the parameter sequence ti (i = 0, 1, . . . , m), shown in Equation (32).

δ(p, t) =
m

∑
i=1
‖Fi − p(ti)‖

2

(32)

where the control points are set to A0 = F0, Am = Fh, and then Si = Fi − F0E0,c(ti) − FhEp,c(ti).
The partial derivatives of the control points in Equation (32) are equal to 0.

The matrix form is expressed as:

M(ETE) = S (33)

where the E matrix is a matrix with h − 1 rows and m − 1 columns and ET is the transpose
matrix of E. The E, S and M matrices are shown in Equation (34).

E =


E1,c(t1) E2,c(t1) · · · Eh−1,c(t1)
E1,c(t2) E2,c(t2) · · · Eh−1,c(t2)

...
...

. . .
...

E1,c(tm−1) E2,c(tm−1) · · · Eh−1,c(tm−1)



S =


E1,c(t1) E2,c(t1) · · · Eh−1,c(t1)
E1,c(t2) E2,c(t2) · · · Eh−1,c(t2)

...
...

. . .
...

E1,c(tm−1) E2,c(tm−1) · · · Eh−1,c(tm−1)


T

·


s1
s2
...

sm−1



M =


M1
M2

...
Mh−1



(34)

The specific steps to obtain the sample fit values using NURBS curve fitting are as follows:

(1) The data are parameterized by Equation (29) to obtain ti (i = 1,2,. . . ,m) and the basis
function Ei, c(t).

(2) After obtaining ti, the nodal vector T is obtained by Equation (30).
(3) The control point Mi (i = 1,2,. . . ,h) is obtained according to Equation (33).
(4) The constructed NURBS fitting curve is then derived from Equation (28).
(5) When the NURBS fitted curve is obtained, the values of the sample data parameters

are substituted into the curve equation of Equation (28), and then the values on the
fitted curve corresponding to the original sample data can be obtained.



Sensors 2023, 23, 5793 11 of 25

Similarly, the fitted data F̂i (i = 1, 2, . . . , m) for the rest of the samples under a working
condition can be obtained as shown below.

F̂1 = {(ε̂1, ε̂2, · · · , ε̂L)1, ∆û1}
F̂2 = {(ε̂1, ε̂2, · · · , ε̂L)2, ∆û2}

...
F̂m = {(ε̂1, ε̂2, · · · , ε̂L)m, ∆ûm}

(35)

When screening training data using residual analysis, the error in the kinematic
variables ∆ui (i = 1, 2, . . . , m) varies considerably in order of magnitude due to the actual
situation, which affects the residual analysis. The transformation matrix H in Equation (2)
is related to the observed coordinates of the position sensor (check point) and other factors,
and the order of magnitude of each column of the transformation matrix H varies greatly.
According to Equation (19), ∆di for the same working conditions is generally under the
same order of magnitude, so it leads to kinematic variable errors ∆ui (i = 1, 2, . . . , m)
obtained from the solution of different orders of magnitude.

According to the analysis described above, the main factor affecting the magnitude of
the kinematic variable error is the column vector of transformation matrix H. Therefore,
the weighting constants are calculated as shown in Equation (36).

ai =
1
v

v

∑
k=1

Hki (36)

where ai (i = 1, 2, . . . , m) denotes the weighting constants corresponding to the m-th
kinematic variable error and Hki denotes the k-th row and i-th column of the transforma-
tion matrix.

When the position of the position sensor is fixed, the matrix H is constant under any
working condition, so the weighting constants corresponding to the kinematic variable
error are also unchanged. At this time, the integrated residual value et of the sample under
one working condition can be obtained from the Euclidean distance, which is calculated as
shown in Equation (37).

et =

√
∑m

i=1 (ai · (∆ui − ∆ûi))
2

(37)

In summary, the integrated residuals of the samples et
j (j = 1, 2, . . . ., h) under the

remaining working conditions can be obtained.
The screened training data consist of three parts: boundary samples, representative

samples and normal samples after equidistant sampling. The boundary samples are the
sample points where the structure is in the minimum and maximum load states in the
experiment. After extensive experiments and summaries, the conclusion can be drawn that
the rest of the sample points in the normal sample points are values with a small range of
residual fluctuations, and the residual values of representative sample points are more than
twice the fluctuation range of the residual values of normal sample points.

The specific steps of the screening training data method are as follows: (1) The NURBS
curve fitting method is adopted to obtain the corresponding fitting data of sample points.
(2) The corresponding fitting data are subtracted from the sample data to obtain the residual
values of each sample point under different working conditions. (3) The boundary samples,
representative samples and normal samples obtained by equidistant sampling are selected
as the training samples for constructing the self-constructed fuzzy neural network. The
training sample set Fsc screened from all samples Qj is denoted as:

Fsc = {Fsc
1 , Fsc

2 , · · · , Fsc
o } o ≤ j (38)

The number of screened training samples Fsc
o is expanded through the NURBS curve

fitting method. After obtaining the fitting curve, a specific step is taken to extend the
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sample quantity by substituting values of ti ranging from 0 to 1 into Equation (28). Then, a
self-constructed fuzzy network is trained based on the extended samples.

3.2.3. Self-Constructed Fuzzy Network Calibration

Due to the nonlinear and coupling relationship between the strain values in the sample
data and the nodal DOFs calibration values, a mathematical model is difficult to build.
However, SCFN can effectively solve this nonlinear problem. After screening all samples for
suitable training samples and extending them, the SCFN is trained based on the extended
samples. A strain nodal DOFs calibration model is established. The SCFN enhances the
generalization ability of the strain nodal DOFs calibration value and improves the accuracy
of the reconstructed displacement by calibrating the nodal DOFs. SCFN is divided into two
steps [32]: (1) adding the affiliation function and generating the corresponding fuzzy rules
and (2) adaptively adjusting the results of the fuzzy rules.

In this paper, the triangular affiliation function has a simple structure, which is con-
venient and efficient for calculating the membership degree. Thus, SCFN chooses the
triangular membership function and the 0th-order T-S fuzzy model, which is represented
by the fuzzy rule set as follows.

Sn : i f ε1 is Rn
1 and ε2 is Rn

2 · · · and εK is Rn
K then p̂n = wn (39)

where Sn (n = 1, 2, . . . , N) denotes the nth fuzzy rule, εk (k = 1, 2, . . . , K) is denoted as the
input strain value, and Rk

n denotes the membership degree corresponding to εk in the nth
rule. p̂n denotes the output of the nth fuzzy rule, and wn is the value corresponding to its
fuzzy rule output.

The system output of SCFN p̂ represents the nodal DOFs error, and when a certain
input activates m rules (n ≥ m), the system output is derived from the p̂n of these m outputs
by weighted averaging, as shown in Equation (33).

Ŷ =

m
∑

n=1
qn p̂n

m
∑

n=1
qn

=
q1 p̂1 + q2 p̂2 + · · ·+ qm p̂m

q1 + q2 + · · ·+ qm
(40)

The qn in Equation (40) denotes the weighting constants of the rule, and the weighting
constants are calculated by taking the smallest method, as shown in Equation (41).

qn = Rn
1 ∧ Rn

2 ∧ L ∧ Rn
K =

K
∧

k=1
Rn

k (εk) (41)

The SCFN is initialized with one rule, and the membership functions and rule number
are added or removed based on the error and completeness criteria. When the number of
training samples is k + 1, the error standard of SCFN is represented by root mean square
error ηt, and the formula is shown below.

ηt =

√√√√√ k
∑

c=1
(Û(c)−U(c))

2

k
(42)

where denotes the actual output, U(c) denotes the desired output, ηa is denoted as a
predetermined error threshold, and if ηt > ηa, it means that the system error does not meet
the requirements and the membership function needs to be increased.

In SCFN, each input value at least corresponds to one membership function. If its
membership degree Rn

k is greater than the completeness threshold α, the completeness of the
membership function meets the requirements; if Rn

k is less than α, then membership functions
and fuzzy rules need to be added. The completeness threshold is generally set to 0.5.
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After adding the membership function and fuzzy rule, the fuzzy rule also needs to
be adaptively adjusted to make it closer to the output value. The specific expression for
adjusting the nth rule of the fuzzy controller at the i-th moment is as follows.

an(i) = an(i− 1) + V · ϕn(i− 1) · (U(k− 1)− Û(k)) (43)

where an(i) denotes the rule adjustment result at moment i, V is used to adjust the adaptive
speed during rule adjustment, ϕn(i − 1) denotes the weighting constants of the nth rule at
moment i − 1, P(i − 1) denotes the desired output of the nth rule at moment i − 1, and (i)
is the current system output.

Each rule is added and adaptively adjusted according to the standard correspondence
and then used to train the SCFN. when ηt ≤ ηa, the training is stopped to jump out of the
iteration and generate the fuzzy network, and the trained fuzzy rules are saved to obtain
the calibrated nodal freedom results.

Summarizing the above, the method flow framework for the CFTSC method is shown
in Figure 5.
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4. Experimental Research

In order to verify the effectiveness of the CFTSC method proposed in this paper, the
wing-integrated conformal antenna structure was considered as the experimental object.
Experimental subjects were a plate and beam integrated structure, and the structure body
consisted of three beams and an aluminum plate. The beams and plate were connected
by six steel bars, and three beams were connected with fixed ends. Each beam was made
of aluminum alloys and had a length of 2000 mm. The beam located in the middle of the
three beams had an outer radius of 40 mm and an inner radius of 32 mm. The remaining
two beams located on the sides had an outer radius of 30 mm and an inner radius of 24 mm.
The specification of the plate in the structure was an aluminum plate with a length of
1120 mm, a width of 400 mm, and a thickness of 8 mm, placed and attached above the three
beams with the plate 500 mm from the fixed end, as shown in Figure 6a.

With the deformation of the structural body, the Fiber Bragg grating (FBG) sensor
installed on the beam (Figure 6e) transmitted the wavelength change information to the
demodulator in Figure 6d, which was processed and input to the host computer as strain
information, then the host computer calculated the strain value during the displacement of
the structure, and, finally, the displacement was calculated in real time. Meanwhile, the
displacement of the experimental subject was measured by Northern Digital Incorporation
(NDI) shown in Figure 6c and taken as the actual displacement. In Figure 6b, the infor-
mation on the position sensors (marked points) installed on the surface of the aluminum
plate was collected by the 3D optical measuring device NDI, which has a measurement
accuracy of approximately 0.1 mm and a resolution of 0.01 mm. The position sensors
have a maximum emission frequency of 4600 Hz and a maximum acquisition frequency of
4600/(n + 1.3) Hz (n is the number of position sensors). The position sensors can obtain
the deformation of the structure dynamically in real time to obtain the three-dimensional
coordinates in the X-, Y- and Z-directions. As shown in Figure 6a, the coordinate system in
X-, Y-, and Z-directions was established at the fixed end of the structure.

The specific information of the sensor installation was shown in Table 1. xp indicates
the relative position of the sensor on the beam, and (θ, β), respectively, indicate the circum-
ferential angle on the circular section and the angle with the X-axis when the sensor was
installed. The functions and interconnections between the various pieces of hardware in
this experiment are shown in Figure 7.

Table 1. Position of strain sensors.

Axial Position xp 0.21 L 0.22 L 0.575 L 0.53 L 0.505 L 0.56 L

(θ, β) (20, 0) (140, 0) (−110, 0) (110, 0) (40, 0) (160, 45)

From Table 2, the position information of the 10 position sensors installed after es-
tablishing the coordinate system can be obtained. In this experiment, the strain values
collected by the FBG sensor through the demodulator system and the position information
collected by the position sensor of NDI are performed simultaneously, and Figure 8 shows
the overall system of the experiment.

Table 2. Position of Position sensors.

Number Position (mm) Number Position (mm)

1 (562.04, 183.12, −4.74) 6 (1257.65, −169.87, 0.81)
2 (563.78, −176.30, 0.85) 7 (1585.45, 181.97, −3.38)
3 (909.58, 183.32, −5.42) 8 (1584.57, −176.63, 2.96)
4 (911.10, −179.36, 0.25) 9 (1933.19, 185.66, −0.94)
5 (1259.48, 183.39, −5.17) 10 (1934.84, −174.40, 4.14)
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Figure 6. The whole experimental framework: (a) Experimental subject; (b) Position sensors and
FBG; (c) Displacement-measuring instrument NDI; (d) Fiber Bragg grating demodulation system;
(e) FBG sensor.

Relative to the fixed end, the load was added to the main beam at the other end of the
structure (free end), as shown in Figure 8, and the magnitude of the static load under all
working conditions is shown in Table 3. The CFTSC method calculates the displacement
under various working conditions based on the strain values collected according to the
concentrated load forces listed in Table 3.
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Table 3. Load weight for all working conditions.

Number 1 2 3 4 5 6 7

Load (N) 20 N 40 N 60 N 80 N 100 N 120 N 140 N

Number 8 9 10 11 12 13 14

Load (N) 160 N 180 N 200 N 220 N 240 N 260 N 280 N

Number 15 16 17 18 19 20

Load (N) 300 N 320 N 340 N 360 N 380 N 400 N

The experiments of coarse calibration were first performed to verify the calibration
effect. The information was obtained by the FBG demodulator system, and the theoretical
displacement values of the structure at the 10 position sensors were reconstructed based on
the iFEM. The actual deformation was measured by NDI, and the index was obtained from
Equation (15).

In the simulation, high-fidelity finite elements of discontinuous beams were modeled
with ANSYS to verify the effectiveness of the proposed method. The length of the girder
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beam L1 = 2000 mm, outer diameter R1 = 40 mm and inner diameter r1 = 32 mm; the
length of the auxiliary girder L2 = 2000 mm, outer diameter R2 = 30 mm and inner diameter
r2 = 24 mm. The distance of the center of the circle d = 130 mm, and the dimensions of the
ribs are l = 400 mm, b = 50 mm and h = 20 mm. The specifications of the plate were a length
of 1120 mm, width of 400 mm and thickness of the aluminum plate of 8 mm, which was
divided into 6000 elements. Among the model, the ribbed plates are of steel construction,
and the beams are aluminum products. It was modeled with 56,350 elements, including
beams and solids. Table 4 presents the material properties of the modeled structure.

Table 4. Material properties of the model.

Properties Beam-Plate Rib

Density 2712 kg/m3 7850 kg/m3

Elastic modulus 7300 Mpa 21,000 Mpa
Poisson 0.3 0.3

The strain sensors are manually installed according to the layout determined in the
simulation software ANSYS. Based on engineering practice, the error of the position offset
between the actual installation position and the theoretical installation position in ANSYS
was within 1 cm. Therefore, the particle swarm optimization range of each strain sensor
position information was set to be within 1 cm around the theoretical position in ANSYS
and within ±30◦ of the angle. Taking strain sensor P1′ as an example, as shown in Figure 9,
the optimization range for the remaining sensors was the same.
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A total of 10 positions of position sensors were selected as check points to calculate
RRMSE. The corrected sensor position parameters (xi*, θi* and βi*) can be obtained based
on SOPSO. The maximum number of iterations nmax = 100, population size N = 80, inertia
weight parameter w = 0.7, self-learning factor c1 = 1.49 and population learning factor
c2 = 1.49. The corrected sensor position parameters (xi*, θi* and βi*) can be substituted into
Equations (6)–(9) to obtain the corrected displacement strain matrix T∗k , thus improving the
reconstruction accuracy of the displacement field.

In order to test the effect of the coarse calibration method on the reconfiguration
accuracy effect, indicators for estimating the calibration accuracy are proposed, which are
defined as:

RMSE =

√
∑N

i=1(dispn(i)− dispc(i))
2

N
(44)
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where the superscript ‘n’ indicates the actual displacement measured by NDI, ‘c’ indi-
cates the calibrated displacement by the coarse calibration method, and ‘m’ indicates the
reconstructed displacement by the iFEM. N indicates the number of position sensors.

When the structure was in a certain working condition, the relative root mean square
error (RMSE) in the z-direction of the main deformation direction after coarse calibration
was obtained from Equation (44); similarly, the RMSE in the rest of the working condi-
tions could be obtained and compared with the RMSE obtained by reconstructing the
displacement using the iFEM, as shown in Figure 10, and the specific data are shown
in Table 5.
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Table 5. RMSE of coarse calibration and IFEM or each working condition unit: millimeters.

Load (N) 20 N 40 N 60 N 80 N 100 N 120 N 140 N 160 N 180 N 200 N

RMSEm 0.87 0.95 1.10 1.23 1.46 1.69 1.94 2.06 2.29 2.54

RMSEc 0.67 0.78 0.89 0.96 1.18 1.35 1.58 1.67 1.85 1.98

Load (N) 220 N 240 N 260 N 280 N 300 N 320 N 340 N 360 N 380 N 400 N

RMSEm 2.73 2.98 3.15 3.36 3.52 3.77 3.91 4.19 4.31 4.55

RMSEc 2.13 2.39 2.68 2.85 2.99 3.07 3.13 3.26 3.37 3.58

The results show that compared with traditional iFEM, the calibration accuracy of the
observed values for each working condition was improved by using the coarse calibration
method. Next, fine calibration was performed on the basis of the coarse calibration to
further improve the displacement reconstruction accuracy.

On the basis of the modified T∗k matrix obtained by coarse calibration, the displacement
field was reconstructed by the iFEM. The reconstructed displacements are compared with
the actual displacements obtained from the 3D optical measuring instrument NDI, the
reconstructed displacement error ∆di is obtained from Equation (18), and then the nodal
DOFs error ∆u is obtained from Equation (20).

After the original sample data were decomposed, the fitted values of each kinematic
variable were obtained by NURBS fitting, the corresponding weighting constants of each
kinematic variable were calculated by Equation (36), the integrated residuals of the kine-
matic variable under each working condition were obtained by Equation (37), the residual
plots for each working condition are shown in Figure 11. The integrated residuals of these
20 sets of working conditions were analyzed, and the residual values of most samples
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fluctuated in the range of 0–0.1, which was set as normal samples; samples with residual
values 2 times those of normal samples or greater were set as representative samples. The
boundary samples, representative samples and equidistantly sampled normal samples
were used together as training samples and the rest as test samples. A total of 13 sets of
training data and 7 sets of test data were selected, as shown in Tables 6 and 7.
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Table 6. Load in different working conditions for training.

Number 1 2 3 5 7 8 9 11 13 15 17 19 20

Load
(N) 20 N 40 N 60 N 100 N 140 N 160 N 180 N 220 N 260 N 300 N 340 N 380 N 400 N

Table 7. Load in different working conditions for testing.

Number 4 6 10 12 14 16 18

Load (N) 80 N 120 N 200 N 240 N 280 N 320 N 360 N

The NURBS curves with 20 control points are fitted with these 13 sets of training data,
and the fitted curves are sampled at equal intervals and expanded to generate 200 sets
of data from the 13 sets of sample data. Then, the expanded data are used to construct a
self-constructed fuzzy network with the input value of strain, and the calibrated nodal
DOF was output through the trained self-constructed fuzzy network. Finally, the calibrated
displacement values are obtained according to Equation (2) based on the calibrated nodal
DOFs and the shape function H(x). In order to verify the verification accuracy of the CFTSC,
the calibration accuracy index is shown.

Error =
∣∣∣dispn − dispc f

∣∣∣ (45)

MER = MAX
∣∣∣dispn(i)− dispc f (i)

∣∣∣ (46)

RMSE =

√
∑N

i=1
(
dispn(i)− dispc f (i)

)2

N
(47)

where the superscript ‘cf ’ indicates the CFTSC method. MR denotes the maximum displace-
ment of the structure. The error was indicated by the absolute error, and MER indicates
the maximum absolute error. When the load was at the maximum load state (400 N),
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the maximum displacement value in the z-direction of the main deformation direction
was 158.83 mm.

The calibration effect of CFTSC was tested with seven sets of screened test data, and
the calibration results of each set of test data are shown in Figure 12a–g, Figures 13 and 14.
The experimental results show that the displacement accuracy of the seven sets of test data
was greatly improved compared with the traditional iFEM.
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The reconstruction displacement error in the z-direction at the check point position can be
obtained from Table 8. When the structure was under 360 N bending load, MR = 146.06 mm,
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the reconstructed displacement error MER = 3.53 mm and RMSE = 3.26 mm after coarse
calibration. The reconstructed displacement error MER = 0.70 mm and RMSE = 0.43 mm after
CFTSC on the basis of coarse calibration, compared with MER = 4.45 mm and RMSE = 4.19 mm
based on the iFEM. As a result, based on the experimental results, it can be concluded that the
CFTSC method was very effective in predicting displacement accuracy.

Table 8. Comparisons of Z-direction measured and computed displacement unit: millimeters.

Case a b c d e f g

MRn −68.36 −79.39 −102.38 −113.00 −123.56 −134.36 −146.06

MRcf −67.90 −78.93 −102.73 −112.43 −124.13 −134.58 −146.20

MRc −67.49 −78.02 −100.56 −110.62 −121.18 −131.26 −142.85

MRm −67.01 −77.52 −99.60 −109.76 −120.07 −130.20 −141.61

MERcf 0.74 0.57 0.75 0.74 0.93 0.64 0.70

MERc 1.11 1.50 2.31 2.54 3.11 3.24 3.53

MERm 1.35 1.87 2.78 3.24 3.49 4.16 4.45

RMSEcf 0.47 0.35 0.37 0.48 0.56 0.44 0.43

RMSEc 0.96 1.35 1.98 2.39 2.85 3.07 3.26

RMSEm 1.23 1.69 2.54 2.98 3.36 3.77 4.19

5. Conclusions

The CFTSC method based on the iFEM for shape perception is proposed to improve
the reconstruction accuracy. The method effectively reduces the error between the iFEM-
reconstructed displacement and the actual displacement. First, a coarse calibration is
performed, and the displacement–strain matrix is corrected based on SOPSO to reduce the
reconstruction error caused by the sensor offset during installation. On the basis of the
coarse calibration, fine calibration is performed to establish the displacement nodal DOFs
model and obtain the calibration values of the nodal DOFs based on the Bayesian algorithm.
After that, the training and test data are screened based on the residual values under each
operating condition, the sample size of the training data is expanded by NURBS, and then
the relationship between the strain and nodal DOFs calibration values is obtained after
training the self-constructed fuzzy network. Finally, the effectiveness of the CFTSC method
is demonstrated experimentally; when the loading weight is 360 N and the maximum
displacement is −146.06 mm, the maximum reconstruction error based on CFTSC method
is 0.70 mm. Thus, the CFTSC method greatly improves the reconstruction accuracy of the
displacement field.
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Abbreviations

iFEM Inverse finite element method
CFTSC Coarse and fine two-stage calibration
SCFN Self-constructed fuzzy networks
PSO Swarm optimization algorithm
SOPSO Single-objective particle swarm optimization algorithm
NURBS Non Uniform Rational B-spline
DOF Degrees of freedom
MCMC Markov Chain Monte Carlo
RMSE Root mean square error
RRMSE Relative root mean square error
NDI Northern digital incorporated
FBG Fiber bragg grating
List of Symbols
e(u) Theoretical sectional strain
eε Actual sectional strain
dt The displacement at any position of the section
H(x) Shape function
ue Nodal degrees of freedom
eu The strain at any position of the cross-section
M(x) Strain function matrix
ke Elements stiffness matrix
f µ Elements stiffness vector
l The unit length after reconstruction
n The number of section strains on the neutral axis
xi The location of the calculated section strain.
wp Weighting factor
εa Surface strains
xi Sensor axial coordinates
θi Sensor circumference angle
βi Angle between sensor direction and axial direction
T Conversion relationship between surface strain and section strain
µ Poisson ratio
r The outer radius of the section
Dy Bending stiffness in y-direction
Gz Shear stiffness in z-direction
Tk Displacement–strain transformation matrix
u,v,x Displacement along each axis
θx, θy, θz Rotation angles of each axis
d The displacement of the final reconstruction
Tk′ Actual displacement–strain transformation matrix
dispu

i actual measured displacement at check points
dispv

i Theoretical displacements reconstructed by iFEM
n The number of position sensors (check points)
P′ The actual installation positions of strain sensors
dt

i The theoretical displacement of the iFEM reconstruction
da

i Actual displacement
∆di Reconstruction error
G Displacement field matrix
Ni Shape function
∆u Nodal degrees of freedom error
β The residuals after displacement error correction
p(∆u, σ2) Joint prior distribution
N(∆uj,∆s2

j ) The conditional posterior distribution of ∆u
Qj The jth sample data under working conditions
ε l The lth strain value measured by the sensor
∆ui The kinematic variable in the nodal DOF error
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Fi Decompose the original sample data Qj
ki Weight factors
Mi Control vertex
Ei,c(t) The c-th order B-spline basis function
ti knots
T Nodal vector
F̂i Fitted data
ε̂l Fitted strain
∆ûi Fitted kinematic variables
ai The weighting constants corresponding to the kinematic variable error
Hki Transformation matrix
et The integrated residual value of sample under one working condition
Fsc Screened data set
Sn The nth fuzzy rule
εk Input values for fuzzy self-configured networks
p̂n Output of the nth fuzzy rule
wn The value corresponding to fuzzy rule output
qn The weighting constants of the rule
ηt The error standard of SCFN
ηa Predetermined error thresholds
Û(c) Actual output of SCFN
U(c) Desired output of SCFN
Rn

k Membership degree
an(i) The rule adjustment result at moment i
V Adjust the adaptive speed during rule adjustment
ϕn(i− 1) The weighting constants of the nth rule at moment i − 1
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